Differential Inequalities with Initial Time Difference and Applications
|
|
|
- Dwight Barker
- 9 years ago
- Views:
Transcription
1 J. oflnequal. & Appl., 1999, Vol. 3, pp Reprints available directly from the publisher Photocopying permitted by license only (C) 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint. Printed in Malaysia. Differential Inequalities with Initial Time Difference and Applications V. LAKSHMIKANTHAM a and A.S. VATSALA b,, aappfied Math Program, Florida Institute of Technology, Melbourne, FL 32901, USA; b Department of Mathematics, University of Southwestern Louisiana, Lafayette, LA 70504, USA (Received 26 May 1998; Revised 6 July 1998) The investigation of initial value problems of differential equations where the initial time differs with each solution is initiated in this paper. Basic preliminary results in qualitative theory are discussed to understand possible ramifications. Keywords: Differential equations; Change of initial time Subject index." 34A40, 34D20 1. INTRODUCTION In the investigation of initial value problems of differential equations, we have been partial to initial time all along in the sense that we only perturb or change the dependent variable or the space variable and keep the initial time unchanged [1,2]. However, it appears important to vary the initial time as well because it is impossible not to make errors in the starting time [3]. For example, the solutions of the unperturbed differential system may start at some initial time and the solutions of perturbed differential system may have to be started at a different initial time. Moreover, in considering the solution of a given system, it may be impossible, in real situations, to keep the initial time the same * Corresponding author. 233
2 234 V. LAKSHMIKANTHAM AND A.S. VATSALA and only perturb the space variable as we have been continuously doing. If we do change the initial time for each solution, then we are faced with the problem of comparing any two solutions which differ in the initial starting time. There may be several ways of comparing and to each choice of measuring the difference, we may end up with a different result. In this paper, we initiate the investigation in this direction and make an attempt to study some preliminary results to understand the possible ramifications. 2. COMPARISON RESULTS We begin with the basic result in the theory of differential inequalities parallel to the well known results [1]. THEOREM 2.1 Assume that (i) a,/3 E CI[R+, R], fe C[R+ R, R] and a < f(t, a), a(to) < Xo, to >_ O,/ >_ f(t, fl),/3(7-0) >_ Xo, 7"0 >_ 0; (ii) f(t, x) -f(t, y) < L(x-y), x >_ y, L > 0; (iii) 7-0 > to andf(t, x) is nondecreasing in for each x. Then (a) a(t) < (t + rl), >_ to and (b) a(t rl) </3(0, >_ 70, where 7"0 to. Proof Define/30(0 =/3(t + r/) so that 3o(to) --/3(to + 7) --/3(7"0) > Xo > a(to). Also, (t) fl (t + 1) >_ f(t + r/, flo(t)), >_ to. Let o (t) o (t) / ee 2Lt for some e > 0 small. Then /0(t) >_/30(t) and /0(t0) >/30(t0) >_ a(to). (2.1) We shall show that a(t) </30(t0) for _> to. If this is not true, because of (2.1), there would exist a > to such that o(tl)--/0(tl) and o(t) </0(t), to <t < t. (2.2)
3 DIFFERENTIAL INEQUALITIES 235 We get from (2.2), the relation at(h) >_/(tl) which implies in view of (ii), f(tl,a(tl)) > a (tl) >/(tl) =/3(tl) + 2Lee 2Ltl >_ f (tl Using (ii) and (2.1), we then get + r/,/3o (t)) + 2Lee 2Ltl f(tl,o(tl)) >_ f(tl + r/,/o(tl)) > f(t + r/,/0(t)). Since o > to, condition (iii) (2.2), namely, Lee 2Lq + 2Lee 2Ltl now leads to the contradiction because of f(tl,c(tl)) > f(tl,o(tl)), which proves a(t)</30(t), t_> to. Making e0, we conclude that c(t) _</3(t + ), >_ to which proves (a). To prove (b), we set Co(t)=cfft-), t>_ -0 and note that Co0-0)= c(7.0 7) c(to) <_/3(70). Then letting go (t) co (t) ee 2t for small e > 0 and proceeding similarly, we derive the estimate c(t- r/)_</3(0, >_ 70. The proof is therefore complete. In case to > 7"0, to prove the conclusion of Theorem 2.1, assumption (iii) needs to be replaced by (iii*) to > 7"0 and f(t, x) is nonincreasing in for each x. Then the dual result is valid. THEOREM 2.2 Assume that conditions (i), (ii) and (iii*) hold. Then the conclusion of Theorem 2.1 is valid. We can immediately deduce the following comparison result. THEOREM 2.3 Assume that (a) m e C[R+, R+], g e C[R+, R] and D_m(t) < g(t, m(t)), m(to) < Wo, to >_ O, where D_m(t) lih_nf [m(t + h)- m(t)];
4 236 V. LAKSHMIKANTHAM AND A.S. VATSALA (b) the maximal solution r(t) r(t, 7-0, Wo) ofw g(t, w), w(7-0) Wo > O, 7"0 > O, exists for >_ 7"0; (c) g(t, w) is nondecreasing in for each w and 7"0 > to. Then m(t) < r( / rl), >_ to and m(t- 7) <_ r(t), > 7"0. Proof It is well known [1] that if w(t, e) is any solution of w g(t, w) + e, w(7"o) wo + e, for e >0 sufficiently small, then lim,,o w(t,e)=r(t, 7"0, Wo) on every compact subset [7"o, 7"o + T]. Hence setting Wo(t, ) w(t + 7, ), we have Wo(to, ) W(to + rl, ) w(7"o, ) Wo + > Wo > m(to), and w(t, ) g(t + 7, wo(t, )) + > g(t + rl, wo(t, )), > to. By Theorem 2.1, we then get m(t) < Wo(t, e), >_ 7"0 and hence it follows that m(t) <_ r(t + rl, 7"0, wo), >_ to. To prove the second part of the conclusion, we set too(t) m(t rl) so that m0(0)= m(to) <_ Wo and note that D_mo(t) < g(t-,mo(t)), > 7"0. We now prove, following the earlier arguments, that mo(t)< w(t, e), _> 7"o and the conclusion follows taking the limit as e 0. The proof of theorem is complete. One can have a dual of Theorem 2.3 on the basis of Theorem 2.2. We merely state such a result. THEOREM 2.4 that condition (c) is replaced by Assume that conditions (a) and (b) hold. Supposefurther (c*) g(t, w) is nonincreasing in for each w and to > 7"0. Then the conclusion of Theorem 2.3 remains valid. In this framework, Gronwall Lemma takes the following form. GRONWALL S LEMMA 2.5 Let m, A C[R+, R+] and m(t) < m(to) + A(s)m(s) ds, to >_ O.
5 DIFFERENTIAL INEQUALITIES 237 If A(t)/s nondecreasing in and -o > to, then and Elto m(t) < m(to)exp A(s + r/) d > to, r/= 0 to, If A(t)/s nonincreasing in m(t rl) < m(to) exp A(s) ds to and to > o, then >_ o. m(t 7) < m(to) exp A(s r/) ds _> -o, and m(t) < m(to) exp "r0 A(s) ds t>_to. Remark 2.1 Let us note that if the functions f and g in the foregoing discussions are autonomous, the monotone assumptions imposed in the results are automatically satisfied. 3. METHOD OF VARIATION OF PARAMETERS Consider the two differential systems y F(t,y), y(to) Yo, to >_ O, (3.1) x =f(t,x), x( ro)= xo, o > O, (3.2) where F, fe C[R+ Rn, Rn]. Assume that OF(t,y)/Oy exists and is continuous on R+ x Rn, then we know [1] that the solution y(t, to, Yo) is unique for each (to, Yo), Oy(t, to, yo)/oto and Oy(t, to, yo)/oyo are the solutions of the variational system z Fy(t, y(t, to, Yo))z (3.3)
6 238 V. LAKSHMIKANTHAM AND A.S. VATSALA satisfying the initial conditions Oy (to, to, Yo) -F(to, Yo) Oy Oto Oyo (to, to, Yo I, (Identity matrix) and the identity Oy t, to, Yo + Oy t, to Yo F( to, Yo =- O, Oto (3.4) (3.5) holds for to < < x. Let y(t, to, Xo) be the solution of (3.1) through (to, Xo) and let (t) x(t + rl,7-o, xo), where x(t, 7-o, Xo) is any solution of (3.2) existing for t_> 7-0 and r/=7-o-to. Set p(s)= y(t,s, Yc(s)) for to < s< t. Note that (to) x(to + r/, 70, xo) xo. Then we see that dp(s) d Oy Oy (t,s, Yc(s)) + (t,s, Yc(s))f(s + rl, Yc(s)) Ot--- =f(s, (s); r/), say. (3.6) Integrating (3.6) from to to t, we get 2(0 y(t, to, xo) + (s, 2(s); r) as; _> to. (3.7) Now let q(s) y(t, to, or(s)) where (s) xos + (1 s)yo, 0 _< s <_ 1, so that we have dq(s ) Oy (t, to, cr(s))(xo YO). ds Oyo Integrating from 0 to 1, we arrive at Oy (t, to r(s))ds(xo Yo) y(t, to, xo) y(t, to, YO) + YO (3.8) Combining (3.7) and (3.8) yields x(t + rl, 7"o, xo) y(t, to,yo) + -yo(t, to, cr(s))ds(xo -Yo) + f(s, x(s + 7, 7"o, xo); r/)ds, t> to, (3.9)
7 DIFFERENTIAL INEQUALITIES 239 which gives the relation between the solution of (3.1) and (3.2) starting at different initial data in time and space. If f(t + rl, x) F(t, x) + R(t + 7, x), then it follows in view of (3.5), (3.6) and (3.9) that x(t + rl, ro, xo) y(t, to,yo) + -yo(t, to, cr(s))ds(xo -Yo) + (t,,,, x(s+,0,x0))(+ x(+ 0, x0)) (3.0) for t to. This is the nonlinear variation of parameters formula connecting the solutions of perturbed and unperturbed differential systems. If Fin (3.1) is linear and autonomous, namely, F(t, y) Ay where A is n x n constant matrix and f in (3.2) is taken as fit, x)= Ax + R(t,x), then (3.10) reduces to x(t +, T0, X0) ea(t-t)yo + ea(t-t)(xo YO) + e(t-slr(s+,x(s+,o, xo))ds. (3.11) The relation (3.9) which offers an expression for the difference of two solutions x(t +, ro, xo) and y(t, to, Yo) can be obtained in a different form as follows. Let w(t) x(t +, o, xo) y(t, to, Yo) 2(t) y(t). Then w(to) xo Yo and ( f( + v, () + ()) e(,() (t, (0; v). Setting p(s) y(t, s, w(s)), we find ds Oy (t,s, w()) + Oy (t,, w())/-/(, w(). v) B(t,s, w(s); Integrating from to to t, we have ( =y(,0,0-y0)+ /(,,w();/d, t>_to,
8 240 V. LAKSHMIKANTHAM AND A.S. VATSALA or equivalently, for > to, x(t+7,7"o, xo) y(t, to,yo) y(t, to, xo-yo) / (t,s,w(s);7)ds. (3.9*) One can also obtain the expression (3.9*) for >_ o. For this purpose, we need to set w(t) x(t, o, xo) y(t rl, to, yo) x(t) p(t) so that W&o) Xo yo and w (t) f (t, w(t) + (t)) F(t-,fi(t)) H(t, w(t); r/). Proceeding as above, we arrive at x( t, 7-0, xo y( 7, to, Yo Y( t, to, xo Yo + ( t, s, w(s), rl) ds for t_> 7-o. Let us next consider another differential system where G E C[R+ x R n, Rn]. Define (3.9**) z G(t,z), z( o) zo, (3.12) v(t) z(t + 7, 7-0, zo) x(t, to, xo) for _> to, (3.13) where z(t,-o, Zo) and x(t, to, Xo) are the solutions of (3.12) and (3.2) through (7o, Zo) and (to, Xo) respectively. Then V(to) Zo Xo and v (t) G(t + 7, z(t + 7, 0, zo)) f(t,x(t, to, xo)) G(t + ri, v(t) + x(t, to, xo)) -f(t,x(t, to, xo)) fo(t, v(t);7), say. (3.14) We set p(s)=y(t,s, v(s)) where y(t, to, Yo) is the solution of (3.1) so that dp(s) Oy Oy (t,s, v(s)) fo(s, ds Oto +-yo (t,s, =- G(t,s, v(s); r/), say. (3.15)
9 DIFFERENTIAL INEQUALITIES 241 Integrating from to to t, we get v(t) y(t, to, z xo) + r(t,s, v(s); r/)ds, > to, (3.16) which implies for > to, z(t + 7, 7"o, zo) x(t, to, xo) y(t, to, zo xo) / G(t,s, v(s); /) ds. (3.17) This relation connects the solutions of three differential equations and is the nonlinear variation of parameters formula as well. Let us consider some special cases of (3.17). (a) Suppose that F(t,y)=O so that y(t, to, Yo)=_yo. Then (3.17) yields (b) z(t+rl, 7o, zo)-x(t, to, xo) =zo-xo / fo(s,v(s);rl)ds, t>_to. Suppose that G(t,x)=f(t,x). Then (3.17) reduces to (3.18) x(t / 7, 7"o, zo) x(t, to, xo) y(t, to, zo xo) r(t,s, v(s); 7)ds, (3.19) (c) where Oy O(t,, v(); ) b-g0 (t,, v()) Oy + yo (t,, v(s))[f(t + rl, x(t) + v(t)) f(t,x(t))] If F(t, y)= 0 and G(t, x)= f(t, x), we get from (3.17) the relation x(t +, o, zo) x(t, to, xo) zo xo + [f(s + r,x(s) + v(s)) -f(s,x(s))] ds. (3.20)
10 242 V. LAKSHMIKANTHAM AND A.S. VATSALA (d) If F(t, y) =_ 0 and G(t, x) =f(t, x) + R(t, x), then (3.17) reduces to z(t+rl, 7"o, zo)-x(t, to, xo):zo-xo+ fo(s,v(s);rl)ds, (3.21) where fo(t, v(t); r/) f(t + rl, v(t) + x(t)) f(t,x(t)) + R(t +,z(t + 7)). Other possibilities exist and we omit, to avoid monotony. 4. STABILITY CRITERIA Consider the differential system x =f(t,x), (4.1) wherefe C[R+ x R n, Rn]. Let x(t, 7-0, Xo) and x(t, to, Yo) be the solutions of (4.1) through (7-0, Xo) and (to, yo), to, 7-0 > 0, 7-0 to > 0. In order to discuss stability of the difference of these two solutions, the notion of practical stability is more convenient which we define below in a suitable way. DEFINITION The system (4.1) is said to be (1) practically stable, if given (A,A) with (A <A), there exists a cr cr(,k, A) > 0 such that Ixo Yol </k, I1 < Ix(t +, -0, xo) x(t, to, yo)l < A for >_ to; (2) strongly practically stable if (1) holds and given (,, B, T) > 0 there exists a ro o(3, B, T) such that Ix0- y01 <, I1 < 0 for t> to+ T. Ix(t +, -o, xo)- x(t, t0,y0)l < B Now we can prove the following typical result concerning practical stability of (4.1) relative to the two solutions starting at different initial data.
11 THEOREM 4.1 lim inf ho- [Iv + h f(t, v, rl)l Ivl] < -clvl / (4.2) - DIFFERENTIAL INEQUALITIES 243 Suppose that a,/3>0, where ](t,v, rl)=f(t+rl, x(t)+ v)-f(t,x(t)) and x(t)= x(t, to, Yo). Then the system (4.1) is strongly practically stable. Proof Set v(t) x(t + rl, 70, Xo) x(t, to, Yo) Yc(t) x(t) for >_ to, so that V(to) Xo Yo and v (t) f (t + rl, x(t) + v(t)) f (t, x(t)) =_ )7(t, v; r/). (4.3) It is now easy to get the linear differential inequality D_m( t) <_ -cm( t) +/11, to, (4.4) where m(t) Iv(t)[-- [x(t + rl, 7"0, Xo) x(t, to, Yo)l, using (4.2). We then get from (4.4) the estimate m(t) < m(to)e -a(t-t) + [r/i --fl > to. (4.5) If 0 < A < A are given, then choosing r=(a- A)(c//3), we see that (4.5) yields for Ix0-y01 <A, Ir/I < cr Ix(t+r, o, xo)-x(t, to,yo)l <A > to, proving practical stability. Now let (A,B,T)>0 be given. Choose or0- min(r,7) where (B- Ae-r)(c//3). Then it follows from (4.5) that whenever Ixo- yol < A and Ir/I < ro, we have Ix(t + rl, 7-o, xo) x(t, to,yo)l < B, >_ to + T. This proves that the system (4.1) is strongly practically stable and the proof is complete. Remark 4.1 One can also formulate the foregoing considerations to hold for _> 7-0 by defining v(t) Ix(t, 7-0, Xo) x(t ri, to, yo)l and proceeding as before.
12 244 V. LAKSHMIKANTHAM AND A.S. VATSALA For more stability results in the present framework via nonlinear variation of parameters see [4]. References [1] Lakshmikantham, V. and Leela, S., Differential and lntegral Inequalities Vol. I, Academic Press, New York, [2] Lakshmikantham, V., Leela, S. and Martynyuk, A.A., Practical Stability ofnonlinear Systems, World Scientific, Singapore, [3] Lakshmikantham, V., Advances in stability theory of Lyapunov: Old and new, Proc. of CESA 98 and IMACS Multiconference, Tunisia (to appear). [4] Shaw, M.D. and Yakar, C., Nonlinear variation of parameters and stability criteria with initial time difference, International Journal of Non-linear Differential Equations Theory Methods and Applications (to appear).
Fuzzy Differential Systems and the New Concept of Stability
Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida
QUASILINEARIZATION METHOD
Journal of Applied Mathematics Stochastic Analysis 7, Number 4, 1994, 545-552. FURTHER GENERALIZATION OF GENERALIZED QUASILINEARIZATION METHOD V. LAKSHMIKANTHAM N. SHAHZAD 1 Florida Institute of Technology
OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS
ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek
Lecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
A new continuous dependence result for impulsive retarded functional differential equations
CADERNOS DE MATEMÁTICA 11, 37 47 May (2010) ARTIGO NÚMERO SMA#324 A new continuous dependence result for impulsive retarded functional differential equations M. Federson * Instituto de Ciências Matemáticas
Duality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov
DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics
Lecture 13 Linear quadratic Lyapunov theory
EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time
Properties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
Stochastic Inventory Control
Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
On the Oscillation of Nonlinear Fractional Difference Equations
Mathematica Aeterna, Vol. 4, 2014, no. 1, 91-99 On the Oscillation of Nonlinear Fractional Difference Equations M. Reni Sagayaraj, A.George Maria Selvam Sacred Heart College, Tirupattur - 635 601, S.India
CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
THE SQUARE PARTIAL SUMS OF THE FOURIER TRANSFORM OF RADIAL FUNCTIONS IN THREE DIMENSIONS
Scientiae Mathematicae Japonicae Online, Vol. 5,, 9 9 9 THE SQUARE PARTIAL SUMS OF THE FOURIER TRANSFORM OF RADIAL FUNCTIONS IN THREE DIMENSIONS CHIKAKO HARADA AND EIICHI NAKAI Received May 4, ; revised
Some Problems of Second-Order Rational Difference Equations with Quadratic Terms
International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 1, pp. 11 21 (2014) http://campus.mst.edu/ijde Some Problems of Second-Order Rational Difference Equations with Quadratic
General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
arxiv:1112.0829v1 [math.pr] 5 Dec 2011
How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing
ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska
Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four
ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS
ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS I. KIGURADZE AND N. PARTSVANIA A. Razmadze Mathematical Institute
F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)
Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p
Using Generalized Forecasts for Online Currency Conversion
Using Generalized Forecasts for Online Currency Conversion Kazuo Iwama and Kouki Yonezawa School of Informatics Kyoto University Kyoto 606-8501, Japan {iwama,yonezawa}@kuis.kyoto-u.ac.jp Abstract. El-Yaniv
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable
A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved
A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
Bargaining Solutions in a Social Network
Bargaining Solutions in a Social Network Tanmoy Chakraborty and Michael Kearns Department of Computer and Information Science University of Pennsylvania Abstract. We study the concept of bargaining solutions,
Duplicating and its Applications in Batch Scheduling
Duplicating and its Applications in Batch Scheduling Yuzhong Zhang 1 Chunsong Bai 1 Shouyang Wang 2 1 College of Operations Research and Management Sciences Qufu Normal University, Shandong 276826, China
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
Chapter 2: Binomial Methods and the Black-Scholes Formula
Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization
Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative
Systems with Persistent Memory: the Observation Inequality Problems and Solutions
Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +
Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.
5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2
3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
Some Research Problems in Uncertainty Theory
Journal of Uncertain Systems Vol.3, No.1, pp.3-10, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences
1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
BX in ( u, v) basis in two ways. On the one hand, AN = u+
1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x
FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC
AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC W. T. TUTTE. Introduction. In a recent series of papers [l-4] on graphs and matroids I used definitions equivalent to the following.
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Pacific Journal of Mathematics
Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000
MATH 590: Meshfree Methods
MATH 590: Meshfree Methods Chapter 7: Conditionally Positive Definite Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 [email protected] MATH 590 Chapter
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida
ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line
The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,
On the representability of the bi-uniform matroid
On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large
The integrating factor method (Sect. 2.1).
The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable
Quasi-static evolution and congested transport
Quasi-static evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed
Exponential Functions and Laplace Transforms for Alpha Derivatives
Exponential Functions and Laplace Transforms for Alpha Derivatives ELVAN AKIN BOHNER and MARTIN BOHNER Department of Mathematics, Florida Institute of Technology Melbourne, Florida 3291, USA E-mail: [email protected],
LECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in
CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí
Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale
Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator
Wan Boundary Value Problems (2015) 2015:239 DOI 10.1186/s13661-015-0508-0 R E S E A R C H Open Access Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator
Multiple positive solutions of a nonlinear fourth order periodic boundary value problem
ANNALES POLONICI MATHEMATICI LXIX.3(1998) Multiple positive solutions of a nonlinear fourth order periodic boundary value problem by Lingbin Kong (Anda) and Daqing Jiang (Changchun) Abstract.Thefourthorderperiodicboundaryvalueproblemu
Bounds on the spectral radius of a Hadamard product of nonnegative or positive semidefinite matrices
Electronic Journal of Linear Algebra Volume 20 Volume 20 (2010) Article 6 2010 Bounds on the spectral radius of a Hadamard product of nonnegative or positive semidefinite matrices Roger A. Horn [email protected]
Class Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
15 Limit sets. Lyapunov functions
15 Limit sets. Lyapunov functions At this point, considering the solutions to ẋ = f(x), x U R 2, (1) we were most interested in the behavior of solutions when t (sometimes, this is called asymptotic behavior
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible
EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL
EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist
Computing divisors and common multiples of quasi-linear ordinary differential equations
Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France [email protected]
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
Inner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
Nonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.
Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian
Chapter 7 Nonlinear Systems
Chapter 7 Nonlinear Systems Nonlinear systems in R n : X = B x. x n X = F (t; X) F (t; x ; :::; x n ) B C A ; F (t; X) =. F n (t; x ; :::; x n ) When F (t; X) = F (X) is independent of t; it is an example
4: SINGLE-PERIOD MARKET MODELS
4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
T ( a i x i ) = a i T (x i ).
Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)
On the Sign of the Difference ir( x) li( x)
mathematics of computation volume 48. number 177 january 1987. pages 323-328 On the Sign of the Difference ir( x) li( x) By Herman J. J. te Riele Dedicated to Daniel Shanks on the occasion of his 10 th
ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction
ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that
ON SUPERCYCLICITY CRITERIA. Nuha H. Hamada Business Administration College Al Ain University of Science and Technology 5-th st, Abu Dhabi, 112612, UAE
International Journal of Pure and Applied Mathematics Volume 101 No. 3 2015, 401-405 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v101i3.7
Continuity of the Perron Root
Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North
1 Introduction, Notation and Statement of the main results
XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 2007 (pp. 1 6) Skew-product maps with base having closed set of periodic points. Juan
CONTRIBUTIONS TO ZERO SUM PROBLEMS
CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg
RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS
RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS T. J. CHRISTIANSEN Abstract. We consider scattering by an obstacle in R d, d 3 odd. We show that for the Neumann Laplacian if
Buy Low and Sell High
Buy Low and Sell High Min Dai Hanqing Jin Yifei Zhong Xun Yu Zhou This version: Sep 009 Abstract In trading stocks investors naturally aspire to buy low and sell high (BLSH). This paper formalizes the
Load balancing of temporary tasks in the l p norm
Load balancing of temporary tasks in the l p norm Yossi Azar a,1, Amir Epstein a,2, Leah Epstein b,3 a School of Computer Science, Tel Aviv University, Tel Aviv, Israel. b School of Computer Science, The
Note on some explicit formulae for twin prime counting function
Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:
Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions
Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,
Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space
Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space Virginie Debelley and Nicolas Privault Département de Mathématiques Université de La Rochelle
