Episode 207: Projectile motion
|
|
|
- Bruce Simpson
- 9 years ago
- Views:
Transcription
1 Episode 207: Projectile motion This episode looks at the independence of vertical and horizontal motion. It concerns objects accelerating vertically when projected horizontally or vertically. The crucial concept is that vertical acceleration does not affect horizontal velocity. This explains all projectile motion. You can discuss why this is the case dynamically but this is best left until later in the study of mechanics. Getting the basic concept across should be your priority. Similarly, make it clear that you are ignoring any effects of drag at this stage. (Note that a projectile is an object which is initially projected by a force, but which then continues to move freely under the influence of gravity; a rocket which is firing its motors is not a projectile.) Summary Demonstration and discussion: Motion in a parabola. (10 minutes) Demonstration: Monkey and hunter (10 minutes) Demonstration: Pearls in air. (5 minutes) Student investigation: Range of a projectile. (30 minutes) Student experiment: Gravity and archery. (30 minutes) Demonstration + Discussion: Motion in a parabola Here are two quick demonstrations showing motion in a parabola. The first is a quick, fun demonstration that focuses the students minds on parabolic motion. This is something we all know but this episode is all about explaining the motion. Follow this with the diluted gravity demonstration. TAP 207-1: A thrown ball follows a parabolic path TAP 207-2: Diluted gravity - projectile paths Having successfully obtained a parabola the following tasks can be used to move the students understanding forward: Describe the motion, as precisely as possible, in words. (No hand waving!) If this proves difficult try breaking up the motion into horizontal and vertical components. What is 1
2 happening to the vertical velocity? (It s decreasing, then changing direction and increasing, i.e. vertical acceleration.) What about the horizontal velocity? (It s constant.) Further pointers: Ignoring air resistance, is anything resisting the horizontal motion? (No!) Will the acceleration due to gravity be different for a horizontally moving object? (No, again!) You can use Multimedia Motion to generate a graph of projectile motion which clearly shows the independence of horizontal and vertical velocities. The discussion should develop the ideas of independence of horizontal and vertical motion and uniform horizontal velocity and uniform vertical acceleration. Hence, horizontal and vertical displacements are given by: s h = v h t and sv = u v t + 1/2 a t 2. In many cases u v is zero. Demonstration: Monkey and hunter The idea that vertical and horizontal motions can be considered separately is demonstrated in a dramatic fashion in the classic monkey and hunter experiment. You need to set this up in advance and check that it is working. When it does work it is a superb 0.0 (resourcefulphysics.org illustration. Questioning should focus on why this demonstrates independence of horizontal and vertical motion both objects have fallen the same distance in the same time. TAP 207-3: Mid-air collisions 2
3 Demonstration: Pearls in air Water droplets also follow a parabolic path in the air. This gives another clear demonstration of the effect. Again, concentrate on the explanation in terms of independence of horizontal and vertical motions V TAP 207-4: Pearls in air (resourcefulphy i ) Student investigation Here is an interesting approach to projectile motion in which students fire a marble towards a target. This gives students, working independently or in pairs, an opportunity to design a simple experiment that will give them practice using the SUVAT equations. TAP 207-5: Build and test a marble launcher The students should begin by considering vertical motion. If they set their launcher x metres above the sand pit, the time the ball will be in the air can be found from: s v = u v t + 1/2 a t 2 where s v = x and u v = 0; hence t = (2x/g). From the horizontal range, the horizontal velocity can be calculated. This value can be used to predict the range when the height above the pit is changed to 2x, 3x, 4x and so on. A table can be constructed with the following headings: Height / m Calculated time in air / s Predicted range / m Measured range / m 3
4 This can be completed for homework it gives useful practice in SUVAT. Graphs can be constructed of predicted and measured ranges against height. Students should comment on the comparison between predicted and measured ranges. Student experiment: Gravity and archery Keen students can extend the investigation to consider the effect of gravity in the sport of archery. TAP 207-6: Challenges in target archery 4
5 TAP A thrown ball follows a parabolic path Demonstration A student or the teacher throws a small ball and matches its flight to a projection of a parabola produced on a screen. You will need overhead projector transparency of a parabola overhead projector screen small ball some practice What to do 1. Print out this, or another parabola, onto an OHT. parabola 5
6 2. Project the image of a parabola onto a screen and throw the ball so that its shadow follows the same path. For success, lob the ball as if trying to land it on an imaginary 'shelf' at the top of the parabola. 6
7 Practical advice This demonstration is an eye-catching way to show that the path of a thrown ball really is parabolic. Note that the course does not require students to derive or follow the derivation of a formula for the motion which can be seen to be of the same type as the formula for a parabola. A good tip to throw the ball successfully is to imagine throwing it to land on a shelf placed at the top of the parabola. External references This activity is taken from Advancing Physics Chapter 9, 130D 7
8 TAP 207-2: Diluted gravity - projectile paths An extension of the diluted gravity experiment is to investigate a diluted projectile path. Get a drawing board and fix a large sheet of paper to it. On top of this fix a piece of carbon paper - face downwards. Tilt the board and then roll a heavy ball bearing across the top of the paper in a horizontal direction. The path of the ball bearing will be produced on the paper. Different angles of tilt and different path directions can be used. This would be suitable for an introduction to projectiles or at a more advanced level where calculation of the parameters of the paths can be performed. Apparatus required: Drawing board Large ball bearing Carbon paper White paper External references This activity is taken from Resourceful Physics 8
9 TAP 207-3: Mid-air collisions Do fired and directly falling objects have the same vertical motion? Firing something sideways and dropping something at the same time can result in a mid-air collision. This is often referred to as the Monkey and Hunter experiment, where you can visualise the 'smart' monkey letting go of the branch as the hunter pulls his gun and then being upset when he notes the relative velocity vector is always pointing straight towards him. You may well think of a more humane title. You will need electromagnet iron can power supply, 12 V aluminium foil with deep notch cut out blowpipe tube ball bearing pair of crocodile clips mounted in a holder 4 mm leads Remarkable! Two fall vertically the same way There are a number of ways of performing this demonstration. The essential idea is that both the fired object and the dropped object should start their journeys together. 9
10 X pea shooter aluminium foil with notch cut out blow electromagnet XXX steel can power pack You may well see the two starting their fall together; you are more likely to hear the collision! Hearing and seeing 1. Relative motion can be lethal when it causes an unwanted collision. Watch the relative velocity vector with care. 2. Vertical acceleration is quite independent of horizontal movement. 10
11 Practical advice All students should see, and hear, this demonstration at some time in their lives. Now it injects a little life into what might otherwise be a rather dry topic. Technician's note: This experiment requires care when setting up. The collision needs to happen before either bullet or monkey hit the floor, for example. That both start falling at the same time is more likely if the smallest possible current is used to activate the electromagnet. A little care and knowledge also helps in designing the circuit breaker. The ball bearing must break the electrical circuit by tearing the foil. It is necessary to make a slit in the foil to initiate the tear. The crocodile clips must be on a non-conducting support. It is probably best to ensure that the barrel of the blowpipe is horizontal, as this simplifies the discussion. Alternative approaches Videos of this event tend to be unconvincing as most equipment does not have a sufficiently high frame rate. External references This activity is taken from Advancing Physics Chapter 9, 170D 11
12 TAP 207-4: Pearls in air This is a classic demonstration designed to show the parabolic path of projectiles in a gravitational field. A water jet is formed by a using the glass part of a dropping pipette fixed to a thin walled rubber tube and connected to the water tap. The rubber tube is passed through an old style ticker timer or over a vibration generator so that the tube is alternately squeezed and released when the device is switched on. The water jet falls in a parabola from an initial horizontal direction but is also interrupted by the pulsing so that droplets of water are formed instead of a continuous stream. If the arrangement is illuminated with a stroboscope pearl like droplets of water can be made to stand still or move slowly through the air. The constant horizontal velocity and the increasing vertical velocity can be seen by observing the positions of successive drops. To get a permanent record you could make the position of the shadows of the water drops on a screen behind the jet or even photograph it. A truly beautiful demonstration. Ticker timer An extension of the basic version is the Double Pearls in Air. In this experiment two jets are used from different water taps but with tubes running under the same ticker timer bar. One is adjusted to give a parabola while water simply dribbles out from the other, falling vertically. The vertical acceleration of the drops can then be compared. Of course you can make two parabolas and compare these. Xenon strobe Low voltage power supply Bucket Be safe Warn pupils about the hazards of strobe lighting and epilepsy. Theory Since h = 1/2gt 2 and s= vt the equation for the parabolic path for the water is h = gs 2 /2v 2 where s is the horizontal distance travelled, h the vertical distance and v the horizontal velocity of the jet 12
13 Apparatus required Ticker timer plus power supply Two water jets Constant head apparatus, (a large tin with bung and tube will do. See also for more information.) Bucket Stroboscope External references This activity is taken from Resourceful Physics 13
14 TAP 207-5: Build and test a marble launcher Parabolas, projectiles and gravity Start with the construction of a simple marble launcher. Then analyse its performance via a series of investigations. Building confidence in the use of the kinematic equations is the main objective, although many measurement and design skills can be developed. You will need a protractor a metre rule a small sand pit a means of measuring speed safety spectacles a compression spring 1 cm diameter plastic conduit with rubber bung to fit marble and / or ball bearing to fit tube drill and large nail Wear safety spectacles The projectiles are likely to be smaller than the eye socket, and may not always be very well aimed! 14
15 Building and evaluating the performance of a launcher You may be given the launcher to assemble or be asked to construct one from drawings. Removing the nail smartly will result in a clean launch. You will want to measure the angle of launch and the range and maximum height of the flight. 1. Design and carry out an experiment to measure the exit speed of the marble for a given spring compression setting. 2. Now use the kinematic equations for a given angle of launch, ignoring air resistance, to see if you can land the marble in the sand pit. Is it reasonable to ignore air resistance here? Is the marble flight adequately described by the kinematic equations, used in two dimensions? 15
16 All very predictable? 1. The equations allow you to predict, perhaps surprisingly well, where the marble will land. 2. At the end of this activity you should be confident in using the equations. 3. There are some limitations to be careful of when applying the equations to a real projectile launcher. Practical advice The launcher activity will allow your students to get some practical work done while studying motion in a gravitational field. You may want them to build the launcher themselves or provide a kit for assembly. The launcher design described in this activity was based on the beautiful but expensive Pasco device. Students like to use the equations to get the marble into the sand-pit. Competition soon sets in. In trying to measure the muzzle velocity some students might try an indirect approach and you might revise some energy ideas in the first part of the activity, although this is not strictly necessary. Most students will be happy with simple conservation arguments from pre-16 course. Alternative approaches A more controlled version might be to organise an activity around one pre-made launcher. Be safe Students should wear eye protection, at least bearing the 'F' impact code (although 'B' would be better)' during this activity. The projectiles are small and may well transfer significant amounts of kinetic energy on impact. For the same reasons you may want to limit the materials and construction techniques used. Considering the disposition of the firing ranges before live firing commences may also limit the collateral damage to fixtures and fittings. Wear safety spectacles The projectiles are likely to be smaller than the eye socket, and may not always be very well aimed! External references This activity is taken from Advancing Physics Chapter 9, 172E 16
17 TAP 207-6: Challenges in target archery Here you can work on predicting the positions of objects that are accelerated. One archery competition requires archers to fire a total of 90 arrows for a maximum possible score of 900. The targets are 1.22 m in diameter at 60, 50 and 40 metres distance. You can model the motion of the arrow to find out what problems the archer faces. The arrow leaves the bow at 60 m s 1 and travels at almost this speed horizontally for the whole of its flight. The arrow, of course, falls because of the acceleration due to gravity. You can find its position at any moment by working out how far it has moved horizontally and how far it has fallen vertically. 1. The archer shoots the arrow horizontally at the 40 m target. How far does it drop over this range? 2. How would the archer make allowance for this fall? Think carefully before committing yourself. 3. Now try to calculate the fall at 50 m and 60 m years ago the release speed of an arrow was about 30 m s 1. What effect would this have on the vertical distance the arrow fell? Calculate the drop for a range of 60 m to check your answer. 5. We have ignored the effect of air resistance in these calculations. How could you take account of it? You can explore it most easily by making a computer model of the motion. Practical advice An example where vectors and simple kinematics give insight into a phenomenon. Social and human context Accurate archery was important in many spheres often not in warfare. Answers and worked solutions 1. Time of flight = 40m 0.67s 1 60m s = Vertical drop 1 h = gt = 9.81m s s 3 2 = 2.2m 17
18 2. Aim above the target. 3. Similar calculations h50 = 9.81m s s = 3.4m ( 1s) 4.9 m h60 = 9.81m s = 2 4. Twice the trip time so four times fall, at 60 m now drops 20 m. External references This activity is taken from Advancing Physics Chapter 9, 110s 18
Experiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
The Bullet-Block Mystery
LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm
More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x
2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION Objective: To understand the motion of a projectile in the earth s gravitational field and measure the muzzle velocity of the projectile
Uniformly Accelerated Motion
Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations
9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
Projectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
1. Mass, Force and Gravity
STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the
One- and Two-dimensional Motion
PHYS-101 LAB-02 One- and Two-dimensional Motion 1. Objective The objectives of this experiment are: to measure the acceleration of gravity using one-dimensional motion to demonstrate the independence of
PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
B) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
Conceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
Review Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008
Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
Experiment 2: Conservation of Momentum
Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations
5.1 The First Law: The Law of Inertia
The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
The Mechanics of Arrow Flight 101 By Daniel Grundman Flex-Fletch
The Mechanics of Arrow Flight 101 By Daniel Grundman Flex-Fletch Thunk! The arrow you just released from your bow has hit its target. Or has it? Due to a number of factors, your arrow may or may not have
Exam 1 Review Questions PHY 2425 - Exam 1
Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
AP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
Web review - Ch 3 motion in two dimensions practice test
Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
Acceleration of Gravity Lab Basic Version
Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration
Tennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: [email protected] CONTACT NUMBER: (786)556-4839 PHYSICS I
WWW.MIAMI-BEST-MATH-TUTOR.COM PAGE 1 OF 10 WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: [email protected] CONTACT NUMBER: (786)556-4839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal
Work, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
GCE. Physics A. Mark Scheme for January 2013. Advanced Subsidiary GCE Unit G481/01: Mechanics. Oxford Cambridge and RSA Examinations
GCE Physics A Advanced Subsidiary GCE Unit G481/01: Mechanics Mark Scheme for January 2013 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing
Practice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
Supplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
Practice TEST 2. Explain your reasoning
Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant
EDUH 1017 - SPORTS MECHANICS
4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use
III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument
III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
WORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of
Mechanical Energy. Mechanical Energy is energy due to position or motion.
Mechanical Energy Mechanical Energy is energy due to position or motion. Position: This means that matter can have energy even though it is not moving. If you knock something off of your kitchen counter,
To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness.
The Science of Archery Godai Katsunaga Purpose To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. Archery Archery is one of the events
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
Educational Innovations
Educational Innovations Background Forces and Motion MAR-600 Wall Coaster Motion is caused by forces. Motion can be described. Motion follows rules. There are many forces and principles involved with motion.
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law
PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
Football Learning Guide for Parents and Educators. Overview
Overview Did you know that when Victor Cruz catches a game winning touchdown, the prolate spheroid he s holding helped the quarterback to throw a perfect spiral? Wait, what? Well, the shape of a football
Chapter 10: Linear Kinematics of Human Movement
Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship
Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.
P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device
Work, Energy and Power
Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
Candidate Number. General Certificate of Education Advanced Level Examination June 2010
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
Physics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following
4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
Exam Three Momentum Concept Questions
Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:
Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan
Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while
Lesson Element Build and test your own capacitor Instructions and answers for teachers
Lesson Element Build and test your own capacitor Instructions and answers for teachers These instructions should accompany the OCR resource Build and test your own capacitor activity which supports OCR
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.
P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
Chapter 3 Practice Test
Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?
Freely Falling Objects
Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding
AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics
AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics. The following( is applicable to this entire document copies for student distribution for exam preparation explicitly
v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :
PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material
Friction and Gravity. Friction. Section 2. The Causes of Friction
Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
1. Watch or research. Choose option a, b, or c and complete all the requirements: a. Watch 3 episodes/hours of NOVA, NASA, or other media productions
1. Watch or research. Choose option a, b, or c and complete all the requirements: a. Watch 3 episodes/hours of NOVA, NASA, or other media productions (examples include Discovery Channel, Science Channel,
Physics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
Chapter 9. particle is increased.
Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass
ENERGYand WORK (PART I and II) 9-MAC
ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Explain the role of blood and bloodstain patterns in forensics science. Analyze and identify bloodstain patterns by performing bloodstain analysis
Lab 4 Blood Learning Objectives Explain the role of blood and bloodstain patterns in forensics science Analyze and identify bloodstain patterns by performing bloodstain analysis Introduction Blood, a
Roanoke Pinball Museum Key Concepts
Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.
High flyers: thinking like an engineer
Engineering, Physics I TEACH High flyers: thinking like an engineer The glider built by the Wright brothers in 1902 was the first flying machine able to change direction in a controlled way. Designing
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please
TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1
TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph
Chapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
Teaching Time: One 25-minute period. Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet.
Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet. Prior Knowledge & Skills Completed the lesson: The Earth as a Magnet: Exploring Interactions in Geospace
Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
Physics Section 3.2 Free Fall
Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics
ACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
Introduction Assignment
Physics 11 Introduction Assignment This assignment is intended to familiarize you with some of the basic concepts and skills related to Physics 11. This is the first meaningful assignment for Physics 11,
Keywords - animation, e-learning, high school, physics lesson
Simplify Understanding Physics Lessons for High School with Animation by E-Learning FX Hendra Prasetya Faculty of Computer Science, Soegijapranata Catholic University (SCU) Semarang, Indonesia [email protected]
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
WEIGHTLESS WONDER Reduced Gravity Flight
WEIGHTLESS WONDER Reduced Gravity Flight Instructional Objectives Students will use trigonometric ratios to find vertical and horizontal components of a velocity vector; derive a formula describing height
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org
Educator Guide to S LAR SYSTEM 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Pre-Visit Activity: Orbital Paths Materials: Plastic Plate Marble Scissors To Do: 1. Put the plate on a flat
Gravitational Potential Energy
Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the
Conservation of Momentum Greg Kifer
SCIENCE EXPERIMENTS ON FILE Revised Edition 6.7-1 Conservation of Momentum Greg Kifer Topic Conservation of momentum Time 1 hour! Safety Please click on the safety icon to view the safety precautions.
10.1 Quantitative. Answer: A Var: 50+
Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass
Rotational Inertia Demonstrator
WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended
Midterm Exam 1 October 2, 2012
Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should
3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
Chapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
