Head and Neck Treatment Planning: A Comparative Review of Static Field IMRT Rapid Arc Tomotherapy HD

Size: px
Start display at page:

Download "Head and Neck Treatment Planning: A Comparative Review of Static Field IMRT Rapid Arc Tomotherapy HD"

Transcription

1 Good Morning

2 Head and Neck Treatment Planning: A Comparative Review of Static Field IMRT Rapid Arc Tomotherapy HD Barbara Agrimson, BS RT(T)(R), CMD Steve Rhodes, BS RT(T), CMD

3 Disclaimer This presentation will mention equipment by trade name. This does not mean that we endorse the product but rather we mention it because it is what we use at our facility.

4 Objectives of Presentation To review the evolution of head and neck treatment at Oregon Health and Science University (OHSU) over the past ten years. To share basic contouring techniques of the head and neck area. To learn the planning approach of head and neck cancers at OHSU using static field IMRT, Varian Rapid Arc, and Tomotherapy. To identify similarities and differences between static field IMRT, Varian Rapid Arc, and Tomotherapy, for head and neck treatment plans.

5 I. Review

6 The OHSU Experience Evolution of Head and Neck Treatment 2005: Static Field IMRT Varian 21ex Pinnacle TPS Impac RVS 2007: Varian Upgrade Varian Trilogy CBCT Eclipse TPS Aria RVS 2008 paperless

7 The OHSU Experience Evolution of Head and Neck Treatment 2010: Rapid Arc Varian Trilogy Eclipse TPS Aria RVS

8 The OHSU Experience Evolution of Head and Neck Treatment 2011: Tomotherapy Tomo HD How do plans compare? Downtime Tomotherapy TPS Learning curve Plan quality? Outcome Generate plans for comparison» Staff acceptance Backup plans» Downtime

9 Current OHSU Experience Three options for patients with head and neck cancers

10 Current OHSU Experience Most head and neck cancer patients are scheduled on Tomotherapy Approximately 100 HN patients treated each year Requires one Tomotherapy plan plus one backup plan of equal quality. Dosimetrist can choose Rapid Arc, IMRT or both, for back-up plan. Physician will select the most appropriate plan Plan comparison Objectives Imaging Treatment time Machine work-load

11 Current OHSU Experience From simulation to patient start date ~ 4-6 working days Dosimetrist Registers requested ancillary imaging; PET, MRI, CT Contours all structures in Eclipse; OAR and planning structures All structures needed for Tomotherapy planning are contoured in Eclipse Physician Reviews the registration and OAR contours Contours the CTV and PTV volumes Generates the planning objectives form

12 Current OHSU Experience Contours and CT dataset are exported to Tomotherapy for planning Plans are generated simultaneously in Tomotherapy and Eclipse. Physician evaluates completed plans Approves a plan for treatment Back-up plan will also be approved if Tomotherapy is the primary treatment Physics QA done on both plans

13 II. Contouring

14 Head and Neck Contours CT scan Philips Brillance Big Bore Contouring Eclipse v8.9 TPS with Wacom tablets

15 Tablet for Contouring and Planning

16 Artifact! =

17 Raw CT data set O-MAR Processed

18 Better = Dataset after using Philips O-MAR software function.

19 Common Anatomy Contoured Spinal Cord Cord+5mm Brainstem Brainstem+5mm Eyes Lens Optic nerves Mandible Parotids Cochlea's Submandibular glands Hyoid Larynx Constrictors Cervical Esophagus

20 Target Contours GTV GTV + margin = PTV High Dose (Hot Spot Here) CTV1 CTV1+3 mm = PTV1 CTV2 CTV2+3 mm = PTV2 2-3 mm margin between skin surface and PTV volumes Prevents severe acute skin reaction and late fibrosis of subcutaneous tissue

21 GTV Delineation using multiple imaging modalities

22

23 RTOG Contouring Atlas

24 Contours

25 Target Volumes CTV2 GTV CTV1

26 Artifact and Density Override

27 OAR/Target Overlap

28 Contouring Planning structures Dose Ring Wall Extraction tool 3mm margin 1 cm wide Control dose

29 Contouring Planning structures Normal Tissue Ring Copy Body Crop out of PTV with additional 1.5 cm margin Control dose

30 Contouring Planning structures Posterior Avoid Posterior expansion of the Cord+5mm Limit dose to posterior neck region

31 III. Planning Part A

32 Prescription Prescription (typical case) 100% isoline to cover 95% of the target volume (PTV high dose) Target and 2 nodal dose levels 200 cgy x 35 = 70 Gy PTV High Dose 180 cgy x 35 = 63 Gy PTV cgy x 35 = 56 Gy PTV56

33 Prescription OAR objectives Planning objectives form ( Love Note ) Planning OAR techniques Upper/lower PTV In air/ in tissue PTV s Subtract overlap OAR s from PTV s No margin

34 Planning Objectives (Case Specific) Dosi Love Note Cord < 45 Gy Cord+5mm < 50 Gy Brainstem < 50 Gy Brainstem+5mm<55 Gy Mandible ~ max < 70 or 72Gy No more than 5%>70 Gy Parotids L Parotid mean < 26 Gy R Parotid mean < 22 Gy

35 Planning Objectives (Case Specific) Dosi Love Note Hyoid max < 74 Gy Larynx mean < 60 Gy Constrictors mean < 50 Gy Cervical Esophagus mean < 35 Gy, max < 65 Gy Cochlea's R cochlea mean < 12 Gy L cochlea mean < 7 Gy

36 Miscellaneous Factors Patient specific Patient supine, halcyon board, aquaplast mask, "B headrest, shoulder retractors, knee sponge, align bb's on mask with ant chest tattoo. Shoulders Avoidance contours with Tomo plans Couch kick ~15 degrees with IMRT beams that may enter through shoulders.

37 Miscellaneous Factors Back-up plans Required with patients treated on the tomotherapy machine Machine down time Imaging challenges Physician approves both Tomo and Eclipse plans Both plans are printed and require physics QA and therapist verification Only one charge is billed for that case. Dosimetry work flow Simultaneous planning between Tomotherapy and Eclipse systems One Dosimetrist can work on Tomotherapy plan while another does the Eclipse plan

38 Miscellaneous Factors Department Splitting work load between machines Imaging The Physician will factor in the imaging quality of the machine when deciding the treatment machine for the patient. MVCT Daily on Tomotherapy kv CBCT Daily on Linac kv orthogonal pair As back-up, if needed Exactrac More complex OAR locations

39 kv CBCT vs MV CT

40 III. Planning Part B

41 Planning Specifics Static Field IMRT Rapid Arc Tomotherapy

42 Static IMRT Planning 9 Field beam arrangement 2 non-coplanar to avoid shoulders Sliding window delivery Collimator rotation Typically no rotation Beam energy 6 MV Unique planning contours Posterior neck avoidance Tissue Rings Dose hot spots Planning objectives 100% of dose to cover 95% of target volume

43 Planning Contours

44 Rapid Arc Planning Beam arrangement 2 full, 1 partial arc Field width of 15 cm total Collimator rotation 10 degrees CW and CCW Beam energy 6 MV Unique planning contours PTV in air/in tissue PTV superior/inferior Planning objectives 100% of dose to cover 95% of target volume

45 Tomotherapy Planning Jaw selection Pitch 1cm field width at beam batch.287 Regular verses Fine dose calculation Less degradation Takes longer to batch Longer optimization time Unique planning contours Separate out overlying structures to the PTV s Planning objectives 100% of dose to cover 95% of target volume Model after the Eclipse DVH

46 Overlap OAR s Overlap Priority built into planning software Not our preferred method based on physician expectation Utilize sub structures Optimize to these cropped structures Improves target coverage

47 Tomotherapy Planning Jaw Setting Delivery Time R Cochlea L Cochlea PTV coverage Sup/Inf slices 2.5 cm Width 6.3 min 2068 cgy 2183 cgy Marginal 1 cm Width 13.8 min 1435 cgy 1736 cgy Improved

48 Head and Neck Delivery Time Average Treatment Time 9 field IMRT ~ 15 minutes Rapid Arc (2 or 3 arc) ~ 3-6 minutes Tomotherapy ~ 12 minutes (1.0 cm Jaw setting) 6 minutes (2.5 cm Jaw setting) Average Daily Image Guidance 9 field IMRT ~ 5 minutes Rapid Arc (2 or 3 arc) ~ 5 minutes Tomotherapy ~ 3 minutes (Volume < 30 slices)

49 Head and Neck Comparison How is the best plan selected? Maximum Dose Conformality Homogeneity Target coverage OAR doses Trade-offs of each plan

50 How many letter F s do you see? FINISHED FILES ARE THE RESULT OF YEARS OF SCIENTIFIC STUDY COMBINED WITH THE EXPERIENCE OF YEARS

51 IV. Comparative Case Studies

52 Case #1: Unilateral HN 49 y.o. woman with T2N0 SCC of R oral tongue s/p hemiglossectomy and neck dissection 3 dose regions PTV 60 PTV 56 PTV 50 RTOG 0920 protocol

53 Case #1: Unilateral HN Dose Comparison (cgy) Static IMRT RapidArc Tomotherapy Max Dose 6945 (116%) 6631 (111%) 6549 (109%) Max Spinal Cord Mean L Parotid Mean R Parotid Max Mandible Mean L Cochlea Mean R Cochlea

54 Dose (cgy) Case #1: Unilateral Static IMRT RapidArc Tomotherapy Max Dose Max Spinal Cord Mean L Parotid Mean R Parotid Max Mandible Mean L Cochlea Mean R Cochlea Structure

55 Static IMRT Tomotherapy Rapid Arc

56 Case #2: Bilateral HN 69 y.o. male with T4N1M0 SCC of L BOT Concurrent cetuximab 3 dose regions PTV 70 PTV 63 PTV 56

57 Case #2: Bilateral HN Dose Comparison (cgy) Static IMRT RapidArc Tomotherapy Max Dose 7870 (112%) 7646 (109%) 7267 (104%) Max Spinal Cord Mean L Parotid Mean R Parotid Max Mandible Mean L Cochlea Mean R Cochlea

58 Dose (cgy) Case #2: Bilateral Static IMRT 4000 RapidArc Tomotherapy Max Dose Max Spinal Cord Mean L Parotid Mean R Parotid Max Mandible Mean L Cochlea Mean R Cochlea Structure

59 Static IMRT Tomotherapy Rapid Arc

60 Case #3: Bilateral HN 61 y.o. male with T4N2c SCC of BOT Concurrent cisplatin 3 dose regions PTV 70 PTV 63 PTV 56

61 Case #3: Bilateral HN Dose Comparison (cgy) Static IMRT RapidArc Tomotherapy Max Dose 7706 (110%) 7936 (113%) 7377 (105%) Max Spinal Cord Mean L Parotid Mean R Parotid Max Mandible Mean L Cochlea Mean R Cochlea

62 Dose (cgy) Case #3: Bilateral Static IMRT 4000 RapidArc Tomotherapy Max Dose Max Spinal Cord Mean L Parotid Mean R Parotid Max Mandible Mean L Cochlea Mean R Cochlea Structure

63 Static IMRT Tomotherapy Rapid Arc

64 Case #4: Bilateral HN 49 y.o. male with T2aN1M0 pleomorphic rhabdomyosarcoma of the BOT Concurrent ifosfamide 2 dose regions PTV 67.5 PTV 60

65 Case #4: Bilateral HN Dose Comparison (cgy) Static IMRT RapidArc Tomotherapy Max Dose 7451 (110%) 7324 (109%) 7019 (104%) Max Spinal Cord Mean L Parotid Mean R Parotid Max Mandible Mean L Cochlea Mean R Cochlea

66 Dose (cgy) Case #4: Bilateral Static IMRT RapidArc Tomotherapy Max Dose Max Spinal Cord Mean L Parotid Mean R Parotid Max Mandible Mean L Cochlea Mean R Cochlea Structure

67 Static IMRT Tomotherapy Rapid Arc

68 General Conclusions NonTomo plans tend to run hotter overall Especially rapid arc Rapid Arc shares similarities to both IMRT and Tomotherapy depending on structure Middle child Tomotherapy contributes higher dose to cochlea and other structures above or below the PTV. Dynamic Jaw upgrade

69 General Conclusions Unilateral disease Better with static IMRT Sparing of contra lateral neck 7 field beam arrangement Bilateral disease Better with Tomotherapy Conformality Maximum dose lower Rapid Arc is a beautiful plan but often the maximum dose is too high.

70 Situations We ve Experienced Patient switching between machines Dose tracking VelocityAI Composite Plans Adaptive planning Maintain the same treatment machine for consistency.

71 In Conclusion First we began planning with static beam IMRT And it was good Next we added rapid arc planning and we had options And sometimes it was better Then we branched out and began Tomotherapy planning. Now we offer a well rounded option for the physician to evaluate and better treatment plans for our patients.

72 Acknowledgements Special thanks to Dr. John Holland for sharing insight concerning key aspects of head and neck cancer treatments. Reference material was obtained from the American Cancer Society and The National Cancer Institute.

73 Answer is 6. Not everything is apparent the first time through FINISHED FILES ARE THE RESULT OF YEARS OF SCIENTIFIC STUDY COMBINED WITH THE EXPERIENCE OF YEARS

74 Thank you

THE DOSIMETRIC EFFECTS OF

THE DOSIMETRIC EFFECTS OF THE DOSIMETRIC EFFECTS OF OPTIMIZATION TECHNIQUES IN IMRT/IGRT PLANNING 1 Multiple PTV Head and Neck Treatment Planning, Contouring, Data, Tips, Optimization Techniques, and algorithms AAMD 2013, San Antonio,

More information

Automated Treatment Planning Using a Database of Prior Patient Treatment Plans

Automated Treatment Planning Using a Database of Prior Patient Treatment Plans Automated Treatment Planning Using a Database of Prior Patient Treatment Plans Todd McNutt PhD, Binbin Wu PhD, Joseph Moore PhD, Steven Petit PhD, Misha Kazhdan PhD, Russell Taylor PhD Shape DB work funded

More information

Radiation Protection in Radiotherapy

Radiation Protection in Radiotherapy Radiation Protection in Radiotherapy Albert Lisbona Medical Physics Department CLCC Nantes Atlantique 44805 Saint-Herblain France a-lisbona@nantes.fnclcc.fr Radiation therapy The lecture is oriented to

More information

IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment.

IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment. DERYA ÇÖNE RADIOTHERAPY THERAPIST ACIBADEM KOZYATAGI HOSPITAL RADIATION ONCOLOGY DEPARTMENT IGRT IGRT (image-guided radiation therapy) is a technique that reduces geometric uncertainties by considering

More information

M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy

M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy Katja Langen, PhD Research supported by TomoTherapy Inc. Today s Lecture Introduction to helical

More information

Proton Therapy for Head & Neck Cancers

Proton Therapy for Head & Neck Cancers Proton Therapy for Head & Neck Cancers Robert S Malyapa, MD, PhD and William M Mendenhall, MD University of Florida Proton Therapy Institute, Jacksonville, USA Carmen Ares, MD and Ralf Schneider, MD Paul

More information

kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations

kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations Moyed Miften, PhD Dept of Radiation Oncology University of Colorado Denver Questions Disease Stage (local, regional,

More information

Dosimetric impact of the 160 MLC on head and neck IMRT treatments

Dosimetric impact of the 160 MLC on head and neck IMRT treatments JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014 Dosimetric impact of the 160 MLC on head and neck IMRT treatments Prema Rassiah-Szegedi, a Martin Szegedi, Vikren Sarkar, Seth Streitmatter,

More information

Evolution of Head and Neck Treatment Using Protons. Mayank Amin, M.Sc,CMD

Evolution of Head and Neck Treatment Using Protons. Mayank Amin, M.Sc,CMD Evolution of Head and Neck Treatment Using Protons Mayank Amin, M.Sc,CMD Facility Layout Gantry Room 3 Fixed Beams Room 4 HEBT Gantry Room 2 Gantry Room 1 Synchrotron Linac Treatment Planning Imaging Area

More information

Manual VIRTUAL RADIATION ONCOLOGY CLINIC (VROC) (1.1) Radiation Oncology Training. Director User Manual (1.1)

Manual VIRTUAL RADIATION ONCOLOGY CLINIC (VROC) (1.1) Radiation Oncology Training. Director User Manual (1.1) Manual 1 VIRTUAL RADIATION ONCOLOGY CLINIC (VROC) (1.1) Radiation Oncology Training Director User Manual (1.1) Virtual Radiation Oncology Clinic Resident User manual Chapter 1 Creating the Virtual Patient

More information

Daily IGRT with CT-on-Rails Can Safely Reduce Planning Margin for Prostate Cancer: Implication for SBRT

Daily IGRT with CT-on-Rails Can Safely Reduce Planning Margin for Prostate Cancer: Implication for SBRT Daily IGRT with CT-on-Rails Can Safely Reduce Planning Margin for Prostate Cancer: Implication for SBRT Wen Li, Andrew Vassil, Lama Mossolly, Qingyang Shang, Ping Xia Department of Radiation Oncology Why

More information

IBA Proton Therapy. Biomed days 2015. Vincent Bossier. System Architect Vincent.bossier@iba-group.com. Protect, Enhance and Save Lives

IBA Proton Therapy. Biomed days 2015. Vincent Bossier. System Architect Vincent.bossier@iba-group.com. Protect, Enhance and Save Lives Vincent Bossier System Architect Vincent.bossier@iba-group.com IBA Proton Therapy Biomed days 2015 Protect, Enhance and Save Lives 1 Agenda AN INTRODUCTION TO IBA WHY PROTON THERAPY CLINICAL WORKFLOW TREATMENT

More information

Acknowledgement. Prerequisites: Basic Concepts of IMRT. Overview. Therapy Continuing Education Course Clinical Implementation of IMRT for Lung Cancers

Acknowledgement. Prerequisites: Basic Concepts of IMRT. Overview. Therapy Continuing Education Course Clinical Implementation of IMRT for Lung Cancers Therapy Continuing Education Course Clinical Implementation of IMRT for Lung Cancers H. Helen Liu, PhD Department of Radiation Physics, U.T. MD Anderson Cancer Center, Houston, TX AAPM, Seattle, 2005 Acknowledgement

More information

IMRT for Prostate Cancer. Robert A. Price Jr., Ph.D. Philadelphia, PA

IMRT for Prostate Cancer. Robert A. Price Jr., Ph.D. Philadelphia, PA IMRT for Prostate Cancer Robert A. Price Jr., Ph.D. Philadelphia, PA Number of Patients 16 14 12 1 8 6 4 1481 IMRT Patients at FCCC 293 97 Prostate Breast H&N Other 64 Approximately 13-15 patients per

More information

Calculation of Contra-lateral Lung Doses in Thoracic IMRT: An Experimental Evaluation

Calculation of Contra-lateral Lung Doses in Thoracic IMRT: An Experimental Evaluation Calculation of Contra-lateral Lung Doses in Thoracic IMRT: An Experimental Evaluation Deborah Schofield, Laurence Court, Aaron Allen, Fred Hacker, Maria Czerminska Department of Radiation Oncology Dana

More information

Total Solutions. Best NOMOS One Best Drive, Pittsburgh, PA 15202 USA phone 412 312 6700 800 70 NOMOS www.nomos.com

Total Solutions. Best NOMOS One Best Drive, Pittsburgh, PA 15202 USA phone 412 312 6700 800 70 NOMOS www.nomos.com Serial Tomotherapy IGRT Total Solutions Treatment Planning Brachytherapy Imaging Best NOMOS One Best Drive, Pittsburgh, PA 15202 USA BMI.v.08.2010 Best NOMOS Your Single Source Oncology Solutions Provider

More information

Post Treatment Log File Based QA Varian. Krishni Wijesooriya, PhD University of Virginia. D e p a r t m e n t of R a d i a t i o n O n c o l o g y

Post Treatment Log File Based QA Varian. Krishni Wijesooriya, PhD University of Virginia. D e p a r t m e n t of R a d i a t i o n O n c o l o g y Post Treatment Log File Based QA Varian Krishni Wijesooriya, PhD University of Virginia Learning Objectives What information could be accessed via log files Scenarios where Log files could be used. How

More information

Department of Radiation Oncology H. Lee Moffitt Cancer Center Khosrow Javedan M.S, Craig Stevens MD, Ph.D., Ken Forster Ph.D.

Department of Radiation Oncology H. Lee Moffitt Cancer Center Khosrow Javedan M.S, Craig Stevens MD, Ph.D., Ken Forster Ph.D. Efficacy of IMRT with dot decimal compensators for radiotherapy of malignant pleural mesothelioma post extrapleural pneumonectomy Department of Radiation Oncology H. Lee Moffitt Cancer Center Khosrow Javedan

More information

Target Volumes for Anal Carcinoma For RTOG 0529

Target Volumes for Anal Carcinoma For RTOG 0529 Target Volumes for Anal Carcinoma For RTOG 0529 Robert Myerson, M.D. Ph.D.*, Lisa Kachnic, M.D.**, Jacqueline Esthappan, Ph.D.*,Parag Parikh M.D.*William Straube M.S.*, John Willins, Ph.D.** *Washington

More information

Physics and Dosimetry of SBRT: Simulation and Localization. Moyed Miften, PhD University of Colorado

Physics and Dosimetry of SBRT: Simulation and Localization. Moyed Miften, PhD University of Colorado Physics and Dosimetry of SBRT: Simulation and Localization Moyed Miften, PhD University of Colorado Team Kelly Stuhr Bodo Reitz Quentin Diot Tracey Schefter Laurie Gaspar Brian Kavanagh Rad Onc Staff at

More information

ELECTRONIC MEDICAL RECORDS (EMR) STREAMLINE CH I PROCESS. Ping Xia, Ph.D. Head of Medical Physics Department of Radiation Oncology Cleveland Clinic

ELECTRONIC MEDICAL RECORDS (EMR) STREAMLINE CH I PROCESS. Ping Xia, Ph.D. Head of Medical Physics Department of Radiation Oncology Cleveland Clinic ELECTRONIC MEDICAL RECORDS (EMR) STREAMLINE CH I PROCESS Ping Xia, Ph.D. Head of Medical Physics Department of Radiation Oncology Cleveland Clinic Disclosure I have received research grants from Siemens

More information

RapidArc QA Program in Prince of Wales Hospital. Michael L. M. Cheung, Physicist Prince of Wales Hospital Hong Kong

RapidArc QA Program in Prince of Wales Hospital. Michael L. M. Cheung, Physicist Prince of Wales Hospital Hong Kong RapidArc QA Program in Prince of Wales Hospital Michael L. M. Cheung, Physicist Prince of Wales Hospital Hong Kong Hardware and Software 3 out of 5 Linacs capable of delivering RapidArc: 2 Varian Clinac

More information

Prostate IMRT: Promises and Problems Chandra Burman, Ph.D. Memorial Sloan-Kettering Cancer Center, New York, NY 10021

Prostate IMRT: Promises and Problems Chandra Burman, Ph.D. Memorial Sloan-Kettering Cancer Center, New York, NY 10021 Prostate IMRT: Promises and Problems Chandra Burman, Ph.D. Memorial Sloan-Kettering Cancer Center, New York, NY 10021 Introduction Prostate is one of the treatment sites that is well suited for IMRT. For

More information

Chapter 7. Accepted for publication in Acta Oncologica

Chapter 7. Accepted for publication in Acta Oncologica Chapter 7 The potential of intensity-modulated proton radiotherapy to reduce swallowing dysfunction in the treatment of head and neck cancer: a planning comparative study Hans Paul van der Laan, Tara A.

More information

Our Department: structure and organization

Our Department: structure and organization EORTC meeting for Radiation Therapy Technologists: RTT s role in the modernization of radiotherapy 10th October 2014, Villejuif (Grand Paris), France Elekta Stereotactic Body Frame: transmission modelled

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Head and Neck File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_head_and_neck

More information

Evaluation of an automated knowledge based treatment planning system for head and neck

Evaluation of an automated knowledge based treatment planning system for head and neck Krayenbuehl et al. Radiation Oncology (2015) 10:226 DOI 10.1186/s13014-015-0533-2 RESEARCH Open Access Evaluation of an automated knowledge based treatment planning system for head and neck Jerome Krayenbuehl

More information

Esperienza di stereotassia polmonare al Campus Bio-Medico: tecnica e risultati Rolando M. D Angelillo

Esperienza di stereotassia polmonare al Campus Bio-Medico: tecnica e risultati Rolando M. D Angelillo Esperienza di stereotassia polmonare al Campus Bio-Medico: tecnica e risultati Rolando M. D Angelillo Università Campus Bio-Medico di Roma - Via Álvaro del Portillo, 21-00128 Roma Italia BED 10 > 100 Gy

More information

Evaluation of complexity and deliverability of IMRT- treatment plans. Author: Elin Svensson Supervisors: Anna Bäck and Anna Karlsson Hauer

Evaluation of complexity and deliverability of IMRT- treatment plans. Author: Elin Svensson Supervisors: Anna Bäck and Anna Karlsson Hauer Evaluation of complexity and deliverability of IMRT- treatment plans Author: Elin Svensson Supervisors: Anna Bäck and Anna Karlsson Hauer June 11 Abstract Background: Intensity modulated beams are used

More information

VOLUMETRIC INTENSITY-MODULATED ARC THERAPY VS. CONVENTIONAL IMRT IN HEAD-AND-NECK CANCER: A COMPARATIVE PLANNING AND DOSIMETRIC STUDY

VOLUMETRIC INTENSITY-MODULATED ARC THERAPY VS. CONVENTIONAL IMRT IN HEAD-AND-NECK CANCER: A COMPARATIVE PLANNING AND DOSIMETRIC STUDY doi:10.1016/j.ijrobp.2008.12.033 Int. J. Radiation Oncology Biol. Phys., Vol. 74, No. 1, pp. 252 259, 2009 Copyright Ó 2009 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/09/$ see front

More information

Comprehensive Evaluation of Radiation Oncology Information Systems (ROIS)

Comprehensive Evaluation of Radiation Oncology Information Systems (ROIS) Comprehensive Evaluation of Radiation Oncology Information Systems (ROIS) Luis Fong, Ph.D. Michael Herman, Ph.D. Several Layers of Complexity Consultation Patient Information Prescription Main Hospital

More information

Chapter 8. General discussion and conclusions - 153 -

Chapter 8. General discussion and conclusions - 153 - Chapter 8 General discussion and conclusions - 153 - Chapter 8 General discussion and conclusions The aim of this thesis was (1) to investigate if irradiation with scanned intensity-modulated proton therapy

More information

External dosimetry Dosimetry in new radiotherapeutic techniques

External dosimetry Dosimetry in new radiotherapeutic techniques External dosimetry Dosimetry in new radiotherapeutic techniques Albert Lisbona Medical Physics Department CLCC René Gauducheau 44805 Saint-Herblain France a-lisbona@nantes.fnclcc.fr Objective : To describe

More information

1. Provide clinical training in radiation oncology physics within a structured clinical environment.

1. Provide clinical training in radiation oncology physics within a structured clinical environment. Medical Physics Residency Program Overview Our Physics Residency Training is a 2 year program typically beginning July 1 each year. The first year resident will work closely with medical physicists responsible

More information

NIA RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning

NIA RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning NIA RADIATION ONCOLOGY CODING STANDARD Dosimetry Planning CPT Codes: 77295, 77300, 77301, 77306, 77307, 77321, 77316, 77317, 77318, 77331, 77399 Original Date: April, 2011 Last Reviewed Date: November,

More information

Innovative RT SBRT. The variables with REQ in superscript are required.

Innovative RT SBRT. The variables with REQ in superscript are required. The variables with REQ in superscript are required. The variables with a are single-select variables; only one answer can be selected. The variables with a are multi-select variables; multiple answers

More information

SBRT IMRT SBRT IMRT. SBRT Process in a Nut Shell. SBRT: Simulation, Localization, and Delivery. Moyed Miften, PhD University of Colorado TG 101

SBRT IMRT SBRT IMRT. SBRT Process in a Nut Shell. SBRT: Simulation, Localization, and Delivery. Moyed Miften, PhD University of Colorado TG 101 SBRT: Simulation, Localization, and Delivery Moyed Miften, PhD University of Colorado SBRT Process in a Nut Shell Immobilization and Simulation Motion Management Treatment Planning (TP) Image Fusion Planning

More information

The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 2, 2015 V2

The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 2, 2015 V2 The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 2, 2015 V2 Taxonomy Data Category Number Description Data Fields and Menu Choices 1. Impact 1.1 Incident

More information

Key words: treatment planning, quality assurance, 3D treatment planning

Key words: treatment planning, quality assurance, 3D treatment planning American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning Benedick Fraass a) University of Michigan Medical

More information

intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis 11/2009 5/2016 5/2017 5/2016

intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis 11/2009 5/2016 5/2017 5/2016 Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Abdomen File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis

More information

Proton Therapy for Prostate Cancer

Proton Therapy for Prostate Cancer Proton Therapy for Prostate Cancer Andrew K. Lee, MD, MPH Director, Proton Therapy Center Associate Professor Department of Radiation Oncology M.D. Anderson Cancer Center Randomized studies showing benefit

More information

Failure Modes and Effects Analysis (FMEA)

Failure Modes and Effects Analysis (FMEA) Failure Modes and Effects Analysis (FMEA) Sasa Mutic Washington University School of Medicine St. Louis Missouri Failure Modes and Effects Analysis Objectives: To motivate the use of FMEA and to provide

More information

A Revolution in the Fight Against Cancer. What TomoTherapy Technology Means to You

A Revolution in the Fight Against Cancer. What TomoTherapy Technology Means to You A Revolution in the Fight Against Cancer What TomoTherapy Technology Means to You Cancer Treatment that Revolves Around You When it comes to choosing the right treatment for your cancer, your team of healthcare

More information

Proton Therapy. What is proton therapy and how is it used?

Proton Therapy. What is proton therapy and how is it used? Scan for mobile link. Proton Therapy Proton therapy delivers radiation to tumor tissue in a much more confined way than conventional photon therapy thus allowing the radiation oncologist to use a greater

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Intensity Modulated Radiation Therapy for Tumors of the Central File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_for_tumors

More information

Radiosurgery 8/16/2011. Intracranial Stereotactic Radiosurgery (SRS) and Stereotactic Radiotherapy (SRT) Kamil M. Yenice, PhD University of Chicago

Radiosurgery 8/16/2011. Intracranial Stereotactic Radiosurgery (SRS) and Stereotactic Radiotherapy (SRT) Kamil M. Yenice, PhD University of Chicago Intracranial Stereotactic Radiosurgery (SRS) and Stereotactic Radiotherapy (SRT) Kamil M. Yenice, PhD University of Chicago Radiosurgery The use of radiation as a surgical tool Small volumes of tissues

More information

Inter-observer variability in hippocampus delineation on MRI scans for Hippocampal Avoidance - PCI trial

Inter-observer variability in hippocampus delineation on MRI scans for Hippocampal Avoidance - PCI trial Inter-observer variability in hippocampus delineation on MRI scans for Hippocampal Avoidance - PCI trial C.Chen, M.de Ruiter, F.Bartel, M.Kwint, J.Belderbos F.Vandaele, S.Sunaert, K.De Jaeger, N.Dollekamp,

More information

Accreditation Is Coming

Accreditation Is Coming Accreditation Is Coming Accreditation Is Coming Accreditation Is Coming Yes, It Is! Currently, Accreditation is Voluntary However, Some of the Accrediting Organizations Are Lobbying the Congress to Adopt

More information

PIONEERING BIG DATA IN RADIATION ONCOLOGY

PIONEERING BIG DATA IN RADIATION ONCOLOGY TM PIONEERING BIG DATA IN RADIATION ONCOLOGY Todd McNutt PhD Associate Professor Radiation Oncology Johns Hopkins University Presented at the Target Insight Toronto, CAN May 8 th, 2015 Disclosures This

More information

Project Management Triangle

Project Management Triangle Session: Optimizing the Treatment Planning Process Maintain the Quality of Treatment Planning for Time-Constraint Cases Jenghwa Chang, Ph.D. Radiation Oncology, NewYork-Presbyterian Hospital/Weill Cornell

More information

Particle Therapy for Lung Cancer. Bradford Hoppe MD, MPH Assistant Professor University of Florida bhoppe@floridaproton.org

Particle Therapy for Lung Cancer. Bradford Hoppe MD, MPH Assistant Professor University of Florida bhoppe@floridaproton.org Particle Therapy for Lung Cancer Bradford Hoppe MD, MPH Assistant Professor University of Florida bhoppe@floridaproton.org Content Rationale for Particle Therapy in Lung Cancer Proof of Principle Treatment

More information

Department of Radiation Oncology

Department of Radiation Oncology Department of Radiation Oncology Welcome to Radiation Oncology at Emory Clinic Every member of Emory Clinic Department of Radiation Oncology strives to provide the highest quality of care for you as our

More information

Clinical Education A comprehensive and specific training program. carry out effective treatments from day one

Clinical Education A comprehensive and specific training program. carry out effective treatments from day one Proton Therapy Clinical Education A comprehensive and specific training program carry out effective treatments from day one Forewarned is forearmed Although over 100,000 patients have been treated in proton

More information

Quality Reports With. PlanIQ. *Export only. 510(k) pending. Patent pending. Your Most Valuable QA and Dosimetry Tools

Quality Reports With. PlanIQ. *Export only. 510(k) pending. Patent pending. Your Most Valuable QA and Dosimetry Tools Quality Reports With PlanIQ * *Export only. 510(k) pending. Patent pending. Your Most Valuable QA and Dosimetry Tools Objective Plan Assessment? How good are my treatment plans? Quality assurance of radiation

More information

Transition from 2D to 3D Brachytherapy in Cervical Cancers: The Vienna Experience. Richard Pötter MD. BrachyNext, Miami, 2014.

Transition from 2D to 3D Brachytherapy in Cervical Cancers: The Vienna Experience. Richard Pötter MD. BrachyNext, Miami, 2014. Transition from 2D to 3D Brachytherapy in Cervical Cancers: The Vienna Experience Richard Pötter MD BrachyNext, Miami, 2014 Disclosures Richard Pötter, MD, does not have any financial relationships or

More information

Esophageal Cancer Treatment

Esophageal Cancer Treatment Scan for mobile link. Esophageal Cancer Treatment What is Esophageal Cancer? Esophageal cancer occurs when cancer cells develop in the esophagus, a long, tube-like structure that connects the throat and

More information

Creating a Successful Electronic Medical Record (EMR): Setting Goals and Achieving Them

Creating a Successful Electronic Medical Record (EMR): Setting Goals and Achieving Them Creating a Successful Electronic Medical Record (EMR): Setting Goals and Achieving Them Kim L. Light, BS, CMD, RT(R)(T) Chief Dosimetrist Duke University Hospital Outline Why How Workflow change Communication

More information

Intensity-Modulated Radiation Therapy (IMRT)

Intensity-Modulated Radiation Therapy (IMRT) Scan for mobile link. Intensity-Modulated Radiation Therapy (IMRT) Intensity-modulated radiotherapy (IMRT) uses linear accelerators to safely and painlessly deliver precise radiation doses to a tumor while

More information

Introduction to Radiation Oncology

Introduction to Radiation Oncology Editors: Abigail T. Berman, MD, University of Pennsylvania Jordan Kharofa, MD, Medical College of Wisconsin Introduction to Radiation Oncology What Every Medical Student Needs to Know Objectives Introduction

More information

UNIVERSITY OF PÉCS, FACULTY OF HEALTH SCIENCES PH.D. SCHOOL OF HEALTH SCIENCES

UNIVERSITY OF PÉCS, FACULTY OF HEALTH SCIENCES PH.D. SCHOOL OF HEALTH SCIENCES UNIVERSITY OF PÉCS, FACULTY OF HEALTH SCIENCES PH.D. SCHOOL OF HEALTH SCIENCES HEAD OF THE PH.D. SCHOOL: JÓZSEF BÓDIS, PROF., M.D., D.SC., TEACHER OF THE UNIVERSITY, RECTOR DEVELOPING ADVANCED 3D CONFORMAL

More information

Radiation Therapy. 1. Introduction. 2. Documentation of Compliance. 3. Didactic Competency Requirements. 4. Clinical Competency Requirements

Radiation Therapy. 1. Introduction. 2. Documentation of Compliance. 3. Didactic Competency Requirements. 4. Clinical Competency Requirements PRIMARY CERTIFICATION DIDACTIC AND CLINICAL COMPETENCY REQUIREMENTS EFFECTIVE JANUARY 2014 Radiation Therapy 1. Introduction Candidates for certification and registration are required to meet the Professional

More information

MLC Characteristics. Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues. Presentation Outline

MLC Characteristics. Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues. Presentation Outline Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues Timothy D. Solberg David Geffen School of Medicine at UCLA TU-A-517A-1 Presentation Outline MLC Characteristics TG-50

More information

Marcus Fager Master of Science Thesis University of Pennsylvania, 11 June 2013. Supervisors:

Marcus Fager Master of Science Thesis University of Pennsylvania, 11 June 2013. Supervisors: R A D I O B I O L O G I C A L P L A N O P T I M I Z A T I O N I N P R O T O N T H E R A P Y F O R P R O S T A T E T U M O R S U S I NG A P A T C H E D I N T E G R A T E D E D G E [ P I E ] T E C H N I

More information

Precise Treatment System Clinically Flexible Digital Linear Accelerator. Personalized radiotherapy solutions for everyday treatment care

Precise Treatment System Clinically Flexible Digital Linear Accelerator. Personalized radiotherapy solutions for everyday treatment care Precise Treatment System Clinically Flexible Digital Linear Accelerator Personalized radiotherapy solutions for everyday treatment care Can you offer personalized cancer care? As more and more people require

More information

at a critical moment Physician Suggestion Line...

at a critical moment Physician Suggestion Line... Radiation Oncology Exceptional care at a critical moment When your patients require radiation therapy, they deserve the very best care available to them. The Department of Radiation Oncology provides exceptional

More information

IMRT For Head And Neck Cancer

IMRT For Head And Neck Cancer 10 IMRT For Head And Neck Cancer Lanceford M. Chong Margie A. Hunt Introduction...191 Historical Overview Rationale for the Use of IMRT in Head and Neck Tumors IMRT Treatment Of Primary Head And Neck Cancer

More information

Accreditation a tool to help reduce medical errors. Professor Arthur T Porter PC MD FACR FRCPC FACRO

Accreditation a tool to help reduce medical errors. Professor Arthur T Porter PC MD FACR FRCPC FACRO Accreditation a tool to help reduce medical errors Professor Arthur T Porter PC MD FACR FRCPC FACRO Errors in Radiotherapy Radiation therapy is a highly regulated medical practice with historically low

More information

RADIOTHERAPY Giovanna Mantello

RADIOTHERAPY Giovanna Mantello F The impact on RADIOTHERAPY Giovanna Mantello AOU Osp. Riuniti Ancona gio@mobilia.it RADIOTHERAPY OF PULMONARY LESIONS INTENSITY MODULATION HIGH GRADIENT DOSE DOSE ESCALATION IPOFRACTIONATION STEREO BODY

More information

Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG. CERN Accelerator School, May 2015

Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG. CERN Accelerator School, May 2015 INDUSTRIAL DESIGN Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG VARIAN ONCOLOGY SYSTEMS 1 VARIAN ONCOLOGY SYSTEMS CERN Accelerator, May 2015 Industrial Design

More information

Goals and Objectives: Breast Cancer Service Department of Radiation Oncology

Goals and Objectives: Breast Cancer Service Department of Radiation Oncology Goals and Objectives: Breast Cancer Service Department of Radiation Oncology The breast cancer service provides training in the diagnosis, management, treatment, and follow-up of breast malignancies, including

More information

4D Scanning. Image Guided Radiation Therapy. Outline. A Simplified View of the RT Process. Outline. Steve B. Jiang, Ph.D.

4D Scanning. Image Guided Radiation Therapy. Outline. A Simplified View of the RT Process. Outline. Steve B. Jiang, Ph.D. 4D Scanning Steve B. Jiang, Ph.D. Department of Radiation Oncology jiang.steve@mgh.harvard.edu http://gray.mgh.harvard.edu/ Outline Problems with free breathing 3D scanning What is 4D CT? How does it work?

More information

Chapter 7: Clinical Treatment Planning in External Photon Beam Radiotherapy

Chapter 7: Clinical Treatment Planning in External Photon Beam Radiotherapy Chapter 7: Clinical Treatment Planning in External Photon Beam Radiotherapy Set of 232 slides based on the chapter authored by W. Parker, H. Patrocinio of the IAEA publication (ISBN 92-0-107304-6): Review

More information

Multi-Channel Radiochromic Film Dosimetry. Adapted from A.Micke Spain, April 2014

Multi-Channel Radiochromic Film Dosimetry. Adapted from A.Micke Spain, April 2014 Multi-Channel Radiochromic Film Dosimetry Adapted from A.Micke Spain, April 2014 Single Channel Film Dosimetry Calibration Curve X=RR ave = R ave (D) D R = D R (R ave ) Color channels X=RGB D X = D( X

More information

Current Status of Proton Clinical Activities at PTC H

Current Status of Proton Clinical Activities at PTC H Current Status of Proton Clinical Activities at PTC H Michael Gillin, PhD, Professor, Chief of Clinical Services Department of Radiation Physics, UT MDACC The University of Texas M.D. Anderson Cancer Center

More information

Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment.

Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment. Dictionary Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment. Applicator A device used to hold a radioactive source

More information

CBCT for Prone Breast. Todd Jenkins, MS, DABR Nash Cancer Treatment Center

CBCT for Prone Breast. Todd Jenkins, MS, DABR Nash Cancer Treatment Center CBCT for Prone Breast Todd Jenkins, MS, DABR Nash Cancer Treatment Center Disclosures No outside funding or support Disclosures Techniques likely apply across vendors Prone Breast Technique Rationale

More information

Chapter 7 CLINICAL TREATMENT PLANNING IN EXTERNAL PHOTON BEAM RADIOTHERAPY

Chapter 7 CLINICAL TREATMENT PLANNING IN EXTERNAL PHOTON BEAM RADIOTHERAPY Chapter 7 CLINICAL TREATMENT PLANNING IN EXTERNAL PHOTON BEAM RADIOTHERAPY W. PARKER, H. PATROCINIO Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada 7.1. INTRODUCTION

More information

Advanced variance reduction techniques applied to Monte Carlo simulation of linacs

Advanced variance reduction techniques applied to Monte Carlo simulation of linacs MAESTRO Advanced variance reduction techniques applied to Monte Carlo simulation of linacs Llorenç Brualla, Francesc Salvat, Eric Franchisseur, Salvador García-Pareja, Antonio Lallena Institut Gustave

More information

HITACHI Proton Beam Therapy System

HITACHI Proton Beam Therapy System HITACHI Proton Beam Therapy System Masumi Umezawa, M.S. Hitachi, Ltd., Hitachi Research Laboratory HITACHI Proton Beam Therapy System Contents 1. Overview of HITACHI 2. HITACHI Proton Beam Therapy and

More information

Centralizing image and data management in radiation oncology with MOSAIQ Data Director

Centralizing image and data management in radiation oncology with MOSAIQ Data Director White Paper Centralizing image and data management in radiation oncology with MOSAIQ Data Director Authors: Laura Francis, Global Product Marketing, Elekta Software, UK and Erdal Sipahi, Information Technology,

More information

Intensity-modulated radiotherapy and volumetric-modulated arc therapy for malignant pleural mesothelioma after extrapleural pleuropneumonectomy

Intensity-modulated radiotherapy and volumetric-modulated arc therapy for malignant pleural mesothelioma after extrapleural pleuropneumonectomy JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 14, NUMBER 4, 2013 Intensity-modulated radiotherapy and volumetric-modulated arc therapy for malignant pleural mesothelioma after extrapleural pleuropneumonectomy

More information

DIFFERENT FROM THE REST FOCUSED ON THE FUTURE. A guide to understanding TomoTherapy treatments

DIFFERENT FROM THE REST FOCUSED ON THE FUTURE. A guide to understanding TomoTherapy treatments DIFFERENT FROM THE REST FOCUSED ON THE FUTURE A guide to understanding TomoTherapy treatments Advanced treatment planning Integrated, daily CTrue imaging 360º treatment delivery A platform for truly personalized

More information

Veterinary Oncology: The Lumps We Hate To Treat

Veterinary Oncology: The Lumps We Hate To Treat Veterinary Oncology: The Lumps We Hate To Treat Michelle Turek, DVM, DACVIM (Oncology), DACVR (Radiation Oncology) College of Veterinary Medicine University of Georgia Athens, GA Veterinary Oncology Veterinary

More information

Session Name: e-health (collaborative)

Session Name: e-health (collaborative) Session Name: e-health (collaborative) In accordance with the policy of The Royal Australian and New Zealand College of Radiologists, the Australian Institute of Radiography and the Australasian College

More information

Clinical Study Monte Carlo-Based Dose Calculation in Postprostatectomy Image-Guided Intensity Modulated Radiotherapy: A Pilot Study

Clinical Study Monte Carlo-Based Dose Calculation in Postprostatectomy Image-Guided Intensity Modulated Radiotherapy: A Pilot Study Radiotherapy Volume 215, Article ID 682463, 6 pages http://dx.doi.org/1.1155/215/682463 Clinical Study Monte Carlo-Based Dose Calculation in Postprostatectomy Image-Guided Intensity Modulated Radiotherapy:

More information

Volumetric modulated arc therapy (VMAT) for prostate cancer

Volumetric modulated arc therapy (VMAT) for prostate cancer Planning study Volumetric modulated arc therapy (VMAT) for prostate cancer Institution: Purpose: Swedish Cancer Institute, Seattle, WA, USA In a community cancer center, treating prostate cancer comprises

More information

Innovative RT - Breast - APBI and Boost

Innovative RT - Breast - APBI and Boost Innovative RT - Breast - APBI and Boost The variables with REQ in superscript are required. The variables with a are single-select variables; only one answer can be selected. The variables with a are multi-select

More information

2015 ASTRO INVESTOR MEETING. October 20, 2015

2015 ASTRO INVESTOR MEETING. October 20, 2015 2015 ASTRO INVESTOR MEETING October 20, 2015 Agenda 7:30AM Welcome Dow Wilson Our Cancer Care Vision: The Next Big Advances Kolleen Kennedy Particle Therapy: Building Momentum Dow Wilson Q & A 9:00AM Booth

More information

Quality Assurance of accelerators; the technologists responsibility

Quality Assurance of accelerators; the technologists responsibility Quality Assurance of accelerators; the technologists responsibility Christa Timmermans Radiation Technologist, Erasmus MC- Daniel den Hoed, Rotterdam, The Netherlands EORTC-ROG RT technologists Section

More information

Current and Future Trends in Proton Treatment of Prostate Cancer

Current and Future Trends in Proton Treatment of Prostate Cancer Current and Future Trends in Proton Treatment of Prostate Cancer Reinhard W. Schulte Assistant Professor Department of Radiation Medicine Loma Linda University Medical Center Loma Linda, CA, USA Outline

More information

Thinking ahead. Focused on life. REALIZED: GROUNDBREAKING RESOLUTION OF 80 µm VOXEL

Thinking ahead. Focused on life. REALIZED: GROUNDBREAKING RESOLUTION OF 80 µm VOXEL Thinking ahead. Focused on life. REALIZED: GROUNDBREAKING RESOLUTION OF 80 µm VOXEL X-ray ZOOM RECONSTRUCTION Flat Panel Detector (FPD) Automatic Positioning Function For ø 40 x H 40 mm, ø 60 x H 60 mm,

More information

CYBERKNIFE RADIOSURGERY FOR EARLY PROSTATE CANCER Rationale and Results. Alan Katz MD JD Flushing, NY USA

CYBERKNIFE RADIOSURGERY FOR EARLY PROSTATE CANCER Rationale and Results. Alan Katz MD JD Flushing, NY USA CYBERKNIFE RADIOSURGERY FOR EARLY PROSTATE CANCER Rationale and Results Alan Katz MD JD Flushing, NY USA Prostate Ablative Therapy Over the last 10 years our therapy has improved bned rates for LDR/HDR

More information

NOVEL USES OF A CT-ON-RAILS IN AN INTEGRATED BRACHYTHERAPY OR SUITE

NOVEL USES OF A CT-ON-RAILS IN AN INTEGRATED BRACHYTHERAPY OR SUITE NOVEL USES OF A CT-ON-RAILS IN AN INTEGRATED BRACHYTHERAPY OR SUITE OPTMIZING YOUR BRACHYTHERAPY WORKFLOW WITH CT-ON-RAILS SYSTEM Marc Gaudet MD, MSc, MHA FRCPC Chief, Radiation Oncology Director, Oncology

More information

MEDICAL DOSIMETRY. COLLEGE OF APPLIED SCIENCES AND ARTS Graduate Faculty: therapy.

MEDICAL DOSIMETRY. COLLEGE OF APPLIED SCIENCES AND ARTS Graduate Faculty: therapy. Graduate Catalog 2012-2013 Medical Dosimetry / 339 MEDICAL DOSIMETRY COLLEGE OF APPLIED SCIENCES AND ARTS Graduate Faculty: Collins, Kevin Scott, Associate Professor, Ph.D., Jensen, Steve, Emeritus Professor,

More information

RADIATION THERAPY guide. Guiding you through your treatment

RADIATION THERAPY guide. Guiding you through your treatment RADIATION THERAPY guide Guiding you through your treatment 2013_RADIATION_GUIDE_6PG.indd 1 Before Treatment Consultation with the Radiation Oncologist During your first visit with the radiation oncologist,

More information

Virtual Reality Training for Radiotherapy becomes a Reality

Virtual Reality Training for Radiotherapy becomes a Reality Virtual Reality Training for Radiotherapy becomes a Reality R PHILLIPS a,1, J W WARD a, L PAGE a, C GRAU b, A BOJEN b, J HALL c, K NIELSEN b, V NORDENTOFT b, A W BEAVIS d a Department of Computer Science,

More information

Advanced Radiation Therapy of Cancer by Proton Beam

Advanced Radiation Therapy of Cancer by Proton Beam March 20th, 2014 Advanced Radiation Therapy of Cancer by Proton Beam Fukui Prefectural Hospital Proton Therapy Center Yamamoto, Kazutaka Wave (electromagnetic wave) IR (Ionizing) Radiation 700 400 350~100

More information

Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation.

Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation. Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation. Andrew Bridges Clinical Scientist Diagnostic Radiology & Radiation Protection Physics Overview What is CBCT? Use of CBCT

More information

The feasibility of a QA program for ISIORT Trials

The feasibility of a QA program for ISIORT Trials Baveno, Italy June 22-24, 2012 The feasibility of a QA program for ISIORT Trials Frank W. Hensley 1, Don A. Goer 2, Sebastian Adamczyk 3, Falk Roeder 1, Felix Sedlmayer 4, Peter Kopp 4 1 University Clinics

More information

Role of IMRT in the Treatment of Gynecologic Malignancies. John C. Roeske, PhD Associate Professor The University of Chicago

Role of IMRT in the Treatment of Gynecologic Malignancies. John C. Roeske, PhD Associate Professor The University of Chicago Role of IMRT in the Treatment of Gynecologic Malignancies John C. Roeske, PhD Associate Professor The University of Chicago Acknowledgements B Aydogan, PhD Univ of Chicago P Chan, MD Princess Margaret

More information