# This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

Size: px
Start display at page:

Download "This chapter will demonstrate how to perform multiple linear regression with IBM SPSS"

Transcription

1 CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the stepwise method. We will use the data file Personality in these demonstrations. 7B.1 Standard Multiple Regression 7B.1.1 Main Regression Dialog Window For purposes of illustrating standard linear regression, assume that we are interested in predicting self-esteem based on the combination of negative affect (experiencing negative emotions), positive affect (experiencing positive emotions), openness to experience (e.g., trying new foods, exploring new places), extraversion, neuroticism, and trait anxiety. Selecting the path Analyze â Regression â Linear opens the Linear Regression main dialog window displayed in Figure 7b.1. From the variables list panel, we move over esteem to the Dependent panel and negafect, posafect, neoopen, neoextra, neoneuro, and tanx to the Independent(s) panel. The Method drop-down menu will be left at its default setting of Enter, which requests a standard regression analysis. 7B.1.2 Statistics Window Selecting the Statistics pushbutton opens the Linear Regression: Statistics dialog window shown in Figure 7b.2. By default, Estimates in the Regression Coefficients panel is checked. This instructs IBM SPSS to print the value of the regression coefficient and 366

2 Chapter 7B: Multiple Regression: Statistical Methods Using IBM SPSS 367 Figure 7b.1 Main Dialog Window for Linear Regression Figure 7b.2 The Linear Regression Statistics Window

3 368 PART III: PREDICTING THE VALUE OF A SINGLE VARIABLE related measures. We also retained the following defaults: Model fit, which provides R-square, adjusted R-square, the standard error, and an ANOVA table; R squared change, which is useful when there are multiple predictors that are being entered in stages so that we can see where this information is placed in the output; Descriptives, which provides the means and standard deviations of the variables as well as the correlations table; and Part and partial correlations, which produces the partial and semipartial correlations and conveys important information when multiple predictors are used. Clicking Continue returns us to the main dialog screen. 7B.1.3 Options Window Select the Options pushbutton; this displays the Linear Regression: Options dialog window shown in Figure 7b.3. The top panel is applicable if we were using one of the step methods, and we will discuss this in Section 7B.2. We have retained the defaults of including the Y intercept (the constant) in the equation and of excluding cases listwise. The choice Exclude cases listwise (sometimes called listwise deletion) means that all cases must have valid values on all of the variables in the analysis in order to be included; a missing value on even one of the Figure 7b.3 Window The Linear Regression Options variables is sufficient to exclude that case. Selecting this choice ensures that the set of variables, and thus the regression model, is based on the same set of cases. So long as there is relatively little missing data, this choice is best. Clicking Continue returns us to the main dialog box, and selecting OK produces the analysis. 7B.1.4 Multiple Regression Output We will examine the output of the analysis in the order we suggest that you proceed. Figure 7b.4 contains descriptive information. The upper table contains the means and standard deviations of the variables, and the lower table shows the square correlation matrix. The correlation results are divided into

4 Chapter 7B: Multiple Regression: Statistical Methods Using IBM SPSS 369 Figure 7b.4 Descriptive Statistics and Correlations Output for Standard Regression three major rows: the first contains the Pearson r values, the second contains the probabilities of obtaining those values if the null hypothesis was true, and the third provides sample size. The dependent variable esteem is placed by IBM SPSS on the first row and column, and the other variables appear in the order we entered them into the analysis. The study represented by our data set was designed for a somewhat different purpose, so our choice of variables was a bit limited. Thus, the correlations of self-esteem with the predictor variables in the analysis are higher than we would ordinarily prefer, and many of the other variables are themselves likewise intercorrelated more than we would prefer. Nonetheless, the example is still useful for our purposes.

5 370 PART III: PREDICTING THE VALUE OF A SINGLE VARIABLE Figure 7b.5 displays the results of the analysis. The middle table shows the test of significance of the model using an ANOVA. There are 419 (N - 1) total degrees of freedom. With six predictors, the Regression effect has 6 degrees of freedom. The Regression effect is statistically significant indicating that prediction of the dependent variable is accomplished better than can be done by chance. Figure 7b.5 The Results of the Standard Regression Analysis The upper table in Figure 7b.5 labeled Model Summary provides an overview of the results. Of primary interest are the R Square and Adjusted R Square values, which are.607 and.601, respectively. We learn from these that the weighted combination of the predictor variables explained approximately 60% of the variance of self-esteem. The loss of so little strength in computing the Adjusted R Square value is primarily due to our relatively large sample size combined with a relatively small set of predictors. Using the standard regression procedure where all of the predictors were entered simultaneously into the model, R Square Change went from zero before the model was fitted to the data to.607 when the variable was entered.

6 Chapter 7B: Multiple Regression: Statistical Methods Using IBM SPSS 371 The bottom table in Figure 7b.5 labeled Coefficients provides the details of the results. The Zero-order column under Correlations lists the Pearson r values of the dependent variable (self-esteem in this case) with each of the predictors. These values are the same as those shown in the correlation matrix of Figure 7b.4. The Partial column under Correlations lists the partial correlations for each predictor as it was evaluated for its weighting in the model (the correlation between the predictor and the dependent variable when the other predictors are treated as covariates). The Part column under Correlations lists the semipartial correlations for each predictor once the model is finalized; squaring these values informs us of the percentage of variance each predictor uniquely explains. For example, trait anxiety accounts uniquely for about 3% of the variance of self-esteem (-.170 * =.0289 or approximately.03) given the other variables in the model. The Y intercept of the raw score model is labeled as the Constant and has a value here of Of primary interest here are the raw (B) and standardized (Beta) coefficients, and their significance levels determined by t tests. With the exception of negative affect and openness, all of the predictors are statistically significant. As can be seen by examining the beta weights, trait anxiety followed by neuroticism followed by positive affect were making relatively larger contributions to the prediction model. The raw regression coefficients are partial regression coefficients because their values take into account the other predictor variables in the model; they inform us of the predicted change in the dependent variable for every unit increase in that predictor. For example, positive affect is associated with a partial regression coefficient of and signifies that for every additional point on the positive affect measure, we would predict a gain of points on the self-esteem measure. As another example, neuroticism is associated with a partial regression coefficient of and signifies that for every additional point on the neuroticism measure, we would predict a decrement of.477 points on the self-esteem measure. This example serves to illustrate two important related points about multiple regression analysis. First, it is the model as a whole that is the focus of the analysis. Variables are treated akin to team players weighted in such a way that the sum of the squared residuals of the model is minimized. Thus, it is the set of variables in this particular (weighted) configuration that maximizes prediction swap out one of these predictors for a new variable and the whole configuration that represents the best prediction can be quite different. The second important point about regression analysis that this example illustrates, which is related to the first, is that a highly predictive variable can be left out in the cold, being sacrificed for the good of the model. Note that negative affect correlates rather substantially with self-esteem (r = -.572), and if it was the only predictor it would have a beta weight of (recall that in simple linear regression the Pearson r is the beta weight of the predictor), yet in combination with the other predictors is not a significant predictor in the multiple regression model. The reason is that its predictive work is being accomplished by one or more of the other variables in the analysis. But the point is that just because a variable

7 372 PART III: PREDICTING THE VALUE OF A SINGLE VARIABLE receives a modest weight in the model or just because a variable is not contributing a statistically significant degree of prediction in the model is not a reason to presume that it is itself a poor predictor. It is also important to note that the IBM SPSS output does not contain the structure coefficients. These are the correlations of the predictors in the model with the overall predictor variate, and these structure coefficients help researchers interpret the dimension underlying the predictor model (see Section 7A.11). They are easy enough to calculate by hand (the Pearson correlation between the predictor and the criterion variable divided by the multiple correlation), and we incorporate these structure coefficients into our report of the results in Section 7B B.1.5 Reporting Standard Multiple Regression Results Negative affect, positive affect, openness to experience, extraversion, neuroticism, and trait anxiety were used in a standard regression analysis to predict self-esteem. The correlations of the variables are shown in Table 7b.1.As can be seen, all correlations, except for the one between openness and extraversion, were statistically significant. The prediction model was statistically significant, F(6, 413) = , p <.001, and accounted for approximately 60% of the variance of self-esteem (R 2 =.607, Adjusted R 2 =.601). Self-esteem was primarily predicted by lower levels of trait anxiety and neuroticism, and to a lesser extent by higher levels of positive affect and extraversion. The raw and standardized regression coefficients of the predictors together with their correlations with self-esteem, their squared semipartial correlations and their structure coefficients, are shown in Table 7b.2. Trait anxiety received the strongest weight in the model followed by neuroticism and positive affect. With the sizeable correlations between the predictors, the unique variance explained by each of the variables indexed by the squared semipartial correlations was quite low. Inspection of the structure coefficients suggests that, with the possible exception of extraversion whose correlation is still relatively substantial, the other significant predictors were strong indicators of the underlying (latent) variable described by the model, which can be interpreted as well-being. 7B.2 Stepwise Multiple Regression We discussed the forward, backward, and stepwise methods of performing a regression analysis in Chapter 5A. To illustrate how to work with these methods, we will perform a

8 Chapter 7B: Multiple Regression: Statistical Methods Using IBM SPSS 373 Table 7b.1 Correlations of the Variables in the Analysis (N = 420) Table 7b.2 Standard Regression Results stepwise analysis on the same set of variables that we used in our standard regression analysis in Section 7B.1. We will use the data file Personality in these demonstrations. In the process of our description, we will point out areas of similarity and difference between the standard and step methods.

9 374 PART III: PREDICTING THE VALUE OF A SINGLE VARIABLE 7B.2.1 Main Regression Dialog Window Select the path Analyze â Regression â Linear. This brings us to the Linear Regression main dialog window displayed in Figure 7b.6. From the variables list panel, we click over esteem to the Dependent panel and negafect, posafect, neoopen, neoextra, neoneuro, and tanx to the Independent(s) panel. The Method drop-down menu contains the set of step methods that IBM SPSS can run. The only one you may not recognize is Remove, which allows a set of variables to be removed from the model together. Choose Stepwise as the Method from the drop-down menu as shown in Figure 7b.6. Figure 7b.6 Main Dialog Window for Linear Regression 7B.2.2 Statistics Window Selecting the Statistics pushbutton brings us to the Linear Regression: Statistics dialog window shown in Figure 7b.7. This was already discussed in Section 7B.1.2. Clicking Continue returns us to the main dialog box.

10 Chapter 7B: Multiple Regression: Statistical Methods Using IBM SPSS 375 Figure 7b.7 The Linear Regression Statistics Window 7B.2.3 Options Window Selecting the Options pushbutton brings us to the Linear Regression: Options dialog window shown in Figure 7b.8. The top panel is now applicable as we are using the stepwise method. To avoid looping variables continually in and out of the model, it is appropriate to set different significance levels for entry and exit. The defaults used by IBM SPSS are common settings, and we recommend them. Remember that in the stepwise procedure, variables already entered into the model can be removed at a later step if they are no longer contributing a statistically significant amount of prediction. Earning entry to the model is set at an alpha level of.05 (e.g., a variable with a probability of.07 will not be entered) and is the more stringent of the two settings. But to be removed, a variable must have an associated probability of greater than.10 (e.g., a variable with an associated probability of.12 will be removed but one with an associated probability of.07 will remain in the model). In essence, it is more difficult to get in than be removed. This is a good thing and allows the stepwise procedure to function. Click Continue to return to the main dialog window, and click OK to perform the analysis.

11 376 PART III: PREDICTING THE VALUE OF A SINGLE VARIABLE Figure 7b.8 The Linear Regression Options Window 7B.2.4 Stepwise Multiple Regression Output The descriptive statistics are identical to those presented in Section 7B.1.4, and we will skip those here. Figure 7b.9 displays the test of significance of the model using an ANOVA. The four ANOVAs that are reported correspond to four models, but don t let the terminology confuse you. The stepwise procedure adds only one variable at a time to the model as the model is slowly built. At the third step and beyond, it is also possible to remove a variable from the model (although that did not happen in our example). In the terminology used by IBM SPSS, each step results in a model, and each successive step modifies the older model and replaces it with a newer one. Each model is tested for statistical significance. Examining the last two columns of the output shown in Figure 7b.9 informs us that the final model was built in four steps; each step resulted in a statistically significant model. Examining the df column shows us that one variable was added during each step (the degrees of freedom for the Regression effect track this for us as they are counts of the

12 Chapter 7B: Multiple Regression: Statistical Methods Using IBM SPSS 377 Figure 7b.9 Tests of Significance for Each Step in the Regression Analysis number of predictors in the model). We can also deduce that no variables were removed from the model since the count of predictors in the model steadily increases from 1 to 4. This latter deduction is verified by the display shown in Figure 7b.10, which tracks variables that have been entered and removed at each step. As can be seen, trait anxiety, positive affect, neuroticism, and extraversion have been entered on Steps 1 through 4, respectively, without any variables having been removed on any step. Figure 7b.11, the Model Summary, presents the R Square and Adjusted R Square values for each step along with the amount of R Square Change. In the first step, as can be seen from the footnote beneath the Model Summary table, trait anxiety was entered into the model. The R Square with that predictor in the model was.525. Not coincidentally, that is the square of the correlation between trait anxiety and self-esteem ( =.525), and is the value of R Square Change. On the second step, positive affect was added to the model. The R Square with both predictors in the model was.566; thus, we gained.041 in the value of R Square ( =.041), and this is reflected in the R Square Change for that step. By the time we arrive at the end of the fourth step, our R Square value has reached.603. Note that this

13 378 PART III: PREDICTING THE VALUE OF A SINGLE VARIABLE value is very close to but not Figure 7b.10 Variables That Were Entered and identical to the R 2 value we Removed obtained under the standard method. The Coefficients table in Figure 7b.12 provides the details of the results. Note that both the raw and standardized regression coefficients are readjusted at each step to reflect the additional variables in the model. Ordinarily, although it is interesting to observe the dynamic changes taking place, we are usually interested in the final model. Note also that the values of the regression coefficients are different from those associated with the same variables in the standard regression analysis. That the differences are not huge is due to the fact that these four variables did almost the same amount of predictive work in much the same configuration as did the six predictors accomplished using the standard method. If economy of model were relevant, we would probably be very happy with the trimmed model of four variables replacing the full model containing six variables. Figure 7b.13 addresses the fate of the remaining variables. For each step, IBM SPSS tells us which variables were not entered. In addition to tests of the statistical significance of each variable, we also see displayed the partial correlations. This information together tells us what will happen in the following step. For example, consider Step 1, which contains the five excluded variables. Positive affect has the highest partial correlation (.294), and it is statistically significant; thus, it will be the variable next entered on Step 2. On the second step, with four variables (of the six) excluded, we see that neuroticism with a statistically significant partial correlation of

14 Chapter 7B: Multiple Regression: Statistical Methods Using IBM SPSS 379 Figure 7b.11 Model Summary Figure 7b.12 The Results of the Stepwise Regression Analysis wins the struggle for entry next. By the time we reach the fourth step, there is no variable of the excluded set that has a statistically significant partial correlation for entry at Step 5; thus, the stepwise procedure ends after completing the fourth step.

15 380 PART III: PREDICTING THE VALUE OF A SINGLE VARIABLE Figure 7b.13 The Results of the Stepwise Regression Analysis 7B.2.5 Reporting Stepwise Multiple Regression Results Negative affect, positive affect, openness to experience, extraversion, neuroticism, and trait anxiety were used in a stepwise multiple regression analysis to predict selfesteem. The correlations of the variables are shown in Table 7b.1. As can be seen, all correlations except for the one between openness and extraversion were statistically significant.

16 Chapter 7B: Multiple Regression: Statistical Methods Using IBM SPSS 381 The prediction model contained four of the six predictors and was reached in four steps with no variables removed. The model was statistically significant, F(4, 415) = , p <.001, and accounted for approximately 60% of the variance of selfesteem (R 2 =.603, Adjusted R 2 =.599). Self-esteem was primarily predicted by lower levels of trait anxiety and neuroticism, and to a lesser extent by higher levels of positive affect and extraversion. The raw and standardized regression coefficients of the predictors together with their correlations with self-esteem, their squared semipartial correlations, and their structure coefficients are shown in Table 7b.3. Trait anxiety received the strongest weight in the model followed by neuroticism and positive affect; extraversion received the lowest of the four weights. With the sizeable correlations between the predictors, the unique variance explained by each of the variables indexed by the squared semipartial correlations, was relatively low: trait anxiety, positive affect, neuroticism, and extraversion uniquely accounted for approximately 4%, 2%, 3%, and less than 1% of the variance of self-esteem. The latent factor represented by the model appears to be interpretable as well-being. Inspection of the structure coefficients suggests that trait anxiety and neuroticism were very strong indicators of well being, positive affect was a relatively strong indicator of well-being, and extraversion was a moderate indicator of well-being. Table 7b.3 Stepwise Regression Results

### Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Simple Linear Regression, Scatterplots, and Bivariate Correlation

1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.

### SPSS Explore procedure

SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

### Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### There are six different windows that can be opened when using SPSS. The following will give a description of each of them.

SPSS Basics Tutorial 1: SPSS Windows There are six different windows that can be opened when using SPSS. The following will give a description of each of them. The Data Editor The Data Editor is a spreadsheet

### Multiple Regression. Page 24

Multiple Regression Multiple regression is an extension of simple (bi-variate) regression. The goal of multiple regression is to enable a researcher to assess the relationship between a dependent (predicted)

### Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices:

Doing Multiple Regression with SPSS Multiple Regression for Data Already in Data Editor Next we want to specify a multiple regression analysis for these data. The menu bar for SPSS offers several options:

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### Directions for using SPSS

Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

### Didacticiel - Études de cas

1 Topic Regression analysis with LazStats (OpenStat). LazStat 1 is a statistical software which is developed by Bill Miller, the father of OpenStat, a wellknow tool by statisticians since many years. These

### Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

### INTRODUCTION TO MULTIPLE CORRELATION

CHAPTER 13 INTRODUCTION TO MULTIPLE CORRELATION Chapter 12 introduced you to the concept of partialling and how partialling could assist you in better interpreting the relationship between two primary

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### Mixed 2 x 3 ANOVA. Notes

Mixed 2 x 3 ANOVA This section explains how to perform an ANOVA when one of the variables takes the form of repeated measures and the other variable is between-subjects that is, independent groups of participants

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

### Stepwise Regression. Chapter 311. Introduction. Variable Selection Procedures. Forward (Step-Up) Selection

Chapter 311 Introduction Often, theory and experience give only general direction as to which of a pool of candidate variables (including transformed variables) should be included in the regression model.

### Factor Analysis. Chapter 420. Introduction

Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Multiple Regression Using SPSS

Multiple Regression Using SPSS The following sections have been adapted from Field (2009) Chapter 7. These sections have been edited down considerably and I suggest (especially if you re confused) that

### hp calculators HP 50g Trend Lines The STAT menu Trend Lines Practice predicting the future using trend lines

The STAT menu Trend Lines Practice predicting the future using trend lines The STAT menu The Statistics menu is accessed from the ORANGE shifted function of the 5 key by pressing Ù. When pressed, a CHOOSE

### Moderation. Moderation

Stats - Moderation Moderation A moderator is a variable that specifies conditions under which a given predictor is related to an outcome. The moderator explains when a DV and IV are related. Moderation

### January 26, 2009 The Faculty Center for Teaching and Learning

THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### Chapter 15. Mixed Models. 15.1 Overview. A flexible approach to correlated data.

Chapter 15 Mixed Models A flexible approach to correlated data. 15.1 Overview Correlated data arise frequently in statistical analyses. This may be due to grouping of subjects, e.g., students within classrooms,

### HLM software has been one of the leading statistical packages for hierarchical

Introductory Guide to HLM With HLM 7 Software 3 G. David Garson HLM software has been one of the leading statistical packages for hierarchical linear modeling due to the pioneering work of Stephen Raudenbush

### 1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Introduce moderated multiple regression Continuous predictor continuous predictor Continuous predictor categorical predictor Understand

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### Binary Logistic Regression

Binary Logistic Regression Main Effects Model Logistic regression will accept quantitative, binary or categorical predictors and will code the latter two in various ways. Here s a simple model including

### Using Excel for Statistical Analysis

Using Excel for Statistical Analysis You don t have to have a fancy pants statistics package to do many statistical functions. Excel can perform several statistical tests and analyses. First, make sure

### Reliability Analysis

Measures of Reliability Reliability Analysis Reliability: the fact that a scale should consistently reflect the construct it is measuring. One way to think of reliability is that other things being equal,

### An Introduction to Path Analysis. nach 3

An Introduction to Path Analysis Developed by Sewall Wright, path analysis is a method employed to determine whether or not a multivariate set of nonexperimental data fits well with a particular (a priori)

### Analyzing Intervention Effects: Multilevel & Other Approaches. Simplest Intervention Design. Better Design: Have Pretest

Analyzing Intervention Effects: Multilevel & Other Approaches Joop Hox Methodology & Statistics, Utrecht Simplest Intervention Design R X Y E Random assignment Experimental + Control group Analysis: t

### Ordinal Regression. Chapter

Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe

### 1.1. Simple Regression in Excel (Excel 2010).

.. Simple Regression in Excel (Excel 200). To get the Data Analysis tool, first click on File > Options > Add-Ins > Go > Select Data Analysis Toolpack & Toolpack VBA. Data Analysis is now available under

### Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

### ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### Multiple Regression: What Is It?

Multiple Regression Multiple Regression: What Is It? Multiple regression is a collection of techniques in which there are multiple predictors of varying kinds and a single outcome We are interested in

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models

### C:\Users\<your_user_name>\AppData\Roaming\IEA\IDBAnalyzerV3

Installing the IDB Analyzer (Version 3.1) Installing the IDB Analyzer (Version 3.1) A current version of the IDB Analyzer is available free of charge from the IEA website (http://www.iea.nl/data.html,

### Illustration (and the use of HLM)

Illustration (and the use of HLM) Chapter 4 1 Measurement Incorporated HLM Workshop The Illustration Data Now we cover the example. In doing so we does the use of the software HLM. In addition, we will

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Factor Analysis Using SPSS

Psychology 305 p. 1 Factor Analysis Using SPSS Overview For this computer assignment, you will conduct a series of principal factor analyses to examine the factor structure of a new instrument developed

### 4. Multiple Regression in Practice

30 Multiple Regression in Practice 4. Multiple Regression in Practice The preceding chapters have helped define the broad principles on which regression analysis is based. What features one should look

### Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

Using Your TI-83/84 Calculator: Linear Correlation and Regression Elementary Statistics Dr. Laura Schultz This handout describes how to use your calculator for various linear correlation and regression

### Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480

1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### Correlation and Regression Analysis: SPSS

Correlation and Regression Analysis: SPSS Bivariate Analysis: Cyberloafing Predicted from Personality and Age These days many employees, during work hours, spend time on the Internet doing personal things,

### The KaleidaGraph Guide to Curve Fitting

The KaleidaGraph Guide to Curve Fitting Contents Chapter 1 Curve Fitting Overview 1.1 Purpose of Curve Fitting... 5 1.2 Types of Curve Fits... 5 Least Squares Curve Fits... 5 Nonlinear Curve Fits... 6

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### A Basic Guide to Analyzing Individual Scores Data with SPSS

A Basic Guide to Analyzing Individual Scores Data with SPSS Step 1. Clean the data file Open the Excel file with your data. You may get the following message: If you get this message, click yes. Delete

### Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

### General Regression Formulae ) (N-2) (1 - r 2 YX

General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Beta-hat: β = r YX (1 Standard

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### Pearson s Correlation

Pearson s Correlation Correlation the degree to which two variables are associated (co-vary). Covariance may be either positive or negative. Its magnitude depends on the units of measurement. Assumes the

### Sample Table. Columns. Column 1 Column 2 Column 3 Row 1 Cell 1 Cell 2 Cell 3 Row 2 Cell 4 Cell 5 Cell 6 Row 3 Cell 7 Cell 8 Cell 9.

Working with Tables in Microsoft Word The purpose of this document is to lead you through the steps of creating, editing and deleting tables and parts of tables. This document follows a tutorial format

### MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

### Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

### DDBA 8438: The t Test for Independent Samples Video Podcast Transcript

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,

### ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS

DATABASE MARKETING Fall 2015, max 24 credits Dead line 15.10. ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS PART A Gains chart with excel Prepare a gains chart from the data in \\work\courses\e\27\e20100\ass4b.xls.

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM. R, analysis of variance, Student test, multivariate analysis

Journal of tourism [No. 8] MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM Assistant Ph.D. Erika KULCSÁR Babeş Bolyai University of Cluj Napoca, Romania Abstract This paper analysis

### Lin s Concordance Correlation Coefficient

NSS Statistical Software NSS.com hapter 30 Lin s oncordance orrelation oefficient Introduction This procedure calculates Lin s concordance correlation coefficient ( ) from a set of bivariate data. The

### Tutorial #7A: LC Segmentation with Ratings-based Conjoint Data

Tutorial #7A: LC Segmentation with Ratings-based Conjoint Data This tutorial shows how to use the Latent GOLD Choice program when the scale type of the dependent variable corresponds to a Rating as opposed

### Simple Predictive Analytics Curtis Seare

Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use

### The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

### SPSS Resources. 1. See website (readings) for SPSS tutorial & Stats handout

Analyzing Data SPSS Resources 1. See website (readings) for SPSS tutorial & Stats handout Don t have your own copy of SPSS? 1. Use the libraries to analyze your data 2. Download a trial version of SPSS

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### Regression Analysis (Spring, 2000)

Regression Analysis (Spring, 2000) By Wonjae Purposes: a. Explaining the relationship between Y and X variables with a model (Explain a variable Y in terms of Xs) b. Estimating and testing the intensity

### EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST

EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeated-measures data if participants are assessed on two occasions or conditions

### Course Objective This course is designed to give you a basic understanding of how to run regressions in SPSS.

SPSS Regressions Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. SSRL@American.edu Course Objective This course is designed

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### SAS Analyst for Windows Tutorial

Updated: August 2012 Table of Contents Section 1: Introduction... 3 1.1 About this Document... 3 1.2 Introduction to Version 8 of SAS... 3 Section 2: An Overview of SAS V.8 for Windows... 3 2.1 Navigating

### Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

### Point Biserial Correlation Tests

Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the product-moment correlation calculated between a continuous random variable