Dark Energy, Modified Gravity and The Accelerating Universe

Size: px
Start display at page:

Download "Dark Energy, Modified Gravity and The Accelerating Universe"

Transcription

1 Dark Energy, Modified Gravity and The Accelerating Universe Dragan Huterer Kavli Institute for Cosmological Physics University of Chicago

2 Makeup of universe today Dark Matter (suspected since 1930s established since 1970s) Baryonic Matter (stars 0.4%, gas 3.6%) 22% 4% Dark Energy (suspected since 1980s established since 1998) 74% Also: radiation (0.01%)

3 Some of the early history of the Universe is actually understood better! Physics quite well understood 95% of contents only phenomenologically described

4 DE status ~8 years after discovery m-m (mag) High-Z SN Search Team Supernova Cosmology Project =0.3, =0.7 =0.3, =0.0 =1.0, =0.0 Measurements much better, LCDM still a good fit Strong indirect (non-sna Ia) evidence for DE from CMB+LSS (m-m) (mag) Vacuum energy dominated Physical mechanism responsible completely unknown Matter dominated z Riess et al 1998; Perlmutter et al 1999 A lot of work on modified gravity proposals and observational signatures

5 Current constraints Ω DE 0.7

6 What if gravity deviates from GR? For example: H 2 F (H) = 8πG 3 ρ, or H2 = 8πG 3 ( ρ + 3F (H) 8πG ) Modified gravity Dark energy

7 Modified gravity proposals Introduce modifications to GR (typically near horizon scale) to explain the observed acceleration of the universe Make sure Solar System tests are passed (can be hard) Constrain the MG theory using the cosmological data Try to distinguish MG vs. standard DE (can be hard!)

8 Example: f(r) gravity S = 1 16πG d 4 x g [R + f(r)] Einstein equations are now 4th order Two classes frr<0 (never Matter Dominated, long range forces) frr>0 (MD in the past, can evade Solar system tests) Carroll, Duvvuri, Trodden, Turner 2005; Mena, Santiago & Weller 2006; Navarro & van Acoleyen 2006; Song, Hu & Sawicki 2006; many others...

9 Example: DGP braneworld theory 1 extra dimension ( bulk ) in which only gravity propagates matter lives on the brane weakening of gravity at large distances = appearance of DE Credit: Iggy Sawicki Dvali, Gabadadze & Porrati 2000; Deffayet 2001

10 The structure of DGP H 2 H r c = 8πG 3 ρ 5D GR 4D GR rc is a free parameter (to be consistent with observation, rc ~ 1/H0) 2GM=r g r * r c Scalar-Tensor New scale r = ( r g r 2 c ) 1/3 5D GR Dvali, Gabadadze & Porrati 2000; Deffayet 2001 Credit: Iggy Sawicki

11 DGP linear growth 1 Growth relative to EdS g(a) y DE Mimicking DGP expansion LCDM LCDM DGP DGP DGP 4D dark energy ax Scale factor Lue, Scoccimarro & Starkman; Koyama & Maartens; Sawicki, Song & Hu

12 ISW in DGP LCDM Phi DGP Song, Sawicki, & Hu 2007

13 So DGP is (almost) ruled out Disfavored at a few sigma from distances (SNe etc) Disfavored at a few more sigma from CMB ISW Decisive rule-out will come from ISW cross-correlation at high z: Song, Sawicki, & Hu 2007

14 Dark Energy or Modified Gravity? A given DE and modified gravity models may both fit the expansion history data very well But they will predict different structure formation history, i.e. deviation from δ + 2H δ 4πρM δ = 0

15 In standard GR, H(z) determines distances and growth of structure δ + 2H δ 4πρ M δ = 0 So check if this is true by measuring separately Distances (a.k.a. kinematic probes) (a.k.a. 0 th order cosmology) Growth (a.k.a. dynamical probes) (a.k.a. 1 st order cosmology)

16 Price of ignorance of MG allows for modified gravity 0.2 w a neglects modified gravity having!"= w 0 Huterer & Linder, astro-ph/

17

18 Cosmological Probes of Dark Energy (and Modified Gravity)

19 Kinematic probes: SNe Ia High-Z SN Search Team Supernova Cosmology Project m-m (mag) =0.3, =0.7 =0.3, =0.0 =1.0, =0.0 (m-m) (mag) Get pure (luminosity) distances z

20 Kinematic probes: CMB and BAO T = K δt T pt correlation Θ Distance to recombination Credit: WMAP team Sound horizon Bennett et al 2003 (WMAP collaboration)

21 Structure formation probes: Galaxy cluster counts d 2 N dω dz = n(z) r(z)2 H(z) dn/dz (4000 deg 2 ) w=-0.8! M =1,! DE =0! M =0.3,! DE =0.7, w=-1 Credit: Quinn, Barnes, Babul, Gibson z Essentially fully in the nonlinear regime (scales ~1 Mpc)

22 Structure formation probes: Weak Gravitational Lensing P shear 0 W (r)p matter (r)dr True, nonlinear l(l+1)p l! /(2") 10-6 Linear theory 10-8 Credit: Colombi & Mellier Multipole l Mostly in the nonlinear regime (scales ~10 arcmin, or ~1 Mpc)

23 More general approach Measure the DE parameters from distances and growth separately OmegaDE Omega_de w_1 0.2 wa w_0 w Ishak, Upadhye and Spergel 2006; others...

24 Still more general approach: measure functions r(z) and g(z) see if they are consistent Knox, Song & Tyson 2005

25 Minimalist Modified Gravity vs. DE Describe deviations from GR via a single new parameter g(a) δ a = exp [ a 0 ] d ln a[ω M (a) γ 1] Excellent fit to standard DE growth function with γ = [1 + w(z = 1)] Also fits the DGP braneworld theory with γ = 0.13 Huterer & Linder, astro-ph/ see also Linder & Cahn, astro-ph/

26 (dn/dz)!z "=0.55!"=0.1!w=0.05!m # =0.3 ev Cluster counts z Weak lensing tomography l(l+1) P! ii / (2") # = 0.55 # = {i,i}= l

27 Constraints on the growth index sig(w0) sig(wa) sig(gamma) WL SNE Planck Clusters Recall, for DGP γ = 0.13 Huterer & Linder, astro-ph/

28 Discarding the small-scale info in weak lensing (error or bias in!) / "!, fid Degradation factor in! error k cut (h / Mpc) Using the Nulling Tomography of weak lensing (Huterer & White 2005)

29 South Pole Telescope Planck Supernova/Acceleration Probe LSST

30 Conclusions distinguishing dark energy from modified gravity is becoming one of the key goals of cosmology in years to come assuming nonlinear clustering that follows the usual prescription even with MG, we find that future probes can achieve very interesting constraints on this parameter restriction to linear scales severely degrades the errors, but well worth pursuing ambitious, general approach: measure functions r(z) and g(z), check if they are consistent minimalistic approach: measure a single parameter that describes departures between DE and MG bright future with upcoming powerful surveys

31 Physically motivated MG parametrization ds 2 = a 2 (τ) [ (1 + 2ψ)dτ 2 + (1 2φ)d x 2] ψ = (1 + ϖ)φ and assume ϖ = ϖ 0 ρ DE ρ M [l(l+1)c l /2!] 1/2 (µk) LCDM!0.1! l: multipole moment Caldwell, Cooray & Melchiorri, astro-ph/

32 Physically motivated MG parametrization CMB-galaxy cross-correlation 10!3 Weak lensing power spectrum 10!4 LCDM 0.1!0.1 l(l+1)c l /2! 10!5 10! l Caldwell, Cooray & Melchiorri, astro-ph/

Gravity Testing and Interpreting Cosmological Measurement

Gravity Testing and Interpreting Cosmological Measurement Cosmological Scale Tests of Gravity Edmund Bertschinger MIT Department of Physics and Kavli Institute for Astrophysics and Space Research January 2011 References Caldwell & Kamionkowski 0903.0866 Silvestri

More information

Gravity is everywhere: Two new tests of gravity. Luca Amendola University of Heidelberg

Gravity is everywhere: Two new tests of gravity. Luca Amendola University of Heidelberg Gravity is everywhere: Two new tests of gravity Luca Amendola University of Heidelberg Gravity in polarization maps and in supernovae Gravity in polarization maps and in supernovae Why testing gravity?

More information

Structure formation in modified gravity models

Structure formation in modified gravity models Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general

More information

Modified Gravity and the CMB

Modified Gravity and the CMB Modified Gravity and the CMB Philippe Brax, IphT Saclay, France arxiv:1109.5862 PhB, A.C. Davis Work in progress PhB, ACD, B. Li Minneapolis October 2011 PLANCK will give us very precise information on

More information

DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY

DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY Sulona Kandhai University of Cape Town, South Africa Supervised by Prof. Peter Dunsby FIELD EQUATIONS OF F(R) GRAVITY Field equations are derived from the generalised

More information

3-rd lecture: Modified gravity and local gravity constraints

3-rd lecture: Modified gravity and local gravity constraints 3-rd lecture: Modified gravity and local gravity constraints Local gravity tests If we change gravity from General Relativity, there are constraints coming from local gravity tests. Solar system tests,

More information

Gravitation modifiée à grande distance & tests dans le système solaire 10 avril 2008

Gravitation modifiée à grande distance & tests dans le système solaire 10 avril 2008 Gravitation modifiée à grande distance et tests dans le système solaire Gilles Esposito-Farèse, GRεCO, IAP et Peter Wolf, LNE-SYRTE 10 avril 2008 Gravitation modifiée à grande distance & tests dans le

More information

Galaxy Survey data analysis using SDSS-III as an example

Galaxy Survey data analysis using SDSS-III as an example Galaxy Survey data analysis using SDSS-III as an example Will Percival (University of Portsmouth) showing work by the BOSS galaxy clustering working group" Cosmology from Spectroscopic Galaxy Surveys"

More information

OUTLINE The Hubble parameter After these lectures, you should be able to: Define the Hubble parameter H Sketch a(t) for k>0, k=0, k<0 assuming Λ=0 Def

OUTLINE The Hubble parameter After these lectures, you should be able to: Define the Hubble parameter H Sketch a(t) for k>0, k=0, k<0 assuming Λ=0 Def Observational cosmology: The Friedman equations 2 Filipe B. Abdalla Kathleen Lonsdale Building G.22 http://zuserver2.star.ucl.ac.uk/~hiranya/phas3136/phas3136 OUTLINE The Hubble parameter After these lectures,

More information

World of Particles Big Bang Thomas Gajdosik. Big Bang (model)

World of Particles Big Bang Thomas Gajdosik. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

The Search for Dark Matter, Einstein s Cosmology and MOND. David B. Cline

The Search for Dark Matter, Einstein s Cosmology and MOND. David B. Cline The Search for Dark Matter, Einstein s Cosmology and MOND David B. Cline Astrophysics Division, Department of Physics & Astronomy University of California, Los Angeles, CA 90095 USA [email protected]

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

By Adam G. Riess and Michael S. Turner

By Adam G. Riess and Michael S. Turner SPECIAL REPORT FROM SLOWDOWN to SPEEDUP By Adam G. Riess and Michael S. Turner Distant supernovae are revealing the crucial time when the expansion of the universe changed from decelerating to accelerating

More information

On a Flat Expanding Universe

On a Flat Expanding Universe Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191-197 HIKARI Ltd, www.m-hikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE-10044 Stockholm, Sweden

More information

Astronomy & Physics Resources for Middle & High School Teachers

Astronomy & Physics Resources for Middle & High School Teachers Astronomy & Physics Resources for Middle & High School Teachers Gillian Wilson http://www.faculty.ucr.edu/~gillianw/k12 A cosmologist is.... an astronomer who studies the formation and evolution of the

More information

Big Bang Cosmology. Big Bang vs. Steady State

Big Bang Cosmology. Big Bang vs. Steady State Big Bang vs. Steady State Big Bang Cosmology Perfect cosmological principle: universe is unchanging in space and time => Steady-State universe - Bondi, Hoyle, Gold. True? No! Hubble s Law => expansion

More information

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe

More information

The Location of the Missing Dark Matter A.G. Kelly.

The Location of the Missing Dark Matter A.G. Kelly. The Location of the Missing Dark Matter A.G. Kelly. Abstract. A source of most of the missing Dark Matter is proposed. If the formation of stars was at a time, and in a position, such that the light from

More information

From local to global relativity

From local to global relativity Physical Interpretations of Relativity Theory XI Imperial College, LONDON, 1-15 SEPTEMBER, 8 From local to global relativity Tuomo Suntola, Finland T. Suntola, PIRT XI, London, 1-15 September, 8 On board

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

Journal of Theoretics Journal Home Page

Journal of Theoretics Journal Home Page Journal of Theoretics Journal Home Page MASS BOOM VERSUS BIG BANG: THE ROLE OF PLANCK S CONSTANT by Antonio Alfonso-Faus E.U.I.T. Aeronáutica Plaza Cardenal Cisneros s/n 8040 Madrid, SPAIN e-mail: [email protected]

More information

Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014

Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014 Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014 Disclaimer We do not know what will be discovered. This is the reason we perform experiments. This is the reason scientific research

More information

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant H.M.Mok Radiation Health Unit, 3/F., Saiwanho Health Centre, Hong Kong SAR Govt, 8 Tai Hong St., Saiwanho, Hong

More information

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,

More information

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe The End of Physics Albert A. Michelson, at the dedication of Ryerson Physics Lab, U. of Chicago, 1894 The Miracle Year - 1905 Relativity Quantum

More information

Hubble Diagram S George Djorgovski. Encyclopedia of Astronomy & Astrophysics P. Murdin

Hubble Diagram S George Djorgovski. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2132 Hubble Diagram S George Djorgovski From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics Publishing

More information

Baryon Acoustic Oscillations: A standard ruler method for determining the expansion rate of the Universe. Martin White UC Berkeley/LBNL

Baryon Acoustic Oscillations: A standard ruler method for determining the expansion rate of the Universe. Martin White UC Berkeley/LBNL Baryon Acoustic Oscillations: A standard ruler method for determining the expansion rate of the Universe. Martin White UC Berkeley/LBNL Outline Dark energy and standard rulers. Cosmic sound: baryon acoustic

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

The Mainz LXe TPC MC simulations for a Compton scattering experiment

The Mainz LXe TPC MC simulations for a Compton scattering experiment The Mainz LXe TPC MC simulations for a Compton scattering experiment Pierre Sissol Johannes Gutenberg Universität Mainz 12 November 2012 1 / 24 Outline 1 Dark Matter 2 Principle of a dual-phase LXe TPC

More information

Topic 3. Evidence for the Big Bang

Topic 3. Evidence for the Big Bang Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question

More information

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture Betsy Barton Center for Cosmology University of California, Irvine Grateful acknowledgements to:

More information

Conformal Gravity. Patric Hölscher. Faculty of Physics, Bielefeld University [email protected]

Conformal Gravity. Patric Hölscher. Faculty of Physics, Bielefeld University patric.hoelscher@physik.uni-bielefeld.de Conformal Gravity Patric Hölscher Faculty of Physics, Bielefeld University [email protected] Master Thesis in Theoretical Physics September 215 Supervisor and Referee: Prof. Dr.

More information

Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31. Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova

Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31. Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31 Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova based on astro-ph/0703757 by M. Fornasa, M. Taoso and G.Bertone Journal

More information

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our 1 1 Introduction Cosmology is the study of the universe as a whole, its structure, its origin, and its evolution. Cosmology is soundly based on observations, mostly astronomical, and laws of physics. These

More information

Institut für Kern- und Teilchenphysik Neutrinos & Cosmology

Institut für Kern- und Teilchenphysik Neutrinos & Cosmology Neutrinos & Cosmology 1 Cosmology: WHY??? From laboratory experiment limits can be set ONLY in neutrino mass difference No information if neutrino masses are degenerated From kinematic experiment limits

More information

Cosmic Acceleration as an Optical Illusion

Cosmic Acceleration as an Optical Illusion Theoretische Physik TU Wien / Uni Bielefeld April 2016 / Bielefeld based on arxiv:1508.01510, PRD89 (2014) 043506 (arxiv:1310.1028), PRD90 (2014) 063523 (arxiv:1407.6602). Motivation and basics Motivation:

More information

ABSTRACT. We prove here that Newton s universal gravitation and. momentum conservation laws together reproduce Weinberg s relation.

ABSTRACT. We prove here that Newton s universal gravitation and. momentum conservation laws together reproduce Weinberg s relation. The Speed of Light and the Hubble parameter: The Mass-Boom Effect Antonio Alfonso-Faus E.U.I.T. Aeronáutica Plaza Cardenal Cisneros s/n 8040 Madrid, Spain ABSTRACT. We prove here that Newton s universal

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

BIANCHI TYPE-I COSMOLOGICAL MODELS WITH TIME DEPENDENT GRAVITATIONAL AND COSMOLOGICAL CONSTANTS: AN ALTERNATIVE APPROACH

BIANCHI TYPE-I COSMOLOGICAL MODELS WITH TIME DEPENDENT GRAVITATIONAL AND COSMOLOGICAL CONSTANTS: AN ALTERNATIVE APPROACH THEORETICAL PHYSICS BIANCHI TYPE-I COSMOLOGICAL MODELS WITH TIME DEPENDENT GRAVITATIONAL AND COSMOLOGICAL CONSTANTS: AN ALTERNATIVE APPROACH BIJAN SAHA 1,a, VICTOR RIKHVITSKY 1,b, ANIRUDH PRADHAN 2 1 Laboratory

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

Searching for Cosmic Strings in New Observational Windows

Searching for Cosmic Strings in New Observational Windows 1 / 62 in Searching for s in New Observational Windows Robert Brandenberger McGill University, Montreal, Canada; and Institute for Theoretical Studies, ETH Zuerich, Switzerland KITPC, Sept. 25 2015 2 /

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

Power-law Price-impact Models and Stock Pinning near Option Expiration Dates. Marco Avellaneda Gennady Kasyan Michael D. Lipkin

Power-law Price-impact Models and Stock Pinning near Option Expiration Dates. Marco Avellaneda Gennady Kasyan Michael D. Lipkin Power-law Price-impact Models and Stock Pinning near Option Expiration Dates Marco Avellaneda Gennady Kasyan Michael D. Lipkin PDE in Finance, Stockholm, August 7 Summary Empirical evidence of stock pinning

More information

Learning from Big Data in

Learning from Big Data in Learning from Big Data in Astronomy an overview Kirk Borne George Mason University School of Physics, Astronomy, & Computational Sciences http://spacs.gmu.edu/ From traditional astronomy 2 to Big Data

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

Chapter 20 The Big Bang

Chapter 20 The Big Bang Chapter 20 The Big Bang The Universe began life in a very hot, very dense state that we call the big bang. In this chapter we apply the Friedmann equations to the early Universe in an attempt to understand

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Are We Alone?! Exoplanet Characterization and Direct Imaging!

Are We Alone?! Exoplanet Characterization and Direct Imaging! From Cosmic Birth to Living Earths A Vision for Space Astronomy in the 2020s and Beyond Are We Alone?! Exoplanet Characterization and Direct Imaging! A Study Commissioned by the Associated Universities

More information

Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris

Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays Stefano Gabici APC, Paris The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single power law -> CR knee at few

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: [email protected] Abstract: There are many longstanding

More information

Description of the Dark Energy Survey for Astronomers

Description of the Dark Energy Survey for Astronomers Description of the Dark Energy Survey for Astronomers May 1, 2012 Abstract The Dark Energy Survey (DES) will use 525 nights on the CTIO Blanco 4-meter telescope with the new Dark Energy Camera built by

More information

Detailed Mass Map of CL 0024+1654 from Strong Lensing

Detailed Mass Map of CL 0024+1654 from Strong Lensing Detailed Mass Map of CL 0024+1654 from Strong Lensing Tyson, Kochanski, & Dell Antonio (1998) HST WFPC2 image of CL0024+1654 slides based on presentation by Yue Zhao Rutgers Physics 690 February 21, 2008

More information

Heating diagnostics with MHD waves

Heating diagnostics with MHD waves Heating diagnostics with MHD waves R. Erdélyi & Y. Taroyan [email protected] SP 2 RC, Department of Applied Mathematics, The University of Sheffield (UK) The solar corona 1860s coronium discovered

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

Deep space gravity tests in the solar system

Deep space gravity tests in the solar system Deep space gravity tests in the solar system Serge REYNAUD Laboratoire Kastler Brossel CNRS, ENS, UPMC (Paris) Discussions and collaborations with persons quoted below and several collaborations Deep Space

More information

Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

More information

Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

More information

On Dark Energy and Matter of the Expanding Universe

On Dark Energy and Matter of the Expanding Universe April, 29 PROGRESS IN PHYSICS Volume 2 On Dark Energy and Matter of the Expanding Universe Bo Lehnert Alfvén Laboratory, Royal Institute of Technology, S 144 Stockholm, Sweden E-mail: [email protected]

More information

Euclidean quantum gravity revisited

Euclidean quantum gravity revisited Institute for Gravitation and the Cosmos, Pennsylvania State University 15 June 2009 Eastern Gravity Meeting, Rochester Institute of Technology Based on: First-order action and Euclidean quantum gravity,

More information