Are We Alone?! Exoplanet Characterization and Direct Imaging!
|
|
|
- Linda Kennedy
- 10 years ago
- Views:
Transcription
1 From Cosmic Birth to Living Earths A Vision for Space Astronomy in the 2020s and Beyond Are We Alone?! Exoplanet Characterization and Direct Imaging! A Study Commissioned by the Associated Universities for Research in Astronomy The Beyond JWST Committee Co-Chairs: Sara Seager (MIT) Julianne Dalcanton (Washington) Presenter: Marc Postman (STScI)
2 Can we find another planet like Earth orbiting a nearby star? To find such a planet would complete the revolution, started by Copernicus nearly 500 years ago, that displaced the Earth as the center of the universe The observational challenge is great but armed with new technologies astronomers are poised to rise to it. - New Worlds, New Horizons (Astro 2010) 21st century astronomers are uniquely positioned to study the evolution of the Universe in order to relate causally the physical conditions during the Big Bang to the development of RNA and DNA. - Riccardo Giacconi This is a quest sought by all of humanity and the search will require international cooperation.
3 The path has been laid for characterizing Earth 2.0 Kepler Hubble Spitzer CoRoT Ground-based Coronagraphs Gaia WFIRST 30-m class telescopes TESS JWST PLATO What is a logical next step?
4 The High Definition Space Telescope (HDST) A space-based telescope at the Earth-Sun L2 point. Goal is for a 12 m effective aperture diameter. Motivated by exoplanet yield, high-res images of galaxies, cosmic gas flows, and high-definition stellar populations in many environments. A segmented, deployable mirror. Diffraction-limited performance at visible wavelengths Full complement of coronographic, imaging, and spectroscopic instruments. UV to near-ir wavelengths (non-cryogenic optics). Serviceability is a goal but not a requirement.
5 Exoplanet Discovery Space: Direct Imaging Venus and Earth look the same to all planet-finding techniques except those that enable planet atmosphere spectra: predominantly transits and direct imaging. Only direct imaging can reach and distinguish rocky planets around hundreds of sun-like stars via spectroscopic characterization of their atmospheres. Planet / Star Contrast! This is the region we need! Terrestrial to explore! Planets! From WFIRST SDT Interim Report (2014)! Angular Separation (arcsec)! Delta Magnitude (mag)! Transiting planets around bright stars are rare because of the low probability to transit. Transmission spectra of Earth analogs and the cross-correlation technique (Snellen et al.) might only work around the very brightest sun-like stars and, even then, would be extremely challenging.
6 How Many Planets Must We Search? Even Earth-like planets in their HZ may have a great diversity of atmospheric properties owing to differences in mass, solar irradiation, and complex history. Sub Neptune Planet Albedo Spectra Fig courtesy of Aki Roberge, data in part from Renyu Hu. We want to maximize our chances of detecting these biosignature gases on Earth-like planets. If biomarkers can be found on 10% of Earth-like planets, and we want to reduce the chance of randomly missing these systems to <1%, spectra of ~50 planets must be obtained. With N = 10, biosignatures must occur at 37% probability to have <1% chance of missing it. courtesy Aki Roberge" Searching hundreds of stars also insures against η Earth on low side of present estimates." To find signs of life, even if it is uncommon, we must search dozens of Earth-like planets orbiting in their habitable zones.
7 How Many Planets Can We Search? Obscurational and photometric completeness make direct exoplanet imaging more challenging than standard faint-object imaging and spectroscopy. In other words, planets are not always visible and may be too faint depending on the planet illlumination phase. Need to be How able to parameterize Many Planets: yield as a function the of aperture Yield and uncertain astrophysical parameters (particularly η Earth and exozodi brightness). Computer simulations of planetary systems around known stars can tell us how exoplanet yield scales with astrophysical and observatory parameters. Yield calculacons by Chris Stark (GSFC) arxiv:1409:1528
8 ExoEarth Yield Results (Stark et al.2014) Optimistic" η Earth = 0.2 IWA = 3λ/D n exozodis = 3 5 Pessimistic" η Earth = 0.05 IWA = 3λ/D N η Earth ( Zodis) 0.23 ( D ) 1.88 ( Tel IWA) 0.64 ( ExpTime) 0.36 ( QE) 0.39 ( Contrast) 0.09 The uncertainty in astrophysical constraints is primarily primarily η Earth and exozodi. There a surprisingly weak dependence of exoearth candidate yield on exozodi level. Yield scales linearly with η Earth.
9 ExoEarth Yield Results (Stark et al.2014) Optimistic" η Earth = 0.2 IWA = 3λ/D n exozodis = 3 5 Pessimistic" η Earth = 0.05 IWA = 3λ/D N η Earth ( Zodis) 0.23 ( D ) 1.88 ( Tel IWA) 0.64 ( ExpTime) 0.36 ( QE) 0.39 ( Contrast) 0.09 A 12-meter telescope can reach Earth-like planets: this is enough to detect or significantly constrain the incidence of biomarker molecules.
10 Other Advantages: Detecting Diurnal Photometric Variability in Exoplanets Ford et al. 2003: Model of broadband photometric temporal variability of Earth 0.09 Earth at 10 pc Reflectivity m 8-m 4-meter Earth at 20 pc ~9 days 12-m 8-meter 4-meter Time (days) Require S/N ~ 20 (5% photometry) to detect ~20% temporal variations in reflectivity. Reconstruction of Earth s land-sea ratio from disk-averaged time-resolved imaging with the EPOXI mission.
11 R=500 Spectrum of 1 Earth-mass Terrestrial Exoplanet at 10 pc 760 nm H 2 O H 2 O H 2 O H 2 O O 2 (α) O 2 (B) H 2 O O 2 (A) H 2 O 12 m: ~900 ksec O 2 (A) 750 nm We don t expect all potentially habitable worlds to have spectra like this but interpreting their spectra will likely require this kind of instrumental capability.
12 Good Statistics Provide the Answer to: Are We Alone? While we can already estimate the probability of Earth-like worlds orbiting other stars, we do not know how often life occurs on those planets. This is what we are trying to determine! The incidence of life and its biomarker molecules may be small: 10% or even 1% on otherwise Earth-like planets in their HZ. If so, a small sample of planets (~10 or less) is very likely to fail to answer our most important question. Only by surveying dozens of worlds do we make the chance of detecting life s signature a good one, even if it is uncommon. An HDST-like telescope will be able to detect dozens of Earth-like planets orbiting in their habitable zones and systematically search for biosignature gases to address Are We Alone? with a robust statistical sample.
Adaptive Optics (AO) TMT Partner Institutions Collaborating Institution Acknowledgements
THIRTY METER TELESCOPE The past century of astronomy research has yielded remarkable insights into the nature and origin of the Universe. This scientific advancement has been fueled by progressively larger
TRANSITING EXOPLANETS
TRANSITING EXOPLANETS Introduction 11 Chapter 1 Our Solar System from afar 13 Introduction 13 1.1 Direct imaging 20 1.1.1 Coronagraphy 24 1.1.2 Angular difference imaging 25 1.2 Astrometry 26 1.3 Radial
Towards the Detection and Characterization of Smaller Transiting Planets
Towards the Detection and Characterization of Smaller Transiting Planets David W. Latham 27 July 2007 Kepler MISSION CONCEPT Kepler Mission is optimized for finding habitable planets ( 10 to 0.5 M )
Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.
Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?
A short history of telescopes and astronomy: Galileo to the TMT
A short history of telescopes and astronomy: Galileo to the TMT Telescopes in the last 400 years Galileo 1608 Hans Lippershey applied for a patent for seeing things far away as if they were nearby 1609
Detecting and measuring faint point sources with a CCD
Detecting and measuring faint point sources with a CCD Herbert Raab a,b a Astronomical ociety of Linz, ternwarteweg 5, A-400 Linz, Austria b Herbert Raab, chönbergstr. 3/1, A-400 Linz, Austria; [email protected]
Top 10 Discoveries by ESO Telescopes
Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical
Exploring the Universe Through the Hubble Space Telescope
Exploring the Universe Through the Hubble Space Telescope WEEK FIVE: THE HUBBLE DEEP FIELD + LIMITATIONS OF HUBBLE, COLLABORATIONS, AND THE FUTURE OF ASTRONOMY Date: October 14, 2013 Instructor: Robert
ASTR 405: Exoplanetary Science. Stephen Kane
ASTR 405: Exoplanetary Science Stephen Kane Transiting planets discovered via radial velocity HD 209458 b HD 149026 b HD 189733 b GJ 436 b 55 Cancri e GJ 3470 b HD 17156 b (P = 21 days) HD 80606 b (P =
Spectrophotometry of Ap Stars
Spectrophotometry of Ap Stars ASTRA Status Report Barry Smalley Astrophysics Group Keele University Staffordshire United Kingdom [email protected] What is Spectrophotometry? Spectroscopy through a wide
NASA's Postdoctoral Fellowship Programs
NASA's Postdoctoral Fellowship Programs Einstein Fellowships Dr. Charles A. Beichman & Dr. Dawn M. Gelino NASA Exoplanet Science Institute Dr. Ron Allen Space Telescope Science Institute Dr. Andrea Prestwich
Undergraduate Studies Department of Astronomy
WIYN 3.5-meter Telescope at Kitt Peak near Tucson, AZ Undergraduate Studies Department of Astronomy January 2014 Astronomy at Indiana University General Information The Astronomy Department at Indiana
Einstein Rings: Nature s Gravitational Lenses
National Aeronautics and Space Administration Einstein Rings: Nature s Gravitational Lenses Leonidas Moustakas and Adam Bolton Taken from: Hubble 2006 Science Year in Review The full contents of this book
The orbit of Halley s Comet
The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What
Astro 301/ Fall 2005 (48310) Introduction to Astronomy
Astro 301/ Fall 2005 (48310) Introduction to Astronomy Instructor: Professor Shardha Jogee TAs: David Fisher, Donghui Jeong, and Miranda Nordhaus Lecture 22 = Tu Nov 15 Lecture 23 = Th Nov 17 http://www.as.utexas.edu/~sj/a301-fa05/
California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping
California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,
1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"
Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was
Class 2 Solar System Characteristics Formation Exosolar Planets
Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System
Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)
Scale of the Solar System Scale of the Universe How big is Earth compared to our solar system? How far away are the stars? How big is the Milky Way Galaxy? How big is the Universe? How do our lifetimes
Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room
Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room What is the difference between dark ENERGY and dark MATTER? Is Earth unique,
Observing the Universe
Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass
Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley
Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals
1 A Solar System Is Born
CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system
Supplementary Material
Supplementary Material Contents 1. Alternative designations, celestial coordinates and apparent magnitudes 2. Stellar properties 3. Data preparation and transit modeling 4. Kepler data validation 5. Follow
The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture
The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture Betsy Barton Center for Cosmology University of California, Irvine Grateful acknowledgements to:
The Search for Extrasolar Earth-like Planets S. Seager
1 Earth and Planetary Science Letters 208,113-124 (2003) The Search for Extrasolar Earth-like Planets S. Seager Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC,
PLATO: PLAnetary Transits and Oscillations of stars
Home Search Collections Journals About Contact us My IOPscience PLATO: PLAnetary Transits and Oscillations of stars This content has been downloaded from IOPscience. Please scroll down to see the full
Science Standard 4 Earth in Space Grade Level Expectations
Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal
Pianeti extrasolari, un opportunità di Education and Public Outreach
Pianeti extrasolari, un opportunità di Education and Public Outreach Antonio Maggio Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Why so an interesting topic Fundamental question
Astronomy & Physics Resources for Middle & High School Teachers
Astronomy & Physics Resources for Middle & High School Teachers Gillian Wilson http://www.faculty.ucr.edu/~gillianw/k12 A cosmologist is.... an astronomer who studies the formation and evolution of the
MAST: The Mikulski Archive for Space Telescopes
MAST: The Mikulski Archive for Space Telescopes Richard L. White Space Telescope Science Institute 2015 April 1, NRC Space Science Week/CBPSS A model for open access The NASA astrophysics data archives
Light Telescopes. Grade Level: 5. 2-3 class periods (more if in-depth research occurs)
Light Telescopes Grade Level: 5 Time Required: Suggested TEKS: Science - 5.4 Suggested SCANS Information. Acquires and evaluates information. National Science and Math Standards Science as Inquiry, Earth
Lecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
Solar Ast ro p h y s ics
Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3
Kepler Data and Tools. Kepler Science Conference II November 5, 2013
Kepler Data and Tools Kepler Science Conference II November 5, 2013 Agenda Current and legacy data products (S. Thompson) Kepler Science Center tools (M. Still) MAST Kepler Archive (S. Fleming) NASA Exoplanet
Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics
Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro
Asteroid Compositions: Spectra S. K. Croft
Asteroid Compositions: Spectra S. K. Croft Activity Description In this activity, you will estimate the surface composition of selected asteroids by comparing their reflectance spectra with the spectra
The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.
Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:
What is the Sloan Digital Sky Survey?
What is the Sloan Digital Sky Survey? Simply put, the Sloan Digital Sky Survey is the most ambitious astronomical survey ever undertaken. The survey will map one-quarter of the entire sky in detail, determining
Direct Imaging of Exoplanets
Direct Imaging of Exoplanets Wesley A. Traub Jet Propulsion Laboratory, California Institute of Technology Ben R. Oppenheimer American Museum of Natural History A direct image of an exoplanet system is
Some Basic Principles from Astronomy
Some Basic Principles from Astronomy The Big Question One of the most difficult things in every physics class you will ever take is putting what you are learning in context what is this good for? how do
This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00
Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June
Architecture Frameworks in System Design: Motivation, Theory, and Implementation
Architecture Frameworks in System Design: Motivation, Theory, and Implementation Matthew Richards Research Assistant, SEARI Daniel Hastings Professor, Engineering Systems Division Professor, Dept. of Aeronautics
Discover the Universe AST-1002 Section 0427, Spring 2016
Discover the Universe AST-1002 Section 0427, Spring 2016 Instructor: Dr. Francisco Reyes Office: Room 12 Bryant Space Science Center Telephone: 352-294-1885 Email: [email protected] Office hours: Monday
- the. or may. scales on. Butterfly wing. magnified about 75 times.
Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only
The Expanding Universe
Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the
Swarthmore College Newsletter
93 Fog, clouds, and light pollution limit the effectiveness of even the biggest optical telescopes on Earth. Astronomers who study ultraviolet or X-ray emission of stars have been more limited because
Pluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 14-5)
14b. Pluto, Kuiper Belt & Oort Cloud Pluto Pluto s moons The Kuiper Belt Resonant Kuiper Belt objects Classical Kuiper Belt objects Pluto Data: Numbers Diameter: 2,290.km 0.18. Earth Mass: 1.0. 10 22 kg
The Milky Way Galaxy is Heading for a Major Cosmic Collision
The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing
Using Photometric Data to Derive an HR Diagram for a Star Cluster
Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and
Galaxy Survey data analysis using SDSS-III as an example
Galaxy Survey data analysis using SDSS-III as an example Will Percival (University of Portsmouth) showing work by the BOSS galaxy clustering working group" Cosmology from Spectroscopic Galaxy Surveys"
The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10
Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?
Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE
Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question
J-PAS: low-resolution (R 50) spectroscopy over 8000 deg 2
J-PAS: low-resolution (R 50) spectroscopy over 8000 deg 2 C. López-Sanjuan J. Cenarro, L. A. Díaz-García, J. Varela, K. Viironen, & the J-PAS team Centro de Estudio de Física del Cosmos de Aragón 10th
Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points.
HOMEWORK #1 Solar System Exploration Due Tuesday, January 27th IN CLASS Answers to the questions must be given in complete sentences (except where indicated), using correct grammar and spelling. Please
Chapter 25.1: Models of our Solar System
Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets
Activity: Multiwavelength Bingo
ctivity: Multiwavelength background: lmost everything that we know about distant objects in the Universe comes from studying the light that is emitted or reflected by them. The entire range of energies
The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:
Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section
Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations.
Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations. E. Pallé 1, Eric B. Ford 2, S. Seager 3, P. Montañés-Rodríguez 1, M. Vazquez
Pathway Toward a Mid-Infrared Interferometer for the Direct Characterization of Exoplanets.
White Paper submitted to the US Decadal Survey Astro2010 (Planetary Systems and Star Formation Panel) Pathway Toward a Mid-Infrared Interferometer for the Direct Characterization of Exoplanets. Jean Schneider
How To Set Up A Rov-Dfd (Rov Zero Point) Du)
DU640 Radial Velocity Zero-Point Software Requirement Specifications prepared by: approved by: reference: issue: 4 revision: 1 date: 28-03-2008 status: Issued G. Jasniewicz, F. Crifo, D. Hestroffer, A.
Science@ESA vodcast series. Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia
Science@ESA vodcast series Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia Available to download from http://sci.esa.int/gaia/vodcast Hello, I m Rebecca Barnes and welcome to the Science@ESA
Astronomy Club of Asheville October 2015 Sky Events
October 2015 Sky Events The Planets this Month - page 2 Planet Highlights - page 10 Moon Phases - page 13 Orionid Meteor Shower Peaks Oct. 22 nd - page 14 Observe the Zodiacal Light - page 15 2 Bright
englishforeveryone.org Name Date
englishforeveryone.org Name Date Advanced Critical Reading - Hubble 5 10 15 20 25 30 35 40 The 32,000 word novella The Time Machine by H.G. Wells, published in 1895, is generally credited with popularizing
High Resolution Imaging in the Visible from the Ground without Adaptive Optics: New Techniques and Results
High Resolution Imaging in the Visible from the Ground without Adaptive Optics: New Techniques and Results Craig Mackay *a, John Baldwin b, Nicholas Law a and Peter Warner b a Institute of Astronomy and
Is There Life Out There?
Is There Life Out There? The Search for Habitable Exoplanets Sara Seager To my sister Julia, for our childhood together Copyright 2009 by Sara Seager All rights reserved. No portion of this publication
Extra-solar massive planets with small semi-major axes?
Monografías de la Real Academia de Ciencias de Zaragoza. 25: 115 120, (2004). Extra-solar massive planets with small semi-major axes? S. Fernández, D. Giuliodori and M. A. Nicotra Observatorio Astronómico.
