Authentication and Secure Communication in GSM, GPRS, and UMTS Using Asymmetric Cryptography
|
|
|
- Penelope Adelia Harmon
- 10 years ago
- Views:
Transcription
1 ISSN (Online): ISSN (Print): Authentication and Secure Communication in GSM, GPRS, and UMTS Using Asymmetric Cryptography Wilayat Khan 1 and Habib Ullah 2 1 Department of Electrical Engineering, COMSATS Institute of IT, Wah Cantt, 47040, Pakistan 2 Department of Electrical Engineering, COMSATS Institute of IT, Wah Cantt, 47040, Pakistan Abstract With its great features like providing access to users at anytime and anywhere in the world, mobile communication has been very attractive among the users as well as operators and service providers. However, despite of several advantages, mobile communication has also been facing many security problems. In 2G and 3G technologies like GSM, GPRS and UMTS, the architectures comprise of mainly three nodes; the mobile station (MS), Visitor Location Register/Serving GPRS Support Node (VLR/SGSN), and Home Location Register /Authentication Center (HLR/AuC). These nodes are involved to encrypt/decrypt the data and authenticate the user (MS) in GSM, GPRS and UMTS. To provide security services like authentication and secure communication, the mechanism has been moved from symmetric cryptography to, despite of its complexity, asymmetric cryptography. To reduce the signaling overhead and add some other security features, we propose a new generalized approach in this paper. This is based on asymmetric cryptography for user/network authentication and communication encryption in GSM/GPRS and UMTS with reduced signaling overhead. Keywords: GSM, GPRS, UMTS, Authentication, Security, Asymmetric Key Cryptography. 1. Introduction Wireless and mobile communication systems are very famous among the customers as well the operators and service providers. Unlike wired networks, the wireless networks provide anywhere and anytime access to users. The Global System for Mobile Communications (GSM) occupy almost 70% of the wireless market and is used by millions of subscribers in the world [1]. In the wireless services, secure and secret communication is desirable. It is the interest of both, the customers and the service providers. These parties would never want their resources and services to be used by unauthorized users. The services like online banking, e-payment, and e/mcommerce are already using the Internet. The financial institutions like banks and other organizations would like their customers to use online services through mobile devices keeping the wireless transaction as secure as possible from the security threats. Smart cards (e.g. SIM card) have been proposed for applications like secure access to services in GSM to authenticate users and secure payment in Visa and MasterCard [2]. Wireless transactions are facing several security challenges. Wireless data passing through air interface face almost the same security threats as the wired data. However, the limited wireless bandwidth, battery, computational power and memory of wireless devices add further limitations to the security mechanisms implementation [3]. The use of mobile communication in e/m-commerce has increased the importance of security. An efficient wireless communication infrastructure is required in every organization for secure voice/data communication and users authentication. Among the main objectives of an efficient infrastructure is to reduce the signaling overhead and reduce the number of updating Home Location Register/Authentication Center (HLR/AuC) while the Mobile Station (MS) changes its location frequently [3]. In this paper, we propose an approach based on public key cryptography which mainly focuses on user and network authentication with reduced signaling overhead and meet other security requirements like non-repudiations, safety from denial-of-service attacks and integrity of authentication signaling messages.
2 11 The rest of the paper is organized as follows. Section 2 gives a brief overview of GSM systems architecture and section 3 discusses authentication protocol used in GSM/GPRS. Section 4 describes authentication and communication encryption in UTMS. Some related work is discussed in section 5. In section 6, we propose a new approach for user and network authentication and communication encryption. Finally, after short discussion, a conclusion is drawn. 2. GSM Overview GSM, the Group Special Mobile, was a group formed by European Conference of Post and Telecommunication Administrations (CEPT) in 1982 to develop cellular systems for the replacement of already incompatible cellular systems in Europe. Later in 1991, when the GSM started services, its meaning was changed to Global System for Mobile Communications (GSM) [1]. 3. Authentication and Ciphering in GSM and GPRS There are various security threats to networks [6]. Among these threats are Masquerading or ID Spoofing where the attacker presents himself as to be an authorized one, unauthorized use of resources, unauthorized disclosure and flow of information, unauthorized alteration of resources and information, repudiation of actions, and denial-of-service. The GSM network incorporates certain security services for operators as well as for their subscribers. It verifies subscribers identity, keeps it secret, keeps data and signaling messages confidential and identifies the mobile equipments through their International Mobile Equipment Identity (IMEI). In the next subsections, we explain subscribers authentication and data confidentiality as they are closely related to our topic [5]. The entire architecture of the GSM is divided into three subsystems: Mobile Station (MS), Base Station Subsystem (BSS) and Network Subsystem (NSS) as shown in Figure 1. The MS consists of Mobile Equipment (ME) (e.g. mobile phone) and Subscriber Identity Module (SIM) which stores secret information like International Mobile Subscriber Identity Module (IMSI), secret key (Ki) for authentication and other user related information (e.g. certificates). The BSS, the radio network, controls the radio link and provides a radio interface for the rest of the network. It consists of two types of nodes: Base Station Controller (BSC) and Base Station (BS). The BS covers a specific geographical area (hexagon) which is called a cell. Each cell comprises of many mobile stations. A BSC controls several base stations by managing their radio resources. The BSC is connected to Mobile services Switching Center (MSC) in the third part of the network NSS also called the Core Network (CN). In addition to MSC, the NSS consists of several other databases like Visitor Location Register (VLR), HLR and Gateway MSC (GMSC) which connects the GSM network to Public Switched Telephone Network (PSTN). The MSC, in cooperation with HLR and VLR, provides numerous functions including registration, authentication, location updating, handovers and call routing. The HLR holds administrative information of subscribers registered in the GSM network with its current location. Similarly, the VLR contains only the needed administrative information of subscribers currently located/moved to its area. The Equipment Identity Register (EIR) and AuC contains list of valid mobile equipments and subscribers authentication information respectively [1, 5]. Figure 1. Components overview of GSM
3 Subscribers Identity Authentication As mentioned above, the SIM card holds IMSI, phone number, authentication key Ki, subscriber-relevant data and security algorithms like authentication algorithm (A3). The HLR also stores a copy of Ki and IMSI etc. In GSM, the users are first identified and authenticated then the services are granted. The GSM authentication protocol consists of a challenge-response mechanism. The authentication is based on a secret key Ki which is shared between HLR and MS. After a visited MS gets a free channel by requesting BS, it makes a request for its location update to MSC through BSC. The MSC, in response, asks MS for its authentication. In the entire authentication process, the three main actors are the MS, MSC/VLR and HLR/AuC as given in Figure 2. The mobile station sends its Temporary Mobile Subscriber Identity (TMSI) to VLR in its request for authentication. The MS uses its real identity IMSI when it is switched on for the first time but the temporary identity TMSI is used later. The TMSI is used to provide anonymity to the user identity. After getting the IMSI of the mobile station from the old VLR using TMSI, the VLR sends IMSI to the corresponding HLR/AuC. The HLR/AuC uses authentication algorithm (A3) and ciphering key generation algorithm (A8) to create the encryption key (Kc) and Signed RESult (SRES) respectively. The HLR sends the triplet including Kc, RAND and SRES to VLR. The VLR sends the RAND challenge to MS and ask to generate an SRES and send it back. The mobile station creates an encryption key Kc and SRES using algorithms A3 and A8 with the inputs secret key Ki and RAND challenge. It stores Kc to use it for encryption and sends SRES back to the VLR. The VLR compares SRES with the one sent by HLR. If they match, the authentication succeeds otherwise it fails [1, 4, 5]. 3.2 User Data and Signaling Protection The encryption key Kc is used by both of the parties (home system and mobile station) to encrypt the data and signaling information using A5 algorithm. The encryption is done by mobile equipment not the SIM because SIM does not have enough power and processing capacity [1, 4, 5]. 4. Authentication and Ciphering in UMTS The UMTS, in fact, is the result of evolution in GSM network through GPRS. The GSM networks are capable of voice communication using Circuit Switched (CS) technique while GPRS adds Packet Switched (PS) technique through the use of some extra nodes like Serving GPRS Support Node (SGSN) and Gateway GPRS Support Node (GGSN). The UMTS, incorporating GPRS nodes and UMTS Terrestrial Radio Access Network (UTRAN), provides both circuit switched and packet switched services with enhanced multimedia applications. As stated in 3GPP specification [7], the circuit switched services are provided by VLR and the packet switched services are provided by SGSN. The UMTS, like GSM/GPRS, uses the concept of Authentication Vector (AV) but unlike GSM/GPRS, the AV comprises of five components: the random challenge (RAND), the expected response (XRES), key for encryption (CK), integrity key (IK) and the authentication token (AUTN). The VLR/SGSN requests HLR/AuC for authentication. The HLR/AuC computes the AV and is sent back as a response to VLR/SGSN without any encryption applied to it. After the authentication is completed, the cipher key CK is used to encrypt the user data and signaling information. Similarly, to preserve the integrity of the important control signals, integrity key (IK) is used. Figure 2. The GSM authentication architecture The GSM Consortium actually provided security to GSM systems relying on security through obscurity where they believed that the algorithms used in GSM would be very hard to break if they were kept secret. Therefore, the GSM specifications and protocols were kept secret away from public to be studied and analyzed by scientific community.
4 13 But, eventually, the GSM algorithms were accessed by scientific community and now GSM is vulnerable to many attacks [6, 7, 10]. In GSM/GPRS and UMTS, the links between MS-VLR and VLR-HLR faces many security threats due the use of conventional symmetric key encryption and mutual trust of the parties. The VLR and HLR just rely on mutual trust they have on each other. To implement public key cryptography, a well defined network infrastructure is needed. The Public Land Mobile Network (PLMN) operators are the main candidates for this to develop PKI in their systems. The 3G networks like UMTS which offers services with very high data rates is the most favorable for the operators to incorporate PKI services to their customers. To verify the authenticity of public keys, there should be a trusted third party, the Certification Authority (CA), to issue digital certificates to the users. These certificates are to be stored in the SIM/USIM of the mobile station. The Mobile Execution Environment (MExE) is an application execution environment which allows application programming and creating a Java Virtual Machine (JVM) in the MS. Based on the importance of secure transactions and the fact that networks operators are the big candidates for PKI implementation, it seems feasible to use public-private key pair for intra-plmn signaling as well as for secure e/mtransaction. A new approach, with the introduction of asymmetric key cryptography, has been adopted in [8]. 5. Related Work Asymmetric key approach supported by MExE is another reason to be favorable for operators to deploy Public Key Infrastructure (PKI) in their systems. The asymmetric key cryptography for authentication and encryption, as mentioned in [8], is described below. 5.1 Asymmetric Cryptography in GSM/GPRS and UMTS As in GSM/GPRS, we consider the same three nodes: MS, VLR and HLR/AuC. These nodes preserve the same roles for all the three systems: GSM, GPRS and UMTS, involved in the process of authentication and encryption. The nodes VLR and HLR hold the same pair of publicprivate keys, V_H PrK and V_H PuK, which facilitates the key distribution process because other interconnected networks would need only one public key for corresponding VLR-HLR transactions. A second option could be to use separate public-private key pairs but it will further complicate the key distribution process. The link between VLR and HLR is secured using the VLR-HLR public key (V_H PuK ). The messages are encoded with this key by any of the endpoints. At the receiving end, the corresponding private key V_H PrK is used for decryption. After the channels are assigned, the users are authenticated through the exchange of messages among the nodes: MS, VLR and HLR as shown in Figure 3. The MS (SIM on mobile station) sends an Identity Message to VLR which includes the identity data (e.g. IMSI of the user) encrypted with MS-VLR s public key (MS_V PuK ). The VLR decodes it using corresponding private key (MS_V PrK ) and extracts the required information. The VLR encrypts it again with VLR-HLR link public key (V_H PuK ) and forwards it to the corresponding HLR in Authentication Information message. After it is decoded using VLR-HLR link private key (V_H PrK ), the HLR sends the user s public key (MS PuK ) back to the VLR in an Authentication Acknowledgment message. The VLR sends a random challenge RAND to the MS encrypted with the user s public key (MS PuK ) in Authentication Request message. The MS decodes the random number, encrypts it with its own private key and sends it back along with SK and IK to VLR in Authentication Response message. The VLR decrypts this message using the user s public key and checks if the random number is the same. If it is equal to the random number held by VLR, it will indicate the user authenticity as it has been signed by the user with his own private key. Public key cryptography is computationally extensive. Therefore, it slows down the data rate. It can be better utilized when it is used for secret keys transmission. The SIM on the MS creates secret key (SK) and in case of Identity Message E MS_VPuK (IMSI) Auth. Request MS PuK (RAND) Auth. Response MS PrK (RAND E MS_VPuK (SK IK)) Auth. Information E V_HPuK (IMSI) Auth. Acknowledge MS PuK Figure 3. Authentication process using public key cryptography
5 14 UMTS an integrity key (IK) for the integrity of signaling messages. These two keys are concatenated, encrypted with VLR s public key (MS_V PuK ) and are sent to the VLR in the Authentication Response message. After the authentication is successful, the data and signaling information are encrypted with the keys SK and IK to preserve the confidentiality and integrity of both the data and signals. The public key cryptographic approach discussed in the above paragraphs is an obvious way of authentication and securing the communication especially when it is used in financial transactions like e/m-commerce. In this approach, five messages are exchanged to authenticate the user and to share the keys which brings signaling overhead. In this approach, the user (MS) is authenticated by the network before giving the service but it does not authenticate the network. One can rely only on the fact that both, the MS and the HLR, have the same secret key Ki. This can be considered a weak network authentication, but it will fail if the key Ki is stolen or accessed by a third party. The denial-of-service attack is possible if the attacker changes the authentication signaling (signal integrity). In the next section, we propose a general solution with reduced signaling for all the three systems GSM, GPRS and UMTS to reduce the drawbacks discussed above. V_H PrK : VLR-HLR link s private key V_H PuK : VLR-HLR link s public key M_V PrK : MS-VLR link s private key M_V PuK : MS-VLR link s public key H PrK : H PuK : M PrK : M PuK : MS VLR HLR Identity Message HLR private key HLR public key Forward Auth. Acknowledge Mobile station s private key Mobile station s public key Figure 4(a). Set of public keys used Auth. Information Auth. Acknowledge 6. Authentication and Encryption in GSM, GPRS and UMTS Using Public Key Cryptography Due to slow data rates, the public key encryption offers, it is not encouraged to be used for communication encryption. Instead, it is preferred for authentication and secret key distribution to be used in symmetric key encryption of the communication. To encrypt the data and signaling, special secret and integrity keys like SK and IK may be used respectively for communication encryption and signaling integrity. In this section, we present a solution based on public key cryptography. This relies on the same concept of publicprivate keys as mentioned in the section 5. The three main entities, MS, VLR and HLR, are using four pairs of public-private keys as shown in Figure 4(a). These three entities exchange four messages with each other as shown in Figure 4(b). The detail of the elements in each of these messages is Identity Message = E M_VPuK (IK SK RAND) E HPuK (IMSI Ki) Authentication Information = E HPuK (IMS Ki) Figure 4(b). Authentication process using public key cryptography Authentication Acknowledge = M PuK Forward Authentication Acknowledge = E MPuK (RAND) The symbol represents the concatenation of two elements. The MS creates secret keys SK, IK and a random challenge RAND. It starts the authentication exchange by sending an Identity Message to the visited VLR. This message includes concatenation of RAND, SK and IK encrypted with public key M_V PuK. The IMSI and Ki encrypted with public key H PuK is also part of the Identity Message as shown in Figure 4(b). Unlike the approach in [8], the secret keys SK and IK are sent in the first message. The VLR uses the corresponding private key M_V PrK to decode the part of the message and extract the needed information RAND, SK and IK. The VLR forwards the rest of message (E HPuK (IMS Ki)) unchanged in Authentication Information message to the HLR. The keys
6 15 SK and IK are used later for confidentiality and integrity of both the data and signals respectively. The HLR decodes the Authentication Information message with its private key H PrK and gets the IMSI and Ki sent from MS. The secret key Ki is used as a random challenge for user/ms authentication. The MS and the HLR have the same secret key Ki. The HLR compares the received Ki with its own Ki. If they match, the user is authenticated. It is difficult for a third party to change this secret without being detected by HLR. The HLR can easily detect it using IMSI of the requesting user sent in the Identity Message. Using the IMSI, the HLR finds the corresponding user s public key M PuK and is sent to VLR in the Authentication Acknowledge message. This message acts as an indication to the VLR that the user has been authenticated by the HLR. The VLR uses the public key M PuK to encrypt the RAND challenge received from MS in the Identity Message. The MS decrypts it with its own private key. The result is compared with the RAND stored at MS. If they are equal, the VLR is authenticated as it ensures the MS that the VLR is the only entity having the MS-VLR link s private key M_V PrK. This approach includes all the benefits of the previous systems. It keeps the user s identity secret, the encryption keys are distributed, users and network both are authenticated. This entire process requires four signaling messages reducing the signaling overhead. An attack denial-of-service may be possible if the attacker changes the signaling contents based on which the user and network authenticates each other. For example, if the encrypted content of RAND challenge is modified or if IMSI or Ki is changed during transmission, the network and user authentication will fail even if the user and network are legitimate. To cope with this problem, Digital Signature [9] can be used. The end-to-end integrity of the authentication parameters should be ensured because the end entities, the VLR/HLR and the MS, make the decision of authentication. Therefore, to ensure the integrity of message contents at the ends, hashing (H) function combined with encryption may also be used. For example the elements IMSI and KI may be hashed using the secret key Ki and the resulted message digest is sent in the Identity Message. This will ensure the HLR that the parameters IMSI and Ki have not been altered during transmission. 7. Conclusions Wireless communication, having great features, is attractive among users as well service providers. With the increase in its use, security problems of confidentiality, integrity, and authentication are also increasing. The mechanism to solve these problems has changed to public key cryptography from symmetric key cryptography. The available public key cryptographic approaches are good in security point of view but they are computationally extensive as well as have more signaling overhead. Furthermore, these approaches do not provide integrity of the initial authentication messages and authentication of the network. In this paper, we proposed an enhanced model based on the public key cryptography. In this model, utilizing the real benefits of public key encryption, user as well as network authentication is provided. The integrity of the signaling used during the user and network authentication is ensured. The secret keys for data encryption and signaling integrity are distributed using public keys. These benefits are achieved with fewer signals reducing the signaling overhead. As noted before, although, public key cryptography is computationally very extensive which requires large processing power, battery, and memory, but still the approach we proposed is efficient to use than the others. The rapid developments in Integrated Circuits (IC) and Smart Cards (e.g. SIM) technologies, high speed communication systems (e.g. UMTS), and significance of secure transactions (e.g. e/m-commerce) make the conditions more favorable to use public key cryptography. References [1] Yong Li, Yin Chen, and Tie-Jun MA, Security in GSM, Retrieved March 18, 2008, from [2] N. T. Trask and M. V. Meyerstein, Smart Cards in Electronic Commerce, A SpringerLink journal on BT Technology, Vol. 17, No. 3, 2004, pp [3] N T Trask and S A Jaweed, Adapting Public Key Infrastructures to the Mobile Environment, A SpringerLink journal on BT Technology, Vol. 19, No. 3, 2004, pp [4] Cheng-Chi Lee, Min-Shiang Hwang, and I-En Liao, A New Authentication Protocol Based on Pointer Forwarding for Mobile Communications, A Wiley InterScience journal on Wireless Communications and Mobile Computing, Published online, [5] Vesna Hassler and Pedrick Moore, Security Fundamentals for E-Commerce, Artech House London Inc., 2001, pp [6] Mohammad Ghulam Rahman and Hideki Imai, Security in Wireless Communication, A SpringerLink journal on
7 16 Wireless Personal Communications, Vol. 22, No. 2, 2004, pp [7] 3GPP. 3 rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Mobile Execution Environment (MExE); Service Description, Stage I. Technical Specification 3G TS version ( ), Wilayat Khan graduated with a B.Sc. in Computer Systems Engineering from the NWFP University of Engineering & Technology, Pakistan in He earned his MS degree from the Royal Institute of Technology (KTH) Sweden in Information and Communication Systems Security in In his MS theses, he designed a strong authentication protocol for handheld devices. In 2009, he started his carrier as a teacher at the Department of Electrical Engineering, COMSATS Institute of IT, Wah Campus, Pakistan. He has published a number of papers on wireless and mobile networks and security in international journals and conference proceedings. His research interests include wireless & mobile networks, protocol design for mobile devices, authentication, web security and smart cards security. Habib Ullah graduated in B.Sc. Computer Systems Engineering from the NWFP University of Engineering & Technology, Pakistan in 2006 and earned M.Sc. degree in Electronics and Computer Engineering from the Hanyang University, Seoul Korea with a thesis focusing on comparative study: the evaluation of shadow detection methods. He started teaching in 2009 at the department of Electrical Engineering, COMSATS Institute of IT, Wah Campus, Pakistan. He has various publications focusing on background modeling and shadow detection. His research interests include information security, pattern recognition, behavior modeling and object segmentation etc.
Mobile Office Security Requirements for the Mobile Office
Mobile Office Security Requirements for the Mobile Office [email protected] Alcatel SEL AG 20./21.06.2001 Overview Security Concepts in Mobile Networks Applications in Mobile Networks Mobile Terminal used
How To Understand The Gsm And Mts Mobile Network Evolution
Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems
Global System for Mobile Communication Technology
Global System for Mobile Communication Technology Mobile Device Investigations Program Technical Operations Division DHS - FLETC GSM Technology Global System for Mobile Communication or Groupe Special
Theory and Practice. IT-Security: GSM Location System Syslog XP 3.7. Mobile Communication. December 18, 2001. GSM Location System Syslog XP 3.
Participant: Hack contacting... IT-Security: Theory and Practice Mobile Communication December 18, 2001 Uwe Jendricke [email protected] Lecture Homepage: http://www.informatik.uni-freiburg.de/~softech/teaching/ws01/itsec/
2G/3G Mobile Communication Systems
2G/3G Mobile Communication Systems Winter 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline 2G Review: GSM Services Architecture Protocols Call setup Mobility management
2 System introduction
2 System introduction Objectives After this chapter the student will: be able to describe the different nodes in a GSM network. be able to describe geographical subdivision of a GSM network. be able to
Security Architecture in UMTS Third Generation Cellular Networks Tomás Balderas-Contreras René A. Cumplido-Parra
Security Architecture in UMTS Third Generation Cellular Networks Tomás Balderas-Contreras René A. Cumplido-Parra Reporte Técnico No. CCC-04-002 27 de febrero de 2004 Coordinación de Ciencias Computacionales
2G Mobile Communication Systems
2G Mobile Communication Systems 2G Review: GSM Services Architecture Protocols Call setup Mobility management Security HSCSD GPRS EDGE References Jochen Schiller: Mobile Communications (German and English),
Formal Analysis of A Novel Mutual Authentication and Key Agreement Protocol
Formal Analysis of A Novel Mutual Authentication and ey Agreement Protocol Ja'afer M. AL-Saraireh Applied Science University Amman 11961, Jordan Saleh S. Saraireh Philadelphia University Amman 11961, Jordan
Mobile Wireless Overview
Mobile Wireless Overview A fast-paced technological transition is occurring today in the world of internetworking. This transition is marked by the convergence of the telecommunications infrastructure
ETSI TS 133 102 V3.6.0 (2000-10)
TS 133 102 V3.6.0 (2000-10) Technical Specification Universal Mobile Telecommunications System (UMTS); 3G Security; Security Architecture (3GPP TS 33.102 version 3.6.0 Release 1999) 1 TS 133 102 V3.6.0
The GSM and GPRS network T-110.300/301
The GSM and GPRS network T-110.300/301 History The successful analog 1:st generation mobile telephone systems proved that there is a market for mobile telephones ARP (AutoRadioPuhelin) in Finland NMT (Nordic
!!! "# $ % & & # ' (! ) * +, -!!. / " 0! 1 (!!! ' &! & & & ' ( 2 3 0-4 ' 3 ' Giuseppe Bianchi
!!! "# $ % & & # ' (! ) * +, -!!. / " 0! 1 (!!! ' &! & & & ' ( 2 3 0-4 ' 3 ' "#$!!% "&'! #&'!%! () *+,, 3 & 5 &,! #-!*! ' & '.! #%!* //!! & (0)/!&/, 6 5 /, "! First system: NMT-450 (Nordic Mobile Telephone)
Mobile Devices Security: Evolving Threat Profile of Mobile Networks
Mobile Devices Security: Evolving Threat Profile of Mobile Networks SESSION ID: MBS-T07 Anand R. Prasad, Dr.,ir., Selim Aissi, PhD Objectives Introduction Mobile Network Security Cybersecurity Implications
Mobile Communications
October 21, 2009 Agenda Topic 2: Case Study: The GSM Network 1 GSM System General Architecture 2 GSM Access network. 3 Traffic Models for the Air interface 4 Models for the BSS design. 5 UMTS and the path
UMTS security. Helsinki University of Technology S-38.153 Security of Communication Protocols [email protected] 15.4.2003
UMTS security Helsinki University of Technology S-38.153 Security of Communication Protocols [email protected] 15.4.2003 Contents UMTS Security objectives Problems with GSM security UMTS security mechanisms
Security Evaluation of CDMA2000
Security Evaluation of CDMA2000 L. Ertaul 1, S. Natte 2, and G. Saldamli 3 1 Mathematics and Computer Science, CSU East Bay, Hayward, CA, USA 2 Mathematics and Computer Science, CSU East Bay, Hayward,
GSM Architecture Training Document
Training Document TC Finland Nokia Networks Oy 1 (20) The information in this document is subject to change without notice and describes only the product defined in the introduction of this documentation.
Authentication and Security in IP based Multi Hop Networks
7TH WWRF MEETING IN EINDHOVEN, THE NETHERLANDS 3RD - 4TH DECEMBER 2002 1 Authentication and Security in IP based Multi Hop Networks Frank Fitzek, Andreas Köpsel, Patrick Seeling Abstract Network security
Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu
Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu Market GSM Overview Services Sub-systems Components Prof. Dr.-Ing. Jochen
Chapter 6 Wireless and Mobile Networks
Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;
GSM and UMTS security
2007 Levente Buttyán Why is security more of a concern in wireless? no inherent physical protection physical connections between devices are replaced by logical associations sending and receiving messages
GSM v. CDMA: Technical Comparison of M2M Technologies
GSM v. CDMA: Technical Comparison of M2M Technologies Introduction Aeris provides network and data analytics services for Machine-to- Machine ( M2M ) and Internet of Things ( IoT ) applications using multiple
Global System for Mobile Communications (GSM)
Global System for Mobile Communications (GSM) Nguyen Thi Mai Trang LIP6/PHARE [email protected] UPMC/PUF - M2 Networks - PTEL 1 Outline Principles of cellular networks GSM architecture Security
Wireless Access of GSM
Wireless Access of GSM Project Report FALL, 1999 Wireless Access of GSM Abstract: Global System for Mobile communications (GSM) started to be developed by Europeans when the removal of many European trade
GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides)
GSM Example of a PLMN (Public Land Mobile Network) At present most successful cellular mobile system (over 200 million subscribers worldwide) Digital (2 nd Generation) cellular mobile system operating
Mobile Phone Security. Hoang Vo Billy Ngo
Mobile Phone Security Hoang Vo Billy Ngo Table of Content 1. Introduction Page 2 1.1 Analog Network Page 2 1.2 Digital Network Page 2 2. Security Protocols Page 4 2.1 Analog Page 4 2.2 Digital Page 5 3.
GSM Databases. Virginia Location Area HLR Vienna Cell Virginia BSC. Virginia MSC VLR
Update ( Update Procedure) Network Mobiles Maryland Maryland Other Rockville Bethesda Maryland Mobile Mobile Cell Cell HLR Vienna Cell 12-Jun-14 22:48 (Page 1) This sequence diagram was generated with
Security and Authentication Concepts
Security and Authentication Concepts for UMTS/WLAN Convergence F. Fitzek M. Munari V. Pastesini S. Rossi L. Badia Dipartimento di Ingegneria, Università di Ferrara, via Saragat 1, 44100 Ferrara, Italy
What is telecommunication? electronic communications? What is telephony?
What is telecommunication? Telecommunication: Any transmission, emission or reception of signs, signals, writing, images and sounds or intelligence of any nature by wire, radio, optical or other electromagnetic
GSM System Architecture
Intersystem Operation and Mobility Management David Tipper Associate Professor Graduate Program in Telecommunications and Networking University it of Pittsburgh Telcom 2700 Slides 6 http://www.tele.pitt.edu/tipper.html
What is telecommunication? electronic communications. service?
What is telecommunication? Telecommunication: Any transmission, emission or reception of signs, signals, writing, images and sounds or intelligence of any nature by wire, radio, optical or other electromagnetic
Chapter 3: WLAN-GPRS Integration for Next-Generation Mobile Data Networks
Chapter 3: WLAN-GPRS Integration for Next-Generation Mobile Data Networks IEEE Wireless Communication, Oct. 2002 Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National
IMSI Catcher. Daehyun Strobel. 13.Juli 2007. Seminararbeit Ruhr-Universität Bochum. Chair for Communication Security Prof. Dr.-Ing.
IMSI Catcher Daehyun Strobel 13.Juli 2007 Seminararbeit Ruhr-Universität Bochum Chair for Communication Security Prof. Dr.-Ing. Christof Paar Contents 1 Introduction 1 2 GSM (Global System for Mobile
Security Architecture Standardization and Services in UMTS
Security Architecture Standardization and Services in UMTS Christos Xenakis and Lazaros Merakos Communication Networks Laboratory Department of Informatics & Telecommunications University of Athens, 15784
ETSI TS 123 251 V6.5.0 (2005-09)
TS 123 251 V6.5.0 (2005-09) Technical Specification Universal Mobile Telecommunications System (UMTS); Network sharing; Architecture and functional description (3GPP TS 23.251 version 6.5.0 Release 6)
Evolution of GSM in to 2.5G and 3G
CMPE 477 Wireless and Mobile Networks Evolution of GSM in to 2.5G and 3G New Data Services for GSM CMPE 477 HSCSD GPRS 3G UMTS IMT2000 UMTS Architecture UTRAN Architecture Data services in GSM I Data transmission
International Journal of Computing and Business Research (IJCBR)
AN INVESTIGATION OF GSM ARCHITECTURE AND OVERLAYING WITH EFFICIENT SECURITY PROTOCOL Karun Madan, Surya World Institute of Engg. & Technology, Rajpura, Punjab ABSTRACT The Global System for Mobile Communications
Lecture overview. History of cellular systems (1G) GSM introduction. Basic architecture of GSM system. Basic radio transmission parameters of GSM
Lecture overview History of cellular systems (1G) GSM introduction Basic architecture of GSM system Basic radio transmission parameters of GSM Analogue cellular systems 70 s In the early 70 s radio frequencies
Security in the GSM Network
Security in the GSM Network Ammar Yasir Korkusuz 2012 Bogazici University, Electrical-Electronics Engineering Department, MSc. Student EE 588 NETWORK SECURITY TERM PROJECT Abstract: GSM is the biggest
Mobile Computing. Basic Call Calling terminal Network Called terminal 10/25/14. Public Switched Telephone Network - PSTN. CSE 40814/60814 Fall 2014
Mobile Computing CSE 40814/60814 Fall 2014 Public Switched Telephone Network - PSTN Transit switch Transit switch Long distance network Transit switch Local switch Outgoing call Incoming call Local switch
Evolution of the SIM to esim
Evolution of the SIM to esim Elaheh Vahidian Master of Telematics - Communication Networks and Networked Services (2 Submission date: Januar 2013 Supervisor: Van Thanh Do, ITEM Norwegian University of
Authentication and Authorization Applications in 4G Networks
Authentication and Authorization Applications in 4G Networks Abstract Libor Dostálek [email protected] Faculty of Science University of South Bohemia Ceske Budejovice, Czech Republic The principle of
Handoff in GSM/GPRS Cellular Systems. Avi Freedman Hexagon System Engineering
Handoff in GSM/GPRS Cellular Systems Avi Freedman Hexagon System Engineering Outline GSM and GSM referemce model GPRS basics Handoffs GSM GPRS Location and Mobility Management Re-selection and routing
Mobility and cellular networks
Mobility and cellular s Wireless WANs Cellular radio and PCS s Wireless data s Satellite links and s Mobility, etc.- 2 Cellular s First generation: initially debuted in Japan in 1979, analog transmission
3GPP TR 23.912 V3.1.0 (2001-12)
TR 23.912 V3.1.0 (2001-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Core Network; Technical report on Super-Charger (Release 1999) The present document
192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4]
192620010 Mobile & Wireless Networking Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] Geert Heijenk Outline of Lecture 5 Cellular Systems (UMTS / LTE) (1/2) q Evolution of cellular
Wireless Mobile Telephony
Wireless Mobile Telephony The Ohio State University Columbus, OH 43210 [email protected] http://www.cis.ohio-state.edu/~durresi/ 1 Overview Why wireless mobile telephony? First Generation, Analog
CS 8803 - Cellular and Mobile Network Security: GSM - In Detail
CS 8803 - Cellular and Mobile Network Security: GSM - In Detail Professor Patrick Traynor 9/27/12 Cellular Telecommunications Architecture Background Air Interfaces Network Protocols Application: Messaging
An Example of Mobile Forensics
An Example of Mobile Forensics Kelvin Hilton K319 kchilton@staffsacuk [email protected] www.soc.staffs.ac.uk/kch1 Objectives The sources of evidence The subscriber The mobile station The network
Information Security
Information Security Dr. Vedat Coşkun Malardalen September 15th, 2009 08:00 10:00 [email protected] www.isikun.edu.tr/~vedatcoskun What needs to be secured? With the rapid advances in networked
Encrypted SMS, an analysis of the theoretical necessities and implementation possibilities
Radboud University Nijmegen Bachelor Thesis Encrypted SMS, an analysis of the theoretical necessities and implementation possibilities Author: Lars Lockefeer Supervisors: Engelbert Hubbers Roel Verdult
CS Fallback Function for Combined LTE and 3G Circuit Switched Services
EPC Voice over Circuit Switched Services Special Articles on SAE Standardization Technology CS Fallback Function for Combined and Circuit Switched Services The PP, an international standardization body
GSM Research. Chair in Communication Systems Department of Applied Sciences University of Freiburg 2010
Chair in Communication Systems Department of Applied Sciences University of Freiburg 2010 Dennis Wehrle, Konrad Meier, Dirk von Suchodoletz, Klaus Rechert, Gerhard Schneider Overview 1. GSM Infrastructure
On the Security of 3GPP Networks
On the Security of 3GPP Networks Michael Walker Vodafone AirTouch & Royal Holloway, University of London Chairman 3GPP SA3 - Security Eurocrypt 2000 Security of 3GPP networks 1 Acknowledgements This presentation
Mobile Devices Security: Evolving Threat Profile of Mobile Networks
Mobile Devices Security: Evolving Threat Profile of Mobile Networks MBS-W07 Selim Aissi, PhD Objectives Mobile Security Threat Landscape Mobile Network Security Cybersecurity Implications, Mitigations
Network Security Protocols
Network Security Protocols EE657 Parallel Processing Fall 2000 Peachawat Peachavanish Level of Implementation Internet Layer Security Ex. IP Security Protocol (IPSEC) Host-to-Host Basis, No Packets Discrimination
Single Sign-On Secure Authentication Password Mechanism
Single Sign-On Secure Authentication Password Mechanism Deepali M. Devkate, N.D.Kale ME Student, Department of CE, PVPIT, Bavdhan, SavitribaiPhule University Pune, Maharashtra,India. Assistant Professor,
How to secure an LTE-network: Just applying the 3GPP security standards and that's it?
How to secure an LTE-network: Just applying the 3GPP security standards and that's it? Telco Security Day @ Troopers 2012 Peter Schneider Nokia Siemens Networks Research 1 Nokia Siemens Networks 2012 Intro
Cellular Technology Sections 6.4 & 6.7
Overview Cellular Technology Sections 6. & 6.7 CSC 9 December, 0 Cellular architecture evolution Cellular telephony and internet terminology Mobility for cellular mobiles 6- Components of cellular architecture
ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; [email protected] +32/3/240.7830; Guy.Reyniers@alcatel.
Contact: ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; [email protected] +32/3/240.7830; [email protected] Voice over (Vo) was developed at some universities to diminish
A Systemfor Scanning Traffic Detection in 3G WCDMA Network
2012 IACSIT Hong Kong Conferences IPCSIT vol. 30 (2012) (2012) IACSIT Press, Singapore A Systemfor Scanning Traffic Detection in 3G WCDMA Network Sekwon Kim +, Joohyung Oh and Chaetae Im Advanced Technology
Global System for Mobile Communication (GSM)
Global System for Mobile Communication (GSM) Definition Global system for mobile communication (GSM) is a globally accepted standard for digital cellular communication. GSM is the name of a standardization
Global System for Mobile Communication (GSM)
Global System for Mobile Communication (GSM) Li-Hsing Yen National University of Kaohsiung GSM System Architecture Um (ME/SIM) C E C PSTN, ISDN, PSPDN, CSPDN A-bis A F A-bis C B BTS BSS BSC HLR VLR EIR
Wireless Telecommunication Systems GSM, GPRS, UMTS. GSM as basis of current systems Satellites and
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: Wireless Telecommunication Systems GSM, GPRS,
EAP-SIM Authentication using Interlink Networks RAD-Series RADIUS Server
Application Note EAP-SIM Authentication using Interlink Networks RAD-Series RADIUS Server Introduction The demand for wireless LAN (WLAN) access to the public IP network is growing rapidly. It is only
(U)SimMonitor: A Mobile Application for Security Evaluation of Cellular Networks
(U)SimMonitor: A Mobile Application for Security Evaluation of Cellular Networks Christos Xenakis, Christoforos Ntantogian, Orestis Panos Department of Digital Systems, University of Piraeus Piraeus, Greece
Wireless Cellular Networks: 1G and 2G
Wireless Cellular Networks: 1G and 2G Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available
Access to GSM and GPRS mobile services over unlicensed spectrum technologies through UMA
Access to GSM and GPRS mobile services over unlicensed spectrum technologies through UMA Snehlata Barde Sujata Khobragade Rasmiprava Singh NIT Raipur(C.G.) MATS university, Raipur MATS university,raipur
Ch 2.3.3 GSM PENN. Magda El Zarki - Tcom 510 - Spring 98
Ch 2.3.3 GSM In the early 80 s the European community decided to work together to define a cellular system that would permit full roaming in all countries and give the network providers freedom to provide
Mobile Banking in Developing Countries: Secure Framework for Delivery of SMS-banking Services MASTER THESIS
Mobile Banking in Developing Countries: Secure Framework for Delivery of SMS-banking Services MASTER THESIS Author: Abunyang Emmanuel Student Number: s0535249 Radboud University Nijmegen. The Netherlands
GSM BASICS GSM HISTORY:
GSM BASICS GSM HISTORY: In 1982 the Nordic PTTs sent a proposal to CEPT (Conference of European Postal & telegraph Administration) to study and to improve digital cellular technology by forming a team
GSM - Global System for Mobile Communications
GSM - Global System for Mobile Communications VLR BTS BSC GMSC PSTN MS HLR 1) Overview of GSM architecture 2) GSM channel structure 05-1 GSM - Global System for Mobile Communications VLR BTS BSC GMSC PSTN
Delivery of Voice and Text Messages over LTE
Delivery of Voice and Text Messages over LTE 1. The Market for Voice and SMS! 2. Third Party Voice over IP! 3. The IP Multimedia Subsystem! 4. Circuit Switched Fallback! 5. VoLGA LTE was designed as a
Chapter 2 Mobility Management for GPRS and UMTS
Chapter 2 Mobility Management for GPRS and UMTS Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Outline 2.1 Network Architectures 2.2 Concepts
IMT-2000 Network Architecture
IMT-2000 Network Architecture vtoshio Shimoe vtakamichi Sano (Manuscript received May 31, 2002) International Mobile Telecommunication-2000 (IMT-2000) is a third-generation mobile communication system.
Mobile Services (ST 2010)
Mobile Services (ST 2010) Chapter 3: Mobility Management Axel Küpper Service-centric Networking Deutsche Telekom Laboratories, TU Berlin 1 Mobile Services Summer Term 2010 3 Mobility Management 3.1 Handover
Securing MANET Using Diffie Hellman Digital Signature Scheme
Securing MANET Using Diffie Hellman Digital Signature Scheme Karamvir Singh 1, Harmanjot Singh 2 1 Research Scholar, ECE Department, Punjabi University, Patiala, Punjab, India 1 [email protected] 2
Indian Journal of Advances in Computer & Information Engineering Volume.1 Number.1 January-June 2013, pp.1-5 @ Academic Research Journals.
Cellular System Rajat Chugh, Parag Jasoria, Tushar Arora, Nitin Ginotra and Vivek Anand V Semester, Department of Computer Science and Engineering, Dronacharya College of Engineering, Khentawas, Farukhnagar,
Chapter 10 VoIP for the Non-All-IP Mobile Networks
Chapter 10 VoIP for the Non-All-IP Mobile Networks Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Outline 10.1 GSM-IP: VoIP Service for GSM 256
EETS 8316 Wireless Networks Fall 2013
EETS 8316 Wireless Networks Fall 2013 Lecture: Cellular Overview: 3G and 4G http://lyle.smu.edu/~skangude/eets8316.html Dr. Shantanu Kangude [email protected] Third Generation Systems High-speed wireless
NAVAL POSTGRADUATE SCHOOL THESIS
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SHORT MESSAGE SERVICE (SMS) SECURITY SOLUTION FOR MOBILE DEVICES by Yu Loon Ng December 2006 Thesis Advisor: Co-Advisor: Gurminder Singh John Gibson
LTE Security How Good Is It?
LTE Security How Good Is It? Michael Bartock IT Specialist (Security) National Institute of Standards & Technology Jeffrey Cichonski IT Specialist (Security) National Institute of Standards & Technology
Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23
Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest
LTE Overview October 6, 2011
LTE Overview October 6, 2011 Robert Barringer Enterprise Architect AT&T Proprietary (Internal Use Only) Not for use or disclosure outside the AT&T companies except under written agreement LTE Long Term
Advanced SIP Series: SIP and 3GPP
Advanced SIP Series: SIP and 3GPP, Award Solutions, Inc Abstract The Session Initiation Protocol has been selected as the main signaling protocol of the Third Generation Partnership Projects IP Multimedia
1. Introduction: The Evolution of Mobile Telephone Systems
IEC: The Global System for Mobile Communication Tutorial: Index Page 1 of 14 Global System for Mobile Communication (GSM) Tutorial Definition Global System for Mobile Communication (GSM) is a globally
In this Lecture" Access method CDMA" Mobile and Sensor Systems Lecture 2: Mobile Medium Access Control Layer and Telecommunications
Mobile and Sensor Systems Lecture 2: Mobile Medium Access Control Layer and Telecommunications Dr. Cecilia Mascolo In this Lecture In this lecture we will discuss aspects related to the MAC Layer of wireless
Part I. Universität Klagenfurt - IWAS Multimedia Kommunikation (VK) M. Euchner; Mai 2001. Siemens AG 2001, ICN M NT
Part I Contents Part I Introduction to Information Security Definition of Crypto Cryptographic Objectives Security Threats and Attacks The process Security Security Services Cryptography Cryptography (code
Mobility Management 嚴 力 行 高 雄 大 學 資 工 系
Mobility Management 嚴 力 行 高 雄 大 學 資 工 系 Mobility Management in Cellular Systems Cellular System HLR PSTN MSC MSC VLR BSC BSC BSC cell BTS BTS BTS BTS MT BTS BTS BTS BTS HLR and VLR HLR (Home Location Register)
Overview of the Evolved packet core network
UNIVERSITY OF ALBERTA Overview of the Evolved packet core network Project report submitted to the Faculty of graduate studies and research University of Alberta In partial fulfillment of the requirements
Mobile Application Part protocol implementation in OPNET
Mobile Application Part protocol implementation in OPNET Vladimir Vukadinovic and Ljiljana Trajkovic School of Engineering Science Simon Fraser University Vancouver, BC, Canada E-mail: {vladimir, ljilja}@cs.sfu.ca
