Data storage Tree indexes
|
|
|
- Lisa Palmer
- 10 years ago
- Views:
Transcription
1 Data storage Tree indexes Rasmus Pagh February 7 lecture 1
2 Access paths For many database queries and updates, only a small fraction of the data needs to be accessed. Extreme examples are looking or updating the single tuple with a given key value. General question: How do we access the relevant data, and not (much) more? Term.: Need efficient access paths. 2
3 Choices influencing access paths How are the tuples in the relations arranged? (this lecture) What kinds of indexes exist? (this lecture and later in course) Have we pre-computed (parts of) the information needed? (later in course) 3
4 Data storage in sequential files Storing meta-data: See textbook. A relation may be stored as a string, concatenating the tuples: (3, Kurt,27),(11, Jim,27),(89, Elvis,42) The tuples may be sorted according to some attribute(s), or unordered. Reading data is very efficient. Problem: How to accommodate changes to data: Insertions, deletions, modifications. 4
5 From your toolbox: Linked lists Linked (or doubly linked) lists give great flexibility: Insert a new tuple Delete a tuple Change the size of the data in a tuple Problem: One random memory access per item when reading the list. 5
6 Memory access cost Recall from last week: The speed of the CPU is 2-3 orders of magnitude larger than the speed of a RAM access (non-sequential). The speed of RAM access is 5-6 orders of magnitude faster than disk access (nonsequential). RAM vs disk analogy: Go to Australia to borrow a cup of sugar if your neighbor is not home! 6
7 Analysis and comparison I/O model, i.e., we count the number of block reads/writes. For now, assume that tuples have fixed length. Let B denote the number of tuples per block, and N total #tuples. Storage method Sequential file Linked list (sorted) Tablescan I/O N/B N Update I/O 2N/B O(1) * * If update location known 7
8 Aside: Main memory DBMSs It is increasingly common to store all (or all the most frequently accessed parts) in main memory. Still, non-volatile memory (hard drive, flash,...) is needed to provide durability in case of system crashes. Time-space trade-off persists: Slower memories are cheaper, i.e., can be used to store much more data. Also recall that even main memory, like disks, is blocked. 8
9 Problem session Think of a way of storing sorted relations on disk such that: Reading all data in the relation is efficient (close to the best possible efficiency). Inserting and deleting data is efficient (assume the location of update is known). Do the analysis in the I/O model. As before, assume that tuples have fixed length, and let B denote the number of tuples per block. 9
10 Amortized analysis Instead of analyzing the worst-case cost of a single operation, amortized analysis looks at the average cost of a sequence of operations. Example: An unordered sequential file must use 1 I/O for some insertions, but can do B insertions in 1 I/O using an internal memory buffer Conclusion: The amortized cost of an insertion is 1/B I/Os. Tiny! Same thing for your proposal? 10
11 Execise from hand-out Representation of relations Questions a), b), and c). 11
12 Searching sorted relations Suppose a sequential file of N tuples is sorted by an attribute, A. It can be searched for an A-value using binary search, in log 2 (N/B) I/Os. A (sorted) linked list may require a full traversal to locate an A-value. Storage method Tablescan Update Search Sequential file N/B 2N/B log 2 (N/B) Linked list (blocked) O(N/B) O(1) O(N/B) (sorted) 12
13 Adding a directory A sorted linked list may be searched more quickly if we have a directory: A sorted list with a representative key from each block (e.g., smallest key). A pointer to the block of each key. But how do we search the directory? Not so important if it fits in RAM. Otherwise, it seems that this problem is the same as the original problem... Is there any progress in this case? (Discussion on board.) 13
14 Coping with updates Easy solutions: Insertions: If room in the relevant block, ok. Otherwise insert in an overflow chain. (The ISAM solution.) Deletions: Just mark deleted, don t try to reuse space. More robust solution based on the lesson from linked lists: Introduce some slack to allow efficient updates. 14
15 B + -tree invariants on nodes Suppose a node (stored in a block) has space for B-1 keys and B pointers. Don't want blocks to be too empty: Should be at least half full. Let s see how this works out! (Board.) Only possible with an exception: The root may have as little as 1 key and 2 non-null pointers. 15
16 B + -tree properties Search and update cost O(depth) I/Os. A B + -tree of depth d holds at least 2 (B/2) d-1 keys Rewriting, this means that d < log B/2 (N/2) = O(log B N) Often the top level(s) will reside in internal memory. Then the operation time becomes O(log B (N/M)). 16
17 Problem session Argue that B + -trees are optimal in terms of search time among pointer-based indexes: Suppose we want to search among N keys, that internal memory can hold M pointers, and that a disk block can hold B pointers and B keys. Further, suppose that the only way of accessing disk blocks is by following pointers. Show that a search takes at least log B (N/M)=log(N/M)/log B I/Os in the worst case. Hint: Consider the size of the set of blocks that can be accessed in at most t=1,2, I/Os. 17
18 Aside: Sorting using B + -trees In internal memory, sorting can be done in O(N log N) time by inserting the N keys into a balanced search tree. The number of I/Os for sorting by inserting into a B-tree is O(N log B N). This is more than a factor B slower (!) than multiway mergesort (Feb 28 lecture). Moral: What works well on internal memory may fail miserably on disk. 18
19 From your toolbox: Search trees You may have seen: AVL-trees, redblack trees, or (2,4)-trees. All have maximum degree 2 or 4, and depth O(log N). How do they compare to B + -trees on external memory? Rough analysis: log(n) = log B (N)log(B) Factor around 5-10 depending mainly on the outdegree of the B + -tree. 19
20 Buffering in B-trees Relatively new technique to speed up updates in external search trees. Implicit in [Arge 1996] Explicit in [Brodal and Fagerberg 2003] Newer study by [Graefe 2007] We will consider an implementation that is based on constant degree search trees. Main idea: Use buffers to do many things in one I/O. (Board.) 20
21 Buffering summary Trees with outdegree B and O(1) give: Index B+-tree Buffered B-tree Search I/O O(log B N) O(log N) Update I/O O(log B N) O(log(N)/B) In general, the outdegree is a parameter that can be chosen to trade off search time and update time. (See [BF03] for such a trade-off.) 21
22 More on B-trees Claim in textbook: Rebalancing on higher levels of a B-tree occurs very rarely. This is true (in particular at the top levels), but a little hard to see. Easier seen for weight-balanced B-trees. Details in [Pagh03]. Just one of many B-tree variants 22
23 Yet more on B-trees In practice, variable length (possibly long) keys must be handled. Later in course: The String B-tree, an elegant solution that is efficient even for long strings. Space-saving trick: Key compression. See RG for details. Building a B-tree: Repeated insertion is much slower than bulk-loading the sorted list of keys. (Feb. 28) 23
24 Two types of indexes In a primary index, records are stored in an order determined by the search key. A relation can have at most one primary index. (Often on the primary key.) A secondary index cannot take advantage of any specific order. Must contain all keys and corresponding references to tuples ( dense ). Sometimes, a secondary index provides a faster access path than a primary index! (More about that next week.) 24
25 Summary We saw the basics of storing and indexing data on external memory. Many trade-offs (soft or hard): Space usage vs update efficiency. Update vs access efficiency. Optimizing for one kind of access may slow down another type of access. We have started thinking and analyzing in terms of I/Os. 25
26 Execise from hand-out B + -trees Questions a), b), and c). 26
Physical Data Organization
Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor
Previous Lectures. B-Trees. External storage. Two types of memory. B-trees. Main principles
B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:
DATABASE DESIGN - 1DL400
DATABASE DESIGN - 1DL400 Spring 2015 A course on modern database systems!! http://www.it.uu.se/research/group/udbl/kurser/dbii_vt15/ Kjell Orsborn! Uppsala Database Laboratory! Department of Information
Indexing Big Data. Michael A. Bender. ingest data ?????? ??? oy vey
Indexing Big Data 30,000 Foot View Big data of Databases problem Michael A. Bender ingest data oy vey 365 42????????? organize data on disks query your data Indexing Big Data 30,000 Foot View Big data
Big Data and Scripting. Part 4: Memory Hierarchies
1, Big Data and Scripting Part 4: Memory Hierarchies 2, Model and Definitions memory size: M machine words total storage (on disk) of N elements (N is very large) disk size unlimited (for our considerations)
Binary Heap Algorithms
CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks [email protected] 2005 2009 Glenn G. Chappell
CSE 326: Data Structures B-Trees and B+ Trees
Announcements (4//08) CSE 26: Data Structures B-Trees and B+ Trees Brian Curless Spring 2008 Midterm on Friday Special office hour: 4:-5: Thursday in Jaech Gallery (6 th floor of CSE building) This is
Lecture 1: Data Storage & Index
Lecture 1: Data Storage & Index R&G Chapter 8-11 Concurrency control Query Execution and Optimization Relational Operators File & Access Methods Buffer Management Disk Space Management Recovery Manager
From Last Time: Remove (Delete) Operation
CSE 32 Lecture : More on Search Trees Today s Topics: Lazy Operations Run Time Analysis of Binary Search Tree Operations Balanced Search Trees AVL Trees and Rotations Covered in Chapter of the text From
External Memory Geometric Data Structures
External Memory Geometric Data Structures Lars Arge Department of Computer Science University of Aarhus and Duke University Augues 24, 2005 1 Introduction Many modern applications store and process datasets
B-Trees. Algorithms and data structures for external memory as opposed to the main memory B-Trees. B -trees
B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:
Unit 4.3 - Storage Structures 1. Storage Structures. Unit 4.3
Storage Structures Unit 4.3 Unit 4.3 - Storage Structures 1 The Physical Store Storage Capacity Medium Transfer Rate Seek Time Main Memory 800 MB/s 500 MB Instant Hard Drive 10 MB/s 120 GB 10 ms CD-ROM
CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.
Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure
CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen
CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen LECTURE 14: DATA STORAGE AND REPRESENTATION Data Storage Memory Hierarchy Disks Fields, Records, Blocks Variable-length
In-Memory Databases MemSQL
IT4BI - Université Libre de Bruxelles In-Memory Databases MemSQL Gabby Nikolova Thao Ha Contents I. In-memory Databases...4 1. Concept:...4 2. Indexing:...4 a. b. c. d. AVL Tree:...4 B-Tree and B+ Tree:...5
Storage and File Structure
Storage and File Structure Chapter 10: Storage and File Structure Overview of Physical Storage Media Magnetic Disks RAID Tertiary Storage Storage Access File Organization Organization of Records in Files
6. Storage and File Structures
ECS-165A WQ 11 110 6. Storage and File Structures Goals Understand the basic concepts underlying different storage media, buffer management, files structures, and organization of records in files. Contents
Database Systems. Session 8 Main Theme. Physical Database Design, Query Execution Concepts and Database Programming Techniques
Database Systems Session 8 Main Theme Physical Database Design, Query Execution Concepts and Database Programming Techniques Dr. Jean-Claude Franchitti New York University Computer Science Department Courant
Symbol Tables. Introduction
Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The
Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees. Binary Search Trees. Lecturer: Georgy Gimel farb
Binary Search Trees Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 27 1 Properties of Binary Search Trees 2 Basic BST operations The worst-case time complexity of BST operations
Overview of Storage and Indexing. Data on External Storage. Alternative File Organizations. Chapter 8
Overview of Storage and Indexing Chapter 8 How index-learning turns no student pale Yet holds the eel of science by the tail. -- Alexander Pope (1688-1744) Database Management Systems 3ed, R. Ramakrishnan
Databases and Information Systems 1 Part 3: Storage Structures and Indices
bases and Information Systems 1 Part 3: Storage Structures and Indices Prof. Dr. Stefan Böttcher Fakultät EIM, Institut für Informatik Universität Paderborn WS 2009 / 2010 Contents: - database buffer -
Chapter 6: Physical Database Design and Performance. Database Development Process. Physical Design Process. Physical Database Design
Chapter 6: Physical Database Design and Performance Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden Robert C. Nickerson ISYS 464 Spring 2003 Topic 23 Database
External Sorting. Why Sort? 2-Way Sort: Requires 3 Buffers. Chapter 13
External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing
Overview of Storage and Indexing
Overview of Storage and Indexing Chapter 8 How index-learning turns no student pale Yet holds the eel of science by the tail. -- Alexander Pope (1688-1744) Database Management Systems 3ed, R. Ramakrishnan
Sorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2)
Sorting revisited How did we use a binary search tree to sort an array of elements? Tree Sort Algorithm Given: An array of elements to sort 1. Build a binary search tree out of the elements 2. Traverse
Data Warehousing und Data Mining
Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data
Persistent Data Structures
6.854 Advanced Algorithms Lecture 2: September 9, 2005 Scribes: Sommer Gentry, Eddie Kohler Lecturer: David Karger Persistent Data Structures 2.1 Introduction and motivation So far, we ve seen only ephemeral
Operating Systems CSE 410, Spring 2004. File Management. Stephen Wagner Michigan State University
Operating Systems CSE 410, Spring 2004 File Management Stephen Wagner Michigan State University File Management File management system has traditionally been considered part of the operating system. Applications
root node level: internal node edge leaf node CS@VT Data Structures & Algorithms 2000-2009 McQuain
inary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from each
Storage in Database Systems. CMPSCI 445 Fall 2010
Storage in Database Systems CMPSCI 445 Fall 2010 1 Storage Topics Architecture and Overview Disks Buffer management Files of records 2 DBMS Architecture Query Parser Query Rewriter Query Optimizer Query
Tables so far. set() get() delete() BST Average O(lg n) O(lg n) O(lg n) Worst O(n) O(n) O(n) RB Tree Average O(lg n) O(lg n) O(lg n)
Hash Tables Tables so far set() get() delete() BST Average O(lg n) O(lg n) O(lg n) Worst O(n) O(n) O(n) RB Tree Average O(lg n) O(lg n) O(lg n) Worst O(lg n) O(lg n) O(lg n) Table naïve array implementation
Chapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
Chapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
Data Structures Fibonacci Heaps, Amortized Analysis
Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:
File System Management
Lecture 7: Storage Management File System Management Contents Non volatile memory Tape, HDD, SSD Files & File System Interface Directories & their Organization File System Implementation Disk Space Allocation
Persistent Binary Search Trees
Persistent Binary Search Trees Datastructures, UvA. May 30, 2008 0440949, Andreas van Cranenburgh Abstract A persistent binary tree allows access to all previous versions of the tree. This paper presents
COS 318: Operating Systems
COS 318: Operating Systems File Performance and Reliability Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall10/cos318/ Topics File buffer cache
CIS 631 Database Management Systems Sample Final Exam
CIS 631 Database Management Systems Sample Final Exam 1. (25 points) Match the items from the left column with those in the right and place the letters in the empty slots. k 1. Single-level index files
SQL Query Evaluation. Winter 2006-2007 Lecture 23
SQL Query Evaluation Winter 2006-2007 Lecture 23 SQL Query Processing Databases go through three steps: Parse SQL into an execution plan Optimize the execution plan Evaluate the optimized plan Execution
recursion, O(n), linked lists 6/14
recursion, O(n), linked lists 6/14 recursion reducing the amount of data to process and processing a smaller amount of data example: process one item in a list, recursively process the rest of the list
Project Group High- performance Flexible File System 2010 / 2011
Project Group High- performance Flexible File System 2010 / 2011 Lecture 1 File Systems André Brinkmann Task Use disk drives to store huge amounts of data Files as logical resources A file can contain
ICOM 6005 Database Management Systems Design. Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 2 August 23, 2001
ICOM 6005 Database Management Systems Design Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 2 August 23, 2001 Readings Read Chapter 1 of text book ICOM 6005 Dr. Manuel
6 March 2007 1. Array Implementation of Binary Trees
Heaps CSE 0 Winter 00 March 00 1 Array Implementation of Binary Trees Each node v is stored at index i defined as follows: If v is the root, i = 1 The left child of v is in position i The right child of
Binary Heaps. CSE 373 Data Structures
Binary Heaps CSE Data Structures Readings Chapter Section. Binary Heaps BST implementation of a Priority Queue Worst case (degenerate tree) FindMin, DeleteMin and Insert (k) are all O(n) Best case (completely
MS SQL Performance (Tuning) Best Practices:
MS SQL Performance (Tuning) Best Practices: 1. Don t share the SQL server hardware with other services If other workloads are running on the same server where SQL Server is running, memory and other hardware
Converting a Number from Decimal to Binary
Converting a Number from Decimal to Binary Convert nonnegative integer in decimal format (base 10) into equivalent binary number (base 2) Rightmost bit of x Remainder of x after division by two Recursive
Cpt S 223. School of EECS, WSU
Priority Queues (Heaps) 1 Motivation Queues are a standard mechanism for ordering tasks on a first-come, first-served basis However, some tasks may be more important or timely than others (higher priority)
CHAPTER 17: File Management
CHAPTER 17: File Management The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides
Chapter 13. Disk Storage, Basic File Structures, and Hashing
Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible Hashing
External Sorting. Chapter 13. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1
External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing
Record Storage and Primary File Organization
Record Storage and Primary File Organization 1 C H A P T E R 4 Contents Introduction Secondary Storage Devices Buffering of Blocks Placing File Records on Disk Operations on Files Files of Unordered Records
Comp 5311 Database Management Systems. 16. Review 2 (Physical Level)
Comp 5311 Database Management Systems 16. Review 2 (Physical Level) 1 Main Topics Indexing Join Algorithms Query Processing and Optimization Transactions and Concurrency Control 2 Indexing Used for faster
Questions 1 through 25 are worth 2 points each. Choose one best answer for each.
Questions 1 through 25 are worth 2 points each. Choose one best answer for each. 1. For the singly linked list implementation of the queue, where are the enqueues and dequeues performed? c a. Enqueue in
DATA STRUCTURES USING C
DATA STRUCTURES USING C QUESTION BANK UNIT I 1. Define data. 2. Define Entity. 3. Define information. 4. Define Array. 5. Define data structure. 6. Give any two applications of data structures. 7. Give
Chapter 13: Query Processing. Basic Steps in Query Processing
Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing
Merkle Hash Trees for Distributed Audit Logs
Merkle Hash Trees for Distributed Audit Logs Subject proposed by Karthikeyan Bhargavan [email protected] April 7, 2015 Modern distributed systems spread their databases across a large number
File Management. Chapter 12
File Management Chapter 12 File Management File management system is considered part of the operating system Input to applications is by means of a file Output is saved in a file for long-term storage
INTRODUCTION The collection of data that makes up a computerized database must be stored physically on some computer storage medium.
Chapter 4: Record Storage and Primary File Organization 1 Record Storage and Primary File Organization INTRODUCTION The collection of data that makes up a computerized database must be stored physically
Lecture 6: Binary Search Trees CSCI 700 - Algorithms I. Andrew Rosenberg
Lecture 6: Binary Search Trees CSCI 700 - Algorithms I Andrew Rosenberg Last Time Linear Time Sorting Counting Sort Radix Sort Bucket Sort Today Binary Search Trees Data Structures Data structure is a
An Evaluation of Self-adjusting Binary Search Tree Techniques
SOFTWARE PRACTICE AND EXPERIENCE, VOL. 23(4), 369 382 (APRIL 1993) An Evaluation of Self-adjusting Binary Search Tree Techniques jim bell and gopal gupta Department of Computer Science, James Cook University,
File Management. Chapter 12
Chapter 12 File Management File is the basic element of most of the applications, since the input to an application, as well as its output, is usually a file. They also typically outlive the execution
Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:
CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm
Fast Sequential Summation Algorithms Using Augmented Data Structures
Fast Sequential Summation Algorithms Using Augmented Data Structures Vadim Stadnik [email protected] Abstract This paper provides an introduction to the design of augmented data structures that offer
Two Parts. Filesystem Interface. Filesystem design. Interface the user sees. Implementing the interface
File Management Two Parts Filesystem Interface Interface the user sees Organization of the files as seen by the user Operations defined on files Properties that can be read/modified Filesystem design Implementing
- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time
Skip Lists CMSC 420 Linked Lists Benefits & Drawbacks Benefits: - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed Drawbacks: - Hard to search in less than O(n) time (binary
R-trees. R-Trees: A Dynamic Index Structure For Spatial Searching. R-Tree. Invariants
R-Trees: A Dynamic Index Structure For Spatial Searching A. Guttman R-trees Generalization of B+-trees to higher dimensions Disk-based index structure Occupancy guarantee Multiple search paths Insertions
In-memory databases and innovations in Business Intelligence
Database Systems Journal vol. VI, no. 1/2015 59 In-memory databases and innovations in Business Intelligence Ruxandra BĂBEANU, Marian CIOBANU University of Economic Studies, Bucharest, Romania [email protected],
CS 2112 Spring 2014. 0 Instructions. Assignment 3 Data Structures and Web Filtering. 0.1 Grading. 0.2 Partners. 0.3 Restrictions
CS 2112 Spring 2014 Assignment 3 Data Structures and Web Filtering Due: March 4, 2014 11:59 PM Implementing spam blacklists and web filters requires matching candidate domain names and URLs very rapidly
Review of Hashing: Integer Keys
CSE 326 Lecture 13: Much ado about Hashing Today s munchies to munch on: Review of Hashing Collision Resolution by: Separate Chaining Open Addressing $ Linear/Quadratic Probing $ Double Hashing Rehashing
Quiz! Database Indexes. Index. Quiz! Disc and main memory. Quiz! How costly is this operation (naive solution)?
Database Indexes How costly is this operation (naive solution)? course per weekday hour room TDA356 2 VR Monday 13:15 TDA356 2 VR Thursday 08:00 TDA356 4 HB1 Tuesday 08:00 TDA356 4 HB1 Friday 13:15 TIN090
ProTrack: A Simple Provenance-tracking Filesystem
ProTrack: A Simple Provenance-tracking Filesystem Somak Das Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology [email protected] Abstract Provenance describes a file
Chapter 2 Data Storage
Chapter 2 22 CHAPTER 2. DATA STORAGE 2.1. THE MEMORY HIERARCHY 23 26 CHAPTER 2. DATA STORAGE main memory, yet is essentially random-access, with relatively small differences Figure 2.4: A typical
Binary Search Trees 3/20/14
Binary Search Trees 3/0/4 Presentation for use ith the textbook Data Structures and Algorithms in Java, th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldasser, Wiley, 04 Binary Search Trees 4
Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * *
Binary Heaps A binary heap is another data structure. It implements a priority queue. Priority Queue has the following operations: isempty add (with priority) remove (highest priority) peek (at highest
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 13-1
Slide 13-1 Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible
Chapter 12 File Management
Operating Systems: Internals and Design Principles Chapter 12 File Management Eighth Edition By William Stallings Files Data collections created by users The File System is one of the most important parts
Raima Database Manager Version 14.0 In-memory Database Engine
+ Raima Database Manager Version 14.0 In-memory Database Engine By Jeffrey R. Parsons, Senior Engineer January 2016 Abstract Raima Database Manager (RDM) v14.0 contains an all new data storage engine optimized
EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES
ABSTRACT EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES Tyler Cossentine and Ramon Lawrence Department of Computer Science, University of British Columbia Okanagan Kelowna, BC, Canada [email protected]
Physical Database Design Process. Physical Database Design Process. Major Inputs to Physical Database. Components of Physical Database Design
Physical Database Design Process Physical Database Design Process The last stage of the database design process. A process of mapping the logical database structure developed in previous stages into internal
Chapter 13 Disk Storage, Basic File Structures, and Hashing.
Chapter 13 Disk Storage, Basic File Structures, and Hashing. Copyright 2004 Pearson Education, Inc. Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files
Lecture 7: Concurrency control. Rasmus Pagh
Lecture 7: Concurrency control Rasmus Pagh 1 Today s lecture Concurrency control basics Conflicts and serializability Locking Isolation levels in SQL Optimistic concurrency control Transaction tuning Transaction
B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers
B+ Tree and Hashing B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers B+ Tree Properties Balanced Tree Same height for paths
Chapter 8: Structures for Files. Truong Quynh Chi [email protected]. Spring- 2013
Chapter 8: Data Storage, Indexing Structures for Files Truong Quynh Chi [email protected] Spring- 2013 Overview of Database Design Process 2 Outline Data Storage Disk Storage Devices Files of Records
1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++
Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The
University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao
University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao CMPSCI 445 Midterm Practice Questions NAME: LOGIN: Write all of your answers directly on this paper. Be sure to clearly
CS711008Z Algorithm Design and Analysis
CS711008Z Algorithm Design and Analysis Lecture 7 Binary heap, binomial heap, and Fibonacci heap 1 Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 The slides were
Binary Search Trees. Data in each node. Larger than the data in its left child Smaller than the data in its right child
Binary Search Trees Data in each node Larger than the data in its left child Smaller than the data in its right child FIGURE 11-6 Arbitrary binary tree FIGURE 11-7 Binary search tree Data Structures Using
A Comparison of Dictionary Implementations
A Comparison of Dictionary Implementations Mark P Neyer April 10, 2009 1 Introduction A common problem in computer science is the representation of a mapping between two sets. A mapping f : A B is a function
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process
Chapter 12 File Management
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 12 File Management Dave Bremer Otago Polytechnic, N.Z. 2008, Prentice Hall Roadmap Overview File organisation and Access
Chapter 12 File Management. Roadmap
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 12 File Management Dave Bremer Otago Polytechnic, N.Z. 2008, Prentice Hall Overview Roadmap File organisation and Access
Why Use Binary Trees?
Binary Search Trees Why Use Binary Trees? Searches are an important application. What other searches have we considered? brute force search (with array or linked list) O(N) binarysearch with a pre-sorted
Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer
Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, [email protected] School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.
Persistent Data Structures and Planar Point Location
Persistent Data Structures and Planar Point Location Inge Li Gørtz Persistent Data Structures Ephemeral Partial persistence Full persistence Confluent persistence V1 V1 V1 V1 V2 q ue V2 V2 V5 V2 V4 V4
