±5ppm, I 2 C Real-Time Clock
|
|
|
- Anne Gallagher
- 10 years ago
- Views:
Transcription
1 General Description The DS3231M is a low-cost, extremely accurate, I2C realtime clock (RTC). The device incorporates a battery input and maintains accurate timekeeping when main power to the device is interrupted. The integration of the microelectromechanical systems (MEMS) resonator enhances the long-term accuracy of the device and reduces the piecepart count in a manufacturing line. The DS3231M is available in the same footprint as the popular DS3231 RTC. The RTC maintains seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with an AM/PM indicator. Two programmable time-ofday alarms and a 1Hz output are provided. Address and data are transferred serially through an I2C bidirectional bus. A precision temperature-compensated voltage reference and comparator circuit monitors the status of VCC to detect power failures, to provide a reset output, and to automatically switch to the backup supply when necessary. Additionally, the RST pin is monitored as a pushbutton input for generating a microprocessor reset. See the Block Diagram for more details. Applications Power Meters Industrial Applications Ordering Information PART TEMP RANGE PIN-PAGE DS3231MZ+ -45NC to +85NC 8 SO DS3231MZ/V+ -45NC to +85NC 8 SO DS3231M+ -45NC to +85NC 16 SO +Denotes a lead(pb)-free/rohs-compliant package. /V denotes an automotive qualified part. Benefits and Features Highly Accurate RTC With Integrated MEMS Resonator Completely Manages All Timekeeping Functions Complete Clock Calendar Functionality Including Seconds, Minutes, Hours, Day, Date, Month, and Year, with Leap-Year Compensation Up to Year 2100 Timekeeping Accuracy ±5ppm (±0.432 Second/Day) from -45 C to +85 C Footprint and Functionally Compatible to DS3231 Two Time-of-Day Alarms 1Hz and kHz Outputs Reset Output and Pushbutton Input with Debounce Digital Temp Sensor with ±3 C Accuracy +2.3V to +5.5V Supply Voltage Simple Serial Interface Connects to Most Microcontrollers Fast (400kHz) I2C Interface Battery-Backup Input for Continuous Timekeeping Low Power Operation Extends Battery-Backup Run Time Operating Temperature Range: -40 C to +85 C 8-Pin or 16-Pin SO Packages Underwriters Laboratories (UL) Recognized Typical Operating Circuit +3.3V I/O PORT INTERRUPTS SCL SDA 32KHZ INT/SQW RST +3.3V V BAT CPU DS3231M Underwriters Laboratories is a registered certification mark of Underwriters Laboratories Inc ; Rev 7; 3/15
2 Absolute Maximum Ratings Voltage Range on Any Pin Relative to GND V to +6.0V Operating Temperature Range NC to +85NC Storage Temperature Range NC to +125NC Junction Temperature NC Lead Temperature (soldering, 10s) NC Soldering Temperature (reflow) nc Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 1) 8 SO Junction-to-Ambient Thermal Resistance (q JA ) C/W Recommended Operating Conditions (T A = -45NC to +85NC, unless otherwise noted.) (Note 2) Electrical Characteristics Frequency And Timekeeping (V CC or V BAT = +3.3V, T A = -45NC to +85NC, unless otherwise noted. Typical values are at V CC = +3.3V, V BAT = +3.0V, and T A = +25NC, unless otherwise noted.) DC Electrical Characteristics General 16 SO Junction-to-Ambient Thermal Resistance (q JA )...90 C/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to Supply Voltage PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS V CC V BAT x V CC + Logic 1 V IH V CC 0.3 Logic 0 V IL -0.3 PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 1Hz Frequency Tolerance Df/f OUT Measured over R 10s interval Q5 ppm 1Hz Frequency Stability vs. V CC Voltage (V CC = +2.3V to +5.5V, T A = -45NC to +85NC, unless otherwise noted. Typical values are at V CC = +3.3V, V BAT = +3.0V, and T A = +25NC, unless otherwise noted.) 0.3 x V CC Df/V Q1 ppm/v Timekeeping Accuracy tk A Q0.432 Seconds/ Day 32kHz Frequency Tolerance Df/f OUT Q2.5 % PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Active Supply Current (I 2 C Active: Includes Temperature Conversion Current) V CC = +3.63V 200 CCA V CC = V CCMAX 300 V V V µa Standby Supply Current (I 2 C Inactive: Includes Temperature Conversion Current) Temperature Conversion Current (I 2 C Inactive) V CC = +3.63V 130 CCS V CC = V CCMAX 200 V CC = +3.63V 575 I CCSCONV V CC = V CCMAX 650 µa µa Maxim Integrated 2
3 DC Electrical Characteristics General (continued) (V CC = +2.3V to +5.5V, T A = -45NC to +85NC, unless otherwise noted. Typical values are at V CC = +3.3V, V BAT = +3.0V, and T A = +25NC, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Power-Fail Voltage V PF V Logic 0 Output (32KHZ, INT/SQW, SDA) Logic 0 Output (RST) Output Leakage (32KHZ, INT/SQW, SDA) Input Leakage (SCL) V OL I OL = 3mA 0.4 V V OL I OL = 1mA 0.4 V I LO µa I LI µa RST I/O Leakage I OL µa V BAT Leakage I BATLKG na Temperature Accuracy TEMP ACC V CC or V BAT = +3.3V Q3 NC Temperature Conversion Time t CONV 10 ms Pushbutton Debounce PB DB 250 ms Reset Active Time t RST 250 ms Oscillator Stop Flag (OSF) Delay t OSF (Note 3) ms DC Electrical Characteristics V BAT Current Consumption (V CC = 0V, V BAT = +2.3V to +5.5V, T A = -45NC to +85NC, unless otherwise noted. Typical values are at V CC = 0V, V BAT = +3.0V, and T A = +25NC, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Active Battery Current (I 2 C Active) (Note 4) Timekeeping Battery Current (I 2 C Inactive) (Note 4) Temperature Conversion Current (I 2 C Inactive) Data Retention Current (Oscillator Stopped and I 2 C Inactive) V BAT = +3.63V 70 I BATA V BAT = V BATMAX 150 V BAT = +3.63V, EN32KHZ = I BATT V BAT = V BATMAX, EN32KHZ = V BAT = +3.63V 575 I BATTC V BAT = V BATMAX 650 I BATDR TA = +25NC 100 na µa µa µa AC Electrical Characteristics Power Switch (T A = -45NC to +85NC, unless otherwise noted.) (Figure 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS V CC Fall Time, V PFMAX to V PFMIN t VCCF 300 Fs V CC Rise Time, V PFMIN to V PFMAX t VCCR 0 Fs Recovery at Power-Up t REC (Note 5) ms Maxim Integrated 3
4 AC Electrical Characteristics I2C Interface (V CC or V BAT = +2.3V to +5.5V, T A = -45NC to +85NC, unless otherwise noted. Typical values are at V CC = +3.3V, V BAT = +3.0V, and T A = +25NC, unless otherwise noted.) (Note 6, Figure 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS SCL Clock Frequency f SCL khz Bus Free Time Between STOP and START Conditions Hold Time (Repeated) START Condition t BUF 1.3 Fs t HD:STA 0.6 Fs Low Period of SCL t LOW 1.3 Fs High Period of SCL t HIGH 0.6 Fs Data Hold Time t HD:DAT Fs Data Set-Up Time t SU:DAT 100 ns START Set-Up Time t SU:STA 0.6 Fs SDA and SCL Rise Time t R (Note 7) SDA and SCL Fall Time t F (Note 7) C B 300 ns C B 300 ns STOP Set-Up Time t SU:STO 0.6 Fs SDA, SCL Input Capacitance C BIN (Note 8) 10 pf Note 2: All voltages are referenced to ground. Note 3: The parameter t OSF is the period of time the oscillator must be stopped for the OSF flag to be set. Note 4: Includes the temperature conversion current (averaged). Note 5: This delay applies only if the oscillator is enabled. If the EOSC bit is 1, t REC is bypassed and RST immediately goes high. The state of RST does not affect the I 2 C interface or RTC functions. Note 6: Interface timing shown is for fast-mode (400kHz) operation. This device is also backward-compatible with standard mode I 2 C timing. Note 7: C B : Total capacitance of one bus line in picofarads. Note 8: Guaranteed by design; not 100% production tested. Maxim Integrated 4
5 Timing Diagrams SDA t BUF t LOW t F t HD:STA t SP SCL t HD:STA t R t HIGH t SU:STA t SU:STO STOP START REPEATED START NOTE: TIMING IS REFERENCED TO V ILMAX AND V IHMIN. t HD:DAT t SU:DAT Figure 1. I 2 C Timing t VCCF t VCCR V PFMAX V PFMIN V CC t REC RST Figure 2. Power Switch Timing RST PB DB t RST Figure 3. Pushbutton Reset Timing Maxim Integrated 5
6 Typical Operating Characteristics (T A = +25 C, unless otherwise noted.) SUPPLY CURRENT (µa) POWER-SUPPLY CURRENT vs. POWER-SUPPLY VOLTAGE V BAT = 2.3V, EN32KHZ = 1, I OUT = 0mA +85 C -40 C +25 C DS3231M toc01 SUPPLY CURRENT (µa) BATTERY-SUPPLY CURRENT vs. BATTERY-SUPPLY VOLTAGE V CC = 0V, EN32KHZ = 1, BBSQW = C +25 C DS3231M toc INCREASE BELOW V PF DUE TO INTERNAL PULLUP RESISTOR ON RST SUPPLY VOLTAGE (V) C SUPPLY VOLTAGE (V) INT/SQW OUTPUT VOLTAGE vs. OUTPUT CURRENT V CC = 2.3V, V BAT = 0V, T A = +25 C DS3231M toc V CC = 2.45V, V BAT = 3.0V, T A = +25 C RST OUTPUT VOLTAGE vs. OUTPUT CURRENT DS3231M toc RST OUTPUT VOLTAGE vs. POWER SUPPLY VOLTAGE V BAT = 3.0V, T A = +25 C DS3231M toc05 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) TRS WITH V CC OUTPUT CURRENT (ma) OUTPUT CURRENT (ma) SUPPLY VOLTAGE (V) FREQUENCY ERROR (ppm) V CC = 3.3V FREQUENCY ERROR vs. TEMPERATURE TEMPERATURE ( C) DS3231M toc06 LIMITS SUPPLY CURRENT (µa) T A = +25 C POWER-SUPPLY CURRENT vs. SCL FREQUENCY +5.5V +3.5V +2.7V SCL FREQUENCY (khz) DS3231M toc07 Maxim Integrated 6
7 Pin Configuration TOP VIEW 32KHZ SCL TOP VIEW V CC INT/SQW RST DS3231M SDA V BAT GND 32KHZ V CC DS3231M 8 7 SCL SDA N.C N.C. INT/SQW 3 6 V BAT N.C. N.C. N.C N.C. N.C. N.C. RST 4 SO 5 GND SO Pin Description PIN 8 SO 16 SO NAME FUNCTION kHz Output (50% Duty Cycle). This open-drain pin requires an external pullup resistor KHZ When enabled with the EN32KHZ bit in the Status register (0Fh), this output operates on either power supply. This pin can be left open circuit if not used. DC Power Pin for Primary Power Supply. This pin should be decoupled using a 0.1FF to 1.0FF 2 2 V CC capacitor. Connect to ground if not used. 3 3 INT/ SQW 4 4 RST Active-Low Interrupt or 1Hz Square-Wave Output. This open-drain pin requires an external pullup resistor connected to a supply at 5.5V or less. It can be left open if not used. This multifunction pin is determined by the state of the INTCN bit in the Control register (0Eh). When INTCN is set to logic 0, this pin outputs a 1Hz square wave. When INTCN is set to logic 1, a match between the timekeeping registers and either of the alarm registers activates the INT/SQW pin (if the alarm is enabled). Because the INTCN bit is set to logic 1 when power is first applied, the pin defaults to an interrupt output with alarms disabled. Active-Low Reset. This pin is an open-drain input/output. It indicates the status of V CC relative to the V PF specification. As V CC falls below V PF, the RST pin is driven low. When V CC exceeds V PF, for t RST, the RST pin is pulled high by the internal pullup resistor. The active-low, open-drain output is combined with a debounced pushbutton input function. This pin can be activated by a pushbutton reset request. It has an internal 50kI (R PU ) nominal value pullup resistor to V CC. No external pullup resistors should be connected. If the oscillator is disabled, t REC is bypassed and RST immediately goes high N.C. No Connection. These pins must be connected to ground GND Ground 6 14 V BAT Backup Power-Supply Input. When using the device with the V BAT input as the primary power source, this pin should be decoupled using a 0.1FF to 1.0FF low-leakage capacitor. When using the device with the V BAT input as the backup power source, the capacitor is not required. If V BAT is not used, connect to ground. The device is UL recognized to ensure against reverse charging when used with a primary lithium battery. Go to for more information. Maxim Integrated 7
8 Pin Description (continued) PIN 8 SO 16 SO NAME 7 15 SDA 8 16 SCL FUNCTION Serial-Data Input/Output. This pin is the data input/output for the I 2 C serial interface. This open-drain pin requires an external pullup resistor. The pullup voltage can be up to 5.5V, regardless of the voltage on V CC. Serial-Clock Input. This pin is the clock input for the I 2 C serial interface and is used to synchronize data movement on the serial interface. The pullup voltage can be up to 5.5V, regardless of the voltage on V CC. Block Diagram 32KHZ DS3231M DIVIDER N V BAT V CC RST N R PU POWER CONTROL TIME-BASE RESONATOR TEMP SENSOR DIGITAL ADJUSTMENT 1Hz INTERRUPT OR 1Hz SELECT N INT/SQW GND FACTORY TRIM SDA SCL I 2 C INTERFACE CONTROL AND STATUS REGISTERS CLOCK/CALENDAR WITH ALARM Detailed Description The DS3231M is a serial real-time clock (RTC) driven by an internal, temperature-compensated, microelectromechanical systems (MEMS) resonator. The oscillator provides a stable and accurate reference clock and maintains the RTC to within Q0.432 seconds-per-day accuracy from -45NC to +85NC. The RTC is a low-power clock/ calendar with two programmable time-of-day alarms. INT/ SQW provides either an interrupt signal due to alarm conditions or a 1Hz square wave. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with an AM/PM indicator. The internal registers are accessible though an I2C bus interface. A temperature-compensated voltage reference and comparator circuit monitors the level of VCC to detect power failures and to automatically switch to the backup supply when necessary. The RST pin provides an external pushbutton function and acts as an indicator of a power-fail event. Operation The Block Diagram shows the device s main elements. Each of the major blocks is described separately in the following sections. Maxim Integrated 8
9 Figure 4. Single Supply (V CC Only) Figure 5. Single Supply (V BAT Only) +3.3V Figure 6. Dual Power Supply +3.3V V CC V BAT V CC V BAT V CC V BAT Table 1. Power Control High-Accuracy Time Base The temperature sensor, oscillator, and digital adjustment controller logic form the highly accurate time base. The controller reads the output of the on-board temperature sensor and adjusts the final 1Hz output to maintain the required accuracy. The device is trimmed at the factory to maintain a tight accuracy over the operating temperature range. When the device is powered by VCC, the adjustment occurs once a second. When the device is powered by VBAT, the adjustment occurs once every 10s to conserve power. Adjusting the 1Hz time base less often does not affect the device s long-term timekeeping accuracy. The device also contains an Aging Offset register that allows a constant offset (positive or negative) to be added to the factory-trimmed adjustment value. Power-Supply Configurations The DS3231M can be configured to operate on a single power supply (using either VCC or VBAT) or in a dualsupply configuration, which provides a backup supply source to keep the timekeeping circuits alive during absence of primary system power. Figure 4 illustrates a single-supply configuration using VCC only, with the VBAT input grounded. When VCC < VPF, the RST output is asserted (active low). Temperature conversions are executed once per second. Figure 5 illustrates a single-supply configuration using VBAT only, with the VCC input grounded. The RST output is disabled and is held at ground through the connection of the internal pullup resistor. Temperature conversions are executed once every 10s. Figure 6 illustrates a dual-supply configuration, using the VCC supply for normal system operation and the VBAT supply for backup power. In this configuration, the power-selection function is provided by a temperaturecompensated voltage reference and a comparator circuit that monitors the VCC level. When VCC is greater than VPF, the device is powered by VCC. When VCC is less than VPF but greater than VBAT, the device is powered CONFIGURATION CONDITION I/O ACTIVE I/O INACTIVE RST V CC Only V CC > V PF Inactive (High) I CCA I CCS (Figure 4) V CC < V PF Active (Low) V BAT Only (Figure 5) Dual Supply (Figure 6) EOSC = 0 I BATT I BATA Disabled (Low) EOSC = 1 I BATDR V CC > V PF I CCA I CCS Inactive (High) V CC < V PF V CC > V BAT I CCA V CC > V BAT I CCS Active (Low) V CC < V BAT I BATA V CC < V BAT I BATT Maxim Integrated 9
10 by VCC. If VCC is less than VPF and is less than VBAT, the device is powered by VBAT (see Table 1). When VCC < VPF, the RST output is asserted (active low). When VCC is the presently selected power source, temperature conversions are executed once per second. When VBAT is the presently selected power source, temperature conversions are executed once every 10s. To preserve the battery, the first time VBAT is applied to the device the oscillator does not start up until VCC exceeds VPF or until a valid I2C address is written to the device. Typical oscillator startup time is less than 1s. Approximately 2s after VCC is applied, or a valid I2C address is written, the device makes a temperature measurement and applies the calculated correction to the oscillator. Once the oscillator is running, it continues to run as long as a valid power source is available (VCC or VBAT), and the device continues to measure the temperature and correct the oscillator frequency. On the first application of VCC power, or (if VBAT powered) when a valid I2C address is written to the device, the time and date registers are reset to 01/01/ :00:00 (DD/MM/ YY DOW HH:MM:SS). Initial VBAT Attachment During the initial battery attachment to the DS3231M, it is important to eliminate the effects of contact bounce. Contact bounce occurs when battery contact rapidly and repeatedly alternates between connected and disconnected during the battery attachment before finally settling to the connected state. This bounce can cause a momentary power interruption to the DS3231M that can result in memory recall corruption in the device. There are two recommended ways to eliminate the effects of contact bounce on the device. The preferred way uses power sequencing by applying VCC to the part before performing the battery attachment. An alternate method to eliminate contact bounce is to filter the signal using a small capacitor between VBAT and ground. For this method, capacitor values between 0.1nf and 1nf are recommended for the supply filtering. VBAT Operation There are several modes of operation that affect the amount of VBAT current that is drawn. While the device is powered by VBAT and the serial interface is active, the active battery current IBATA is drawn. When the serial interface is inactive, the timekeeping current IBATT (which includes the averaged temperature-conversion current IBATTC) is used. The temperature-conversion current IBATTC is specified since the system must be able to support the periodic higher current pulse and still maintain a valid voltage level. The data-retention current IBATDR is the current drawn by the device when the oscillator is stopped (EOSC = 1). This mode can be used to minimize battery requirements for periods when maintaining time and date information is not necessary, e.g., while the end system is waiting to be shipped to a customer. Pushbutton Reset Function The device provides for a pushbutton switch to be connected to the RST input/output pin. When the device is not in a reset cycle, it continuously monitors RST for a low-going edge. If an edge transition is detected, the device debounces the switch by pulling RST low. After the internal timer has expired (PBDB), the device continues to monitor the RST line. If the line is still low, the device continuously monitors the line looking for a rising edge. Upon detecting release, the device forces RST low and holds it low for trst. RST is also used to indicate a power-fail condition. When VCC is lower than VPF, an internal power-fail signal is generated, which forces RST low. When VCC returns to a level above VPF, RST is held low for approximately 250ms (trec) to allow the power supply to stabilize. If the oscillator is not running when VCC is applied, trec is bypassed and RST immediately goes high. Assertion of the RST output, whether by pushbutton or power-fail detection, does not affect the device s internal operation. RST output operation and pushbutton monitoring are only available if VCC power is available. Real-Time Clock (RTC) With the 1Hz source from the temperature-compensated oscillator, the RTC provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or the 12-hour format with an AM/PM indicator. The clock provides two programmable time-of-day alarms. INT/SQW can be enabled to generate either an interrupt due to an alarm condition or a 1Hz square wave. This selection is controlled by the INTCN bit in the Control register. I2C Interface The I2C interface is accessible whenever either VCC or VBAT is at a valid level. If a microcontroller connected to the device resets because of a loss of VCC or other event, it is possible that the microcontroller and device s I2C communications could become unsynchronized, Maxim Integrated 10
11 Table 2. Timekeeping Registers ADDRESS BIT 7 MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 Note: Unless otherwise specified, the registers state is not defined when power is first applied. BIT 0 LSB FUNCTION RANGE 00h 0 10 Seconds Seconds Seconds h 0 10 Minutes Minutes Minutes h 0 12/24 AM/PM 20 Hours 10 Hours 03h Day Day 1 7 Hour Hours AM/PM h Date Date Date h Century Month Month Month/Century Century 06h 10 Year Year Year h A1M1 10 Seconds Seconds 08h A1M2 10 Minutes Minutes 09h A1M3 12/24 AM/PM 20 Hours 0Ah A1M4 DY/DT 10 Date 10 Hours Hour 0Bh A2M2 10 Minutes Minutes 0Ch A2M3 12/24 AM/PM 20 Hours 0Dh A2M4 DY/DT 10 Date 10 Hours Alarm 1 Seconds Alarm 1 Minutes Alarm 1 Hours AM/PM Day Alarm 1 Day 1 7 Date Alarm 1 Date 1 31 Hour Alarm 2 Minutes Alarm 2 Hours AM/PM Day Alarm 2 Day 1 7 Date Alarm 2 Date Eh EOSC BBSQW CONV NA NA INTCN A2IE A1IE Control 0Fh OSF EN32KHZ BSY A2F A1F Status 10h SIGN DATA DATA DATA DATA DATA DATA DATA Aging Offset 81h 7Fh 11h SIGN DATA DATA DATA DATA DATA DATA DATA 12h DATA DATA Temperature MSB Temperature LSB e.g., the microcontroller resets while reading data from the device. When the microcontroller resets, the device s I2C interface can be placed into a known state by toggling SCL until SDA is observed to be at a high level. At that point the microcontroller should pull SDA low while SCL is high, generating a START condition. Address Map Table 2 shows the address map for the device s timekeeping registers. During a multibyte access, when the address pointer reaches the end of the register space (12h), it wraps around to location 00h. On an I2C START or address pointer incrementing to location 00h, the current time is transferred to a second set of registers. The Maxim Integrated 11
12 time information is read from these secondary registers, while the clock can continue to run. This eliminates the need to reread the registers in case the main registers update during a read. Clock and Calendar The time and calendar information is obtained by reading the appropriate register bytes. Table 2 shows the RTC registers. The time and calendar data are set or initialized by writing the appropriate register bytes. The contents of the time and calendar registers are in the binary-coded decimal (BCD) format. The device can be run in either 12-hour or 24-hour mode. Bit 6 of the Hours register is defined as the 12-hour or 24-hour mode select bit. When high, the 12-hour mode is selected. In the 12-hour mode, bit 5 is the AM/PM bit with logic-high being PM. In the 24-hour mode, bit 5 is the 20-hour bit (20 23 hours). The century bit (bit 7 of the Month register) is toggled when the Years register overflows from 99 to 00. The day-of-week register increments at midnight. Values that correspond to the day of week are user-defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on). Illogical time and date entries result in undefined operation. When reading or writing the time and date registers, secondary buffers are used to prevent errors when the internal registers update. When reading the time and date registers, the secondary buffers are synchronized to the internal registers on any I2C START and when the register pointer rolls over to zero. The time information is read from these secondary registers, while the clock continues to run. This eliminates the need to reread the registers in case the main registers update during a read. The countdown chain is reset whenever the seconds register is written. Write transfers occur on the acknowledge from the device. Once the countdown chain is reset, to avoid rollover issues the remaining time and date registers must be written within 1s. Alarms The device contains two time-of-day/date alarms. Alarm 1 can be set by writing to registers 07h 0Ah. Alarm 2 can be set by writing to registers 0Bh 0Dh. See Table 2. The alarms can be programmed (by the alarm enable and INTCN bits in the Control register) to activate the INT/SQW output on an alarm match condition. Bit 7 of each of the time-of-day/date alarm registers are mask bits (Table 2). When all the mask bits for each alarm are logic 0, an alarm only occurs when the values in the timekeeping registers match the corresponding values stored in the time-of-day/date alarm registers. The alarms can also be programmed to repeat every second, minute, hour, day, or date. Table 3 shows the possible settings. Configurations not listed in the table result in illogical operation. The DY/DT bits (bit 6 of the alarm day/date registers) control whether the alarm value stored in bits 0 5 of that register reflects the day of the week or the date of the month. If DY/DT is written to logic 0, the alarm is the result of a match with date of the month. If DY/DT is written to logic 1, the alarm is the result of a match with day of the week. Table 3. Alarm Mask Bits DY/DT ALARM 1 REGISTER MASK BITS (BIT 7) A1M4 A1M3 A1M2 A1M1 ALARM RATE X Alarm once a second X Alarm when seconds match X Alarm when minutes and seconds match X Alarm when hours, minutes, and seconds match Alarm when date, hours, minutes, and seconds match Alarm when day, hours, minutes, and seconds match DY/DT ALARM 2 REGISTER MASK BITS (BIT 7) A2M4 A2M3 A2M2 ALARM RATE X Alarm once per minute (00 seconds of every minute) X Alarm when minutes match X Alarm when hours and minutes match Alarm when date, hours, and minutes match Alarm when day, hours, and minutes match Maxim Integrated 12
13 Control Register (0Eh) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 EOSC BBSQW CONV NA NA INTCN A2IE A1IE BIT 7 EOSC: Enable oscillator. When set to logic 0, the oscillator is started. When set to logic 1, the oscillator is stopped when the device switches to V BAT. This bit is clear (logic 0) when power is first applied. When the device is powered by V CC, the oscillator is always on regardless of the status of the EOSC bit. When the oscillator is disabled, all register data is static. BIT 6 BIT 5 BBSQW: Battery-backed square-wave enable. When set to logic 1 with INTCN = 0 and V CC < V PF, this bit enables the 1Hz square wave. When BBSQW is logic 0, INT/SQW goes high impedance when V CC falls below V PF. This bit is disabled (logic 0) when power is first applied. CONV: Convert temperature. Setting this bit to 1 forces the temperature sensor to convert the temperature into digital code and execute the temperature compensate algorithm to update the oscillator s accuracy. The device cannot be forced to execute the temperature-compensate algorithm faster than once per second. A user-initiated temperature conversion does not affect the internal update cycle. The CONV bit remains at a 1 from the time it is written until the temperature conversion is completed, at which time both CONV and BSY go to 0. The CONV bit should be used when monitoring the status of a user-initiated conversion. See Figure 7 for more details. BITS 4:3 NA: Not applicable. These bits have no affect on the device and can be set to either 0 or 1. BIT 2 INTCN: Interrupt control. This bit controls the INT/SQW output signal. When the INTCN bit is set to logic 0, a 1Hz square wave is output on INT/SQW. When the INTCN bit is set to logic 1, a match between the timekeeping registers and either of the alarm registers activates the INT/SQW output (if the alarm is also enabled). The corresponding alarm flag is always set regardless of the state of the INTCN bit. The INTCN bit is set to a logic 1 when power is first applied. BIT 1 BIT 0 A2IE: Alarm 2 interrupt enable. When set to logic 1, this bit permits the alarm 2 flag (A2F) bit in the status register to assert INT/SQW (when INTCN = 1). When the A2IE bit is set to logic 0 or INTCN is set to logic 0, the A2F bit does not initiate an interrupt signal. The A2IE bit is disabled (logic 0) when power is first applied. A1IE: Alarm 1 interrupt enable. When set to logic 1, this bit permits the alarm 1 flag (A1F) bit in the status register to assert INT/SQW (when INTCN = 1). When the A1IE bit is set to logic 0 or INTCN is set to logic 0, the A1F bit does not initiate an interrupt signal. The A1IE bit is disabled (logic 0) when power is first applied. Maxim Integrated 13
14 V CC POWERED INTERNAL 1Hz CLOCK BSY CONV THE USER SETS THE CONV BIT THE DEVICE CLEARS THE CONV BIT AFTER THE TEMPERATURE CONVERSION HAS COMPLETED BSY IS HIGH DURING THE TEMPERATURE CONVERSION V BAT POWERED 10 SECONDS INTERNAL 1Hz CLOCK BSY CONV THE USER SETS THE CONV BIT THE DEVICE CLEARS THE CONV BIT AFTER THE TEMPERATURE CONVERSION HAS COMPLETED Figure 7. CONV Control Bit and BSY Status Bit Operation Maxim Integrated 14
15 Status Register (0Fh) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 OSF EN32KHZ BSY A2F A1F X X X BIT 7 BITS 6:4 BIT 3 BIT 2 BIT 1 BIT 0 OSF: Oscillator stop flag. A logic 1 in this bit indicates that the oscillator either is stopped or was stopped for some period and could be used to judge the validity of the timekeeping data. This bit is set to logic 1 any time that the oscillator stops. This bit remains at logic 1 until written to logic 0. The following are examples of conditions that can cause the OSF bit to be set: 1) The first time power is applied. 2) The voltages present on both V CC and V BAT are insufficient to support the oscillator. 3) The EOSC bit is turned off in battery-backed mode. 4) External influences on the oscillator (i.e., noise, leakage, etc.). Unused (0). These bits have no meaning and are fixed at 0 when read. EN32KHZ: Enabled kHz output. This bit enables and disables the 32KHZ output. When set to a logic 0, the 32KHZ output is high impedance. On initial power-up, this bit is set to a logic 1 and the 32KHZ output is enabled and produces a kHz square wave if the oscillator is enabled. BSY: Busy. This bit indicates the device is busy executing temperature conversion function. It goes to logic 1 when the conversion signal to the temperature sensor is asserted, and then it is cleared when the device has completed the temperature conversion. See the Block Diagram for more details. A2F: Alarm 2 flag. A logic 1 in the alarm 2 flag bit indicates that the time matched the alarm 2 registers. If the A2IE bit is logic 1 and the INTCN bit is set to logic 1, INT/SQW is also asserted. A2F is cleared when written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves the value unchanged. A1F: Alarm 1 flag. A logic 1 in the alarm 1 flag bit indicates that the time matched the alarm 1 registers. If the A1IE bit is logic 1 and the INTCN bit is set to logic 1, INT/SQW is also asserted. A1F is cleared when written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves the value unchanged. Aging Offset Register (10h) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 SIGN DATA DATA DATA DATA DATA DATA DATA The Aging Offset register takes a user-provided value to add to or subtract from the factory-trimmed value that adjusts the accuracy of the time base. Use of the Aging Offset register is not needed to achieve the accuracy as defined in the Electrical Characteristics tables. The Aging Offset code is encoded in two s complement, with bit 7 representing the SIGN bit and a valid range of ±127. One LSB typically represents a 0.12ppm change in frequency. The change in ppm per LSB is the same over the operating temperature range. Positive offsets slow the time base and negative offsets quicken the time base. Maxim Integrated 15
16 Temperature Registers (11h 12h) Temperature Register (Upper Byte = 11h) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 SIGN DATA DATA DATA DATA DATA DATA DATA Temperature Register (Lower Byte = 12h) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 DATA DATA Temperature is represented as a 10-bit code with a resolution of 0.25 C and is accessible at location 11h and 12h. The temperature is encoded in two s complement format. The upper 8 bits, the integer portion, are at location 11h and the lower 2 bits, the fractional portion, are at location 12h. For example, b = C. Upon power reset, the registers are set to a default temperature of 0 C and the controller starts a temperature conversion. The temperature is read upon initial application of V CC or I 2 C access on V BAT and once every second afterwards with V CC power or once every 10s with V BAT power. The Temperature registers are also updated after each user-initiated conversion and are read only. When the RTC register values match alarm register settings, the corresponding alarm flag A1F or A2F bit is set to logic 1. If the corresponding alarm interrupt enable A1IE or A2IE bit is also set to logic 1, the alarm condition activates the INT/SQW signal if the INTCN bit is set to logic 1. The match is tested on the once-per-second update of the time and date registers. I2C Serial Port Operation I2C Slave Address The device s slave address byte is D0h. The first byte sent to the device includes the device identifier, device address, and the R/W bit (Figure 8). The device address sent by the I2C master must match the address assigned to the device. MSB R/W DEVICE IDENTIFIER Figure 8. I 2 C Slave Address Byte LSB READ/ WRITE BIT I2C Definitions The following terminology is commonly used to describe I2C data transfers. Master Device: The master device controls the slave devices on the bus. The master device generates SCL clock pulses and START and STOP conditions. Slave Devices: Slave devices send and receive data at the master s request. Bus Idle or Not Busy: Time between STOP and START conditions when both SDA and SCL are inactive and in their logic-high states. When the bus is idle, it often initiates a low-power mode for slave devices. START Condition: A START condition is generated by the master to initiate a new data transfer with a slave. Transitioning SDA from high to low while SCL remains high generates a START condition. See Figure 1 for applicable timing. STOP Condition: A STOP condition is generated by the master to end a data transfer with a slave. Transitioning SDA from low to high while SCL remains high generates a STOP condition. See Figure 1 for applicable timing. Maxim Integrated 16
17 Repeated START Condition: The master can use a repeated START condition at the end of one data transfer to indicate that it immediately initiates a new data transfer following the current one. Repeated STARTs are commonly used during read operations to identify a specific memory address to begin a data transfer. A repeated START condition is issued identically to a normal START condition. See Figure 1 for applicable timing. Bit Write: Transitions of SDA must occur during the low state of SCL. The data on SDA must remain valid and unchanged during the entire high pulse of SCL plus the setup and hold time requirements (see Figure 1). Data is shifted into the device during the rising edge of the SCL. Bit Read: At the end of a write operation, the master must release the SDA bus line for the proper amount of setup time (see Figure 1) before the next rising edge of SCL during a bit read. The device shifts out each bit of data on SDA at the falling edge of the previous SCL pulse and the data bit is valid at the rising edge of the current SCL pulse. Remember that the master generates all SCL clock pulses including when it is reading bits from the slave. Acknowledge ( and N): An acknowledge () or not acknowledge (N) is always the ninth bit transmitted during a byte transfer. The device receiving data (the master during a read or the slave during a write operation) performs an by transmitting a 0 during the ninth bit. A device performs a N by transmitting a 1 during the ninth bit. Timing for the and N is identical to all other bit writes. An is the acknowledgment that the device is properly receiving data. A N is used to terminate a read sequence or as an indication that the device is not receiving data. Byte Write: A byte write consists of 8 bits of information transferred from the master to the slave (most significant bit first) plus a 1-bit acknowledgment from the slave to the master. The 8 bits transmitted by the master are done according to the bit write definition and the acknowledgment is read using the bit read definition. Byte Read: A byte read is an 8-bit information transfer from the slave to the master plus a 1-bit or N from the master to the slave. The 8 bits of information that are transferred (most significant bit first) from the slave to the master are read by the master using the bit read definition, and the master transmits an using the bit write definition to receive additional data bytes. The master must N the last byte read to terminate communication so the slave returns control of SDA to the master. Slave Address Byte: Each slave on the I2C bus responds to a slave address byte sent immediately following a START condition. The slave address byte contains the slave address in the most significant 7 bits and the R/W bit in the least significant bit. The device s slave address is D0h and cannot be modified by the user. When the R/W bit is 0 (such as in D0h), the master is indicating it writes data to the slave. If R/W = 1 (D1h in this case), the master is indicating it wants to read from the slave. If an incorrect slave address is written, the device assumes the master is communicating with another I2C device and ignore the communication until the next START condition is sent. Memory Address: During an I2C write operation, the master must transmit a memory address to identify the memory location where the slave is to store the data. The memory address is always the second byte transmitted during a write operation following the slave address byte. I2C Communication See Figure 9 for an I2C communication example. Writing a Single Byte to a Slave: The master must generate a START condition, write the slave address byte (R/W = 0), write the memory address, write the byte of data, and generate a STOP condition. Remember the master must read the slave s acknowledgment during all byte write operations. Writing Multiple Bytes to a Slave: To write multiple bytes to a slave, the master generates a START condition, writes the slave address byte (R/W = 0), writes the starting memory address, writes multiple data bytes, and generates a STOP condition. Reading a Single Byte from a Slave: Unlike the write operation that uses the specified memory address byte to define where the data is to be written, the read operation occurs at the present value of the memory address counter. To read a single byte from the slave, the master generates a START condition, writes the slave address byte with R/W = 1, reads the data byte with a N to indicate the end of the transfer, and generates a STOP condition. However, since requiring the master to keep track of the memory address counter is impractical, use the method for manipulating the address counter for reads. Maxim Integrated 17
18 TYPICAL I 2 C WRITE TRANSACTION START MSB LSB MSB LSB MSB LSB R/W b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 STOP ADDRESS READ/ WRITE REGISTER ADDRESS DATA EXAMPLE I 2 C TRANSACTIONS A) SINGLE BYTE WRITE -WRITE CONTROL REGISTER TO 44h START D0h 0Eh h STOP B) SINGLE BYTE READ -READ CONTROL REGISTER START D0h 0Eh REPEATED START D1h DATA VALUE MASTER N STOP C) D) MULTIBYTE WRITE -WRITE DATE REGISTER TO "02" AND MONTH REGISTER TO "11" MULTIBYTE READ -READ ALARM 2 HOURS AND DATE VALUES D0h 04h START D0h 0Ch START h REPEATED START 11h D1h DATA VALUE STOP MASTER DATA VALUE MASTER N STOP Figure 9. I 2 C Transactions Manipulating the Address Counter for Reads: A dummy write cycle can be used to force the address counter to a particular value. To do this the master generates a START condition, writes the slave address byte (R/W = 0), writes the memory address where it desires to read, generates a repeated START condition, writes the slave address byte (R/W = 1), reads data with or N as applicable, and generates a STOP condition. See Figure 6 for a read example using the repeated START condition to specify the starting memory location. Reading Multiple Bytes from a Slave: The read operation can be used to read multiple bytes with a single transfer. When reading bytes from the slave, the master simply s the data byte if it desires to read another byte before terminating the transaction. After the master reads the last byte it must N to indicate the end of the transfer and then it generates a STOP condition. Applications Information Power-Supply Decoupling To achieve the best results when using the DS3231M, decouple the VCC and/or VBAT power supplies with 0.1FF and/or 1.0FF capacitors. Use a high-quality, ceramic, surface-mount capacitor if possible. Surfacemount components minimize lead inductance, which improves performance, and ceramic capacitors tend to have adequate high-frequency response for decoupling applications. If communications during battery operation are not required, the VBAT decoupling capacitor can be omitted. Using Open-Drain Outputs The 32KHZ and INT/SQW outputs are open drain and therefore require external pullup resistors to realize logichigh output levels. Pullup resistor values between 1kI and 10MI are typical. The RST output is also open drain, but is provided with an internal 50kI pullup resistor (RPU) to VCC. External pullup resistors should not be added. SDA and SCL Pullup Resistors SDA is an open-drain output and requires an external pullup resistor to realize a logic-high level. Because the device does not use clock cycle stretching, a master using either an open-drain output with a pullup resistor or CMOS output driver (push-pull) could be used for SCL. Battery Charge Protection The device contains Maxim Integrated s redundant battery-charge protection circuit to prevent any charging of the external battery. Maxim Integrated 18
19 Package Information For the latest package outline information and land patterns (footprints), go to Note that a +, #, or - in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PAGE TYPE PAGE CODE OUTLINE NO. LAND PATTERN NO. 16 SO W16MK SO S8MK Maxim Integrated 19
20 Revision History REVISION NUMBER REVISION DATE DESCRIPTION PAGES CHANGED 0 6/10 Initial release 1 5/ / /11 Updated the Features section; moved the temperature accuracy limit from ±3 C (max) to ±3 C (typ) in the DC Electrical Characteristics General table; added the Power- Supply Current vs. SCL Frequency graph to the Typical Operating Characteristics section; changed the initial date information to international format in the Power-Supply Configuration section Removed future status from the 8-pin SO package in the Ordering Information table; updated the Typical Operating Circuit; added Note 7 to the C BIN parameter in the AC Electrical Characteristics I 2 C Interface table; clarified the 10h register range in Table 2 and the Aging Offset Register (10h) section; corrected the package codes for both SO variants in the Package Information table Added the automotive qualified 8-pin SO package to the Ordering Information table; changed the lead temperature from +260 C to +300 C in the Absolute Maximum Ratings section 1, 3, 6, 10 1, 4, 11, 15, 19 1, 2 4 9/12 Changed the operating temperature range from -40 C to +85 C to -45 C to +85 C 1-4, 8 5 7/13 Added junction temperature and package thermal data 2 6 8/14 Added Initial V BAT Attachment section /15 Updated Benefits and Features section. 1 For pricing, delivery, and ordering information, please contact Maxim Direct at , or visit Maxim Integrated s website at Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc Maxim Integrated Products, Inc. 20
DS1307ZN. 64 x 8 Serial Real-Time Clock
DS137 64 x 8 Serial Real-Time Clock www.maxim-ic.com FEATURES Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid
64 x 8, Serial, I 2 C Real-Time Clock
DS1307 64 x 8, Serial, I 2 C Real-Time Clock GENERAL DESCRIPTION The DS1307 serial real-time clock (RTC) is a lowpower, full binary-coded decimal (BCD) clock/calendar plus 56 bytes of NV SRAM. Address
DS1621 Digital Thermometer and Thermostat
Digital Thermometer and Thermostat www.dalsemi.com FEATURES Temperature measurements require no external components Measures temperatures from 55 C to +125 C in 0.5 C increments. Fahrenheit equivalent
DS1621 Digital Thermometer and Thermostat
www.maxim-ic.com FEATURES Temperature measurements require no external components Measures temperatures from -55 C to +125 C in 0.5 C increments. Fahrenheit equivalent is -67 F to 257 F in 0.9 F increments
DS1721 2-Wire Digital Thermometer and Thermostat
www.dalsemi.com FEATURES Temperature measurements require no external components with ±1 C accuracy Measures temperatures from -55 C to +125 C; Fahrenheit equivalent is -67 F to +257 F Temperature resolution
DS1220Y 16k Nonvolatile SRAM
19-5579; Rev 10/10 NOT RECOENDED FOR NEW DESIGNS 16k Nonvolatile SRAM www.maxim-ic.com FEATURES 10 years minimum data retention in the absence of external power Data is automatically protected during power
DS1678 Real-Time Event Recorder
DS1678 Real-Time Event Recorder www.maxim-ic.com GENERAL DESCRIPTION The DS1678 real-time clock (RTC) event recorder records the time and date of a nonperiodic, asynchronous event each time the INT pin
DALLAS DS1233 Econo Reset. BOTTOM VIEW TO-92 PACKAGE See Mech. Drawings Section on Website
5V EconoReset www.maxim-ic.com FEATURES Automatically restarts microprocessor after power failure Monitors pushbutton for external override Internal circuitry debounces pushbutton switch Maintains reset
DS1386/DS1386P RAMified Watchdog Timekeeper
DS1386/DS1386P RAMified Watchdog Timekeeper www.maxim-ic.com GENERAL DESCRIPTION The DS1386 is a nonvolatile static RAM with a full-function real-time clock (RTC), alarm, watchdog timer, and interval timer
DS1220Y 16k Nonvolatile SRAM
Not Recommended for New Design DS122Y 16k Nonvolatile SRAM www.maxim-ic.com FEATURES years minimum data retention in the absence of external power Data is automatically protected during power loss Directly
FM75 Low-Voltage Two-Wire Digital Temperature Sensor with Thermal Alarm
Low-Voltage Two-Wire Digital Temperature Sensor with Thermal Alarm Features User Configurable to 9, 10, 11 or 12-bit Resolution Precision Calibrated to ±1 C, 0 C to 100 C Typical Temperature Range: -40
MAX14760/MAX14762/MAX14764 Above- and Below-the-Rails Low-Leakage Analog Switches
19-652; Rev 1; 8/12 EVALUATION KIT AVAILABLE MAX1476// General Description The MAX1476// analog switches are capable of passing bipolar signals that are beyond their supply rails. These devices operate
V CC TOP VIEW. f SSO = 20MHz to 134MHz (DITHERED)
19-013; Rev 1; 10/11 0MHz to 13MHz Spread-Spectrum General Description The is a spread-spectrum clock modulator IC that reduces EMI in high clock-frequency-based, digital electronic equipment. Using an
PACKAGE OUTLINE DALLAS DS2434 DS2434 GND. PR 35 PACKAGE See Mech. Drawings Section
PRELIMINARY DS2434 Battery Identification Chip FEATURES Provides unique ID number to battery packs PACKAGE OUTLINE Eliminates thermistors by sensing battery temperature on chip DALLAS DS2434 1 2 3 256
ABRIDGED DATA SHEET EVALUATION KIT AVAILABLE
EVALUATION KIT AVAILABLE General Description DeepCoverM embedded security solutions cloak sensitive data under multiple layers of advanced physical security to provide the most secure key storage possible.
DS1225Y 64k Nonvolatile SRAM
DS1225Y 64k Nonvolatile SRAM www.maxim-ic.com FEATURES years minimum data retention in the absence of external power Data is automatically protected during power loss Directly replaces 2k x 8 volatile
DS2401 Silicon Serial Number
19-5860; Rev 3/15 Silicon Serial Number BENEFITS AND FEATURES Guaranteed Unique 64-Bit ROM ID Chip for Absolute Traceability o Unique, Factory-Lasered and Tested 64-Bit Registration Number (8-Bit Family
Spread-Spectrum Crystal Multiplier DS1080L. Features
Rev 1; 3/0 Spread-Spectrum Crystal Multiplier General Description The is a low-jitter, crystal-based clock generator with an integrated phase-locked loop (PLL) to generate spread-spectrum clock outputs
AAT3520/2/4 MicroPower Microprocessor Reset Circuit
General Description Features PowerManager The AAT3520 series of PowerManager products is part of AnalogicTech's Total Power Management IC (TPMIC ) product family. These microprocessor reset circuits are
DS12885, DS12885Q, DS12885T. Real Time Clock FEATURES PIN ASSIGNMENT
DS12885, DS12885Q, DS12885T Real Time Clock FEATURES Drop in replacement for IBM AT computer clock/calendar Pin configuration closely matches MC146818B and DS1285 Counts seconds, minutes, hours, days,
DS1821 Programmable Digital Thermostat and Thermometer
ma www.maxim-ic.com FEATURES Requires no external components Unique 1-Wire interface requires only one port pin for communication Operates over a -55 C to +125 C (67 F to +257 F) temperature range Functions
DS12887. Real Time Clock FEATURES PIN ASSIGNMENT PIN DESCRIPTION
DS12887 Real Time Clock FEATURES Drop in replacement for IBM AT computer clock/ calendar Pin compatible with the MC146818B and DS1287 Totally nonvolatile with over 10 years of operation in the absence
TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features
DATASHEET ICS280 Description The ICS280 field programmable spread spectrum clock synthesizer generates up to four high-quality, high-frequency clock outputs including multiple reference clocks from a low-frequency
Real Time Clock Module with I2C Bus
Moisture Seitivity Level: MSL=1 FEATURES: With state-of-the-art RTC Technology by Micro Crystal AG RTC module with built-in crystal oscillating at 32.768 khz 3 timekeeping current at 3 Timekeeping down
ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET
DATASHEET ICS514 Description The ICS514 LOCO TM is the most cost effective way to generate a high-quality, high-frequency clock output from a 14.31818 MHz crystal or clock input. The name LOCO stands for
Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +1024 C)
19-2235; Rev 1; 3/02 Cold-Junction-Compensated K-Thermocoupleto-Digital General Description The performs cold-junction compensation and digitizes the signal from a type-k thermocouple. The data is output
www.jameco.com 1-800-831-4242
Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. www.maxim-ic.com FEATURES 10 years minimum data retention in the absence
DS18B20 Programmable Resolution 1-Wire Digital Thermometer
www.dalsemi.com FEATURES Unique 1-Wire interface requires only one port pin for communication Multidrop capability simplifies distributed temperature sensing applications Requires no external components
HDMM01 V1.0. Dual-axis Magnetic Sensor Module With I 2 C Interface FEATURES. Signal Path X
Dual-axis Magnetic Sensor Module With I 2 C Interface FEATURES Low power consumption: typically 0.4mA@3V with 50 measurements per second Power up/down function available through I 2 C interface SET/RESET
1 TO 4 CLOCK BUFFER ICS551. Description. Features. Block Diagram DATASHEET
DATASHEET 1 TO 4 CLOCK BUFFER ICS551 Description The ICS551 is a low cost, high-speed single input to four output clock buffer. Part of IDT s ClockBlocks TM family, this is our lowest cost, small clock
8-Bit Flash Microcontroller for Smart Cards. AT89SCXXXXA Summary. Features. Description. Complete datasheet available under NDA
Features Compatible with MCS-51 products On-chip Flash Program Memory Endurance: 1,000 Write/Erase Cycles On-chip EEPROM Data Memory Endurance: 100,000 Write/Erase Cycles 512 x 8-bit RAM ISO 7816 I/O Port
ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET
DATASHEET ICS650-44 Description The ICS650-44 is a spread spectrum clock synthesizer intended for video projector and digital TV applications. It generates three copies of an EMI optimized 50 MHz clock
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
LC898300XA. Functions Automatic adjustment to the individual resonance frequency Automatic brake function Initial drive frequency adjustment function
Ordering number : A2053 CMOS LSI Linear Vibrator Driver IC http://onsemi.com Overview is a Linear Vibrator Driver IC for a haptics and a vibrator installed in mobile equipments. The best feature is it
DP8570A DP8570A Timer Clock Peripheral (TCP)
DP8570A DP8570A Timer Clock Peripheral (TCP) Literature Number: SNAS557 DP8570A Timer Clock Peripheral (TCP) General Description The DP8570A is intended for use in microprocessor based systems where information
Cold-Junction Compensated Thermocouple-to-Digital Converter
General Description The MAX31855 performs cold-junction compensation and digitizes the signal from a K-, J-, N-, T-, S-, R-, or E-type thermocouple. The data is output in a signed 14-bit, SPI-compatible,
MicroMag3 3-Axis Magnetic Sensor Module
1008121 R01 April 2005 MicroMag3 3-Axis Magnetic Sensor Module General Description The MicroMag3 is an integrated 3-axis magnetic field sensing module designed to aid in evaluation and prototyping of PNI
MMC314xMR. Ultra Small 3-axis Magnetic Sensor, With I 2 C Interface. Signal Path X. Signal Path Y. Signal Path Z FEATURES
Ultra Small 3-axis Magnetic Sensor, With I 2 C Interface MMC314xMR FEATURES Full integration of 3-axis magnetic sensors and electronics circuits resulting in less external components needed Small Low profile
DS1302 Trickle-Charge Timekeeping Chip
DS1302 Trickle-Charge Timekeeping Chip BENEFITS AND FEATURES Completely Manages All Timekeeping Functio o Real-Time Clock Counts Seconds, Minutes, Hours, Date of the Month, Month, Day of the Week, and
ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram
Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed
DS1232LP/LPS Low Power MicroMonitor Chip
DSLP/LPS Low Power MicroMonitor Chip www.dalsemi.com FEATURES Super-low power version of DS 50 µa quiescent current Halts and restarts an out-of-control microprocessor Automatically restarts microprocessor
Microprocessor Supervisory Circuits
19-4333; Rev 4; 12/05 Microprocessor Supervisory Circuits General Description The reduce the complexity and number of components required for power-supply monitoring and battery-control functions in microprocessor
R EXT THERMISTOR. Maxim Integrated Products 1
19-2219; Rev 0; 2/02 Thermistor-to-Digital Converter General Description The converts an external thermistor s temperature-dependent resistance directly into digital form. The thermistor and an external
Allows the user to protect against inadvertent write operations. Device select and address bytes are Acknowledged Data Bytes are not Acknowledged
Write Protect CAT24WCxxx I 2 C Serial EEPROMs. Allows the user to protect against inadvertent write operations. WP = V CC : Write Protected Device select and address bytes are Acknowledged Data Bytes are
LM75 Digital Temperature Sensor and Thermal Watchdog with Two-Wire Interface
Digital Temperature Sensor and Thermal Watchdog with Two-Wire Interface General Description The LM75 is a temperature sensor, Delta-Sigma analog-todigital converter, and digital over-temperature detector
SPREAD SPECTRUM CLOCK GENERATOR. Features
DATASHEET ICS7152 Description The ICS7152-01, -02, -11, and -12 are clock generators for EMI (Electro Magnetic Interference) reduction (see below for frequency ranges and multiplier ratios). Spectral peaks
DG2302. High-Speed, Low r ON, SPST Analog Switch. Vishay Siliconix. (1-Bit Bus Switch with Level-Shifter) RoHS* COMPLIANT DESCRIPTION FEATURES
High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch with Level-Shifter) DG2302 DESCRIPTION The DG2302 is a high-speed, 1-bit, low power, TTLcompatible bus switch. Using sub-micron CMOS technology,
Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND
DATASHEET IDT5P50901/2/3/4 Description The IDT5P50901/2/3/4 is a family of 1.8V low power, spread spectrum clock generators capable of reducing EMI radiation from an input clock. Spread spectrum technique
7 OUT1 8 OUT2 9 OUT3 10 OUT4 11 OUT5 12 OUT6 13 OUT7 14 OUT8 15 OUT9 16 OUT10 17 OUT11 18 OUT12 19 OUT13 20 OUT14 21 OUT15 22 OUT16 OUT17 23 OUT18
18 CHANNELS LED DRIVER GENERAL DESCRIPTION IS31FL3218 is comprised of 18 constant current channels each with independent PWM control, designed for driving LEDs. The output current of each channel can be
Push-Pull FET Driver with Integrated Oscillator and Clock Output
19-3662; Rev 1; 5/7 Push-Pull FET Driver with Integrated Oscillator General Description The is a +4.5V to +15V push-pull, current-fed topology driver subsystem with an integrated oscillator for use in
ICS650-01 SYSTEM PERIPHERAL CLOCK SOURCE. Description. Features. Block Diagram DATASHEET
DATASHEET ICS650-01 Description The ICS650-01 is a low-cost, low-jitter, high-performance clock synthesizer for system peripheral applications. Using analog/digital Phase-Locked Loop (PLL) techniques,
High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch)
High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch) DG2301 ishay Siliconix DESCRIPTION The DG2301 is a high-speed, 1-bit, low power, TTLcompatible bus switch. Using sub-micron CMOS technology,
CAT28C64B F R E E. 64K-Bit CMOS PARALLEL EEPROM L E A D FEATURES DESCRIPTION BLOCK DIAGRAM
64K-Bit CMOS PARALLEL EEPROM FEATURES Fast read access times: 90/120/150ns Low power CMOS dissipation: Active: 25 ma max. Standby: 100 µa max. Simple write operation: On-chip address and data latches Self-timed
X9C102/103/104/503. Terminal Voltages ±5V, 100 Taps. Digitally-Controlled (XDCP) Potentiometer
APPLICATION NOTE A V A I L A B L E AN20 AN42 53 AN71 AN73 AN88 AN91 92 AN115 Terminal Voltages ±5V, 100 Taps X9C102/103/104/503 Digitally-Controlled (XDCP) Potentiometer FEATURES Solid-State Potentiometer
Low-Jitter I 2 C/SPI Programmable Dual CMOS Oscillator
eet General Description The DSC2111 and series of programmable, highperformance dual CMOS oscillators utilizes a proven silicon MEMS technology to provide excellent jitter and stability while incorporating
1-to-8 I 2 C Bus Switches/Multiplexers with Bus Lock-Up Detection, Isolation, and Notification
19-4207; Rev 0; 9/08 EVALUATION KIT AVAILABLE 1-to-8 I 2 C Bus Switches/Multiplexers with Bus General Description The 8-channel I 2 C switches/multiplexers expand the main I 2 C bus to any combination
NCP1840. 8-Channel Programmable LED Driver
8-Channel Programmable LED Driver The NCP1840 is a general purpose LED driver that allows for full programmability of eight separate LED channels through a simple I 2 C serial communication interface.
1-Mbit (128K x 8) Static RAM
1-Mbit (128K x 8) Static RAM Features Pin- and function-compatible with CY7C109B/CY7C1009B High speed t AA = 10 ns Low active power I CC = 80 ma @ 10 ns Low CMOS standby power I SB2 = 3 ma 2.0V Data Retention
71M6521 Energy Meter IC. Real Time Clock Compensation. The Challenge. The RTC in the 71M6521D/F. Theory of Operation APPLICATION NOTE
71M6521 Energy Meter IC A Maxim Integrated Products Brand APPLICATION NOTE AN_6521_035 MAY 2007 This document describes how to use software to compensate the real time clock (RTC) in Teridian meter chips.
HD61202U. (Dot Matrix Liquid Crystal GraphicDisplay Column Driver)
HD622U (Dot Matrix Liquid Crystal GraphicDisplay Column Driver) Description HD622U is a column (segment) driver for dot matrix liquid crystal graphic display systems. It stores the display data transferred
On/Off Controller with Debounce and
19-4128; Rev ; 5/8 On/Off Controller with Debounce and General Description The is a pushbutton on/off controller with a single switch debouncer and built-in latch. It accepts a noisy input from a mechanical
TLI4946. Datasheet TLI4946K, TLI4946-2K, TLI4946-2L. Sense and Control. May 2009
May 2009 TLI4946 High Precision Hall Effect Latches for Industrial and Consumer Applications TLI4946K, TLI4946-2K, TLI4946-2L Datasheet Rev. 1.0 Sense and Control Edition 2009-05-04 Published by Infineon
24-Channel Automotive Switch Monitor
9-4464; Rev ; 2/9 EVALUATION KIT AVAILABLE 24-Channel Automotive Switch Monitor General Description The is a 24-channel automotive contact monitor designed as an interface between mechanical switches and
2-wire Serial EEPROM AT24C512
Features Low-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V). (V CC =.V to 5.5V). (V CC =.V to.v) Internally Organized 5,5 x -wire Serial Interface Schmitt Triggers, Filtered Inputs for
STM6315. Open drain microprocessor reset. Features
Open drain microprocessor reset Features Low supply current of 1.5µA (typ) ±1.8% reset threshold accuracy (25 C) Guaranteed RST assertion down to V CC = 1.0V Open drain RST output can exceed V CC Power
Application Note 58 Crystal Considerations for Dallas Real-Time Clocks
www.maxim-ic.com Application Note 58 Crystal Considerations for Dallas Real-Time Clocks OVERVIEW This application note describes crystal selection and layout techniques for connecting a 32,768Hz crystal
PS323. Precision, Single-Supply SPST Analog Switch. Features. Description. Block Diagram, Pin Configuration, and Truth Table. Applications PS323 PS323
Features ÎÎLow On-Resistance (33-ohm typ.) Minimizes Distortion and Error Voltages ÎÎLow Glitching Reduces Step Errors in Sample-and-Holds. Charge Injection, 2pC typ. ÎÎSingle-Supply Operation (+2.5V to
DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS
INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 February 1991 FEATURES Low distortion 16-bit dynamic range 4 oversampling possible Single 5 V power supply No external components required
INTEGRATED CIRCUITS DATA SHEET. PCF8591 8-bit A/D and D/A converter. Product specification Supersedes data of 2001 Dec 13.
INTEGRATED CIRCUITS DATA SHEET Supersedes data of 2001 Dec 13 2003 Jan 27 CONTENTS 1 FEATURES 2 APPLICATIONS 3 GENERAL DESCRIPTION 4 ORDERING INFORMATION 5 BLOCK DIAGRAM 6 PINNING 7 FUNCTIONAL DESCRIPTION
INTEGRATED CIRCUITS DATA SHEET. SAA1064 4-digit LED-driver with I 2 C-Bus interface. Product specification File under Integrated Circuits, IC01
INTEGRATED CIRCUITS DATA SHEET 4-digit LED-driver with I 2 C-Bus interface File under Integrated Circuits, IC01 February 1991 GENERAL DESCRIPTION The LED-driver is a bipolar integrated circuit made in
PCF8523. 1. General description. 2. Features and benefits. 3. Applications. Real-Time Clock (RTC) and calendar
Rev. 7 28 April 2015 Product data sheet 1. General description The is a CMOS 1 optimized for low power consumption. Data is transferred serially via the I 2 C-bus with a maximum data rate of 1000 kbit/s.
Features INSTRUCTION DECODER CONTROL LOGIC AND CLOCK GENERATORS COMPARATOR AND WRITE ENABLE EEPROM ARRAY READ/WRITE AMPS 16
July 2000 FM9346 (MICROWIRE Bus Interface) 1024- Serial EEPROM General Description FM9346 is a 1024-bit CMOS non-volatile EEPROM organized as 64 x 16-bit array. This device features MICROWIRE interface
Clock and calendar with 240 x 8-bit RAM
Rev. 06 6 October 2010 Product data sheet 1. General description The is a clock and calendar chip, based on a 2048 bit static CMOS 1 RAM organized as 256 words by 8 bits. Addresses and data are transferred
Real Time Clock USB Evaluation Board V3.0
Real Time Clock USB Evaluation Board V.0 Application Note February 9, 008 RTC EVB Intersil RTC Devices Supported Introduction This evaluation board provides a platform for testing Intersil Real Time Clock
8254 PROGRAMMABLE INTERVAL TIMER
PROGRAMMABLE INTERVAL TIMER Y Y Y Compatible with All Intel and Most Other Microprocessors Handles Inputs from DC to 10 MHz 8 MHz 8254 10 MHz 8254-2 Status Read-Back Command Y Y Y Y Y Six Programmable
Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches
19-2418; Rev ; 4/2 Quad, Rail-to-Rail, Fault-Protected, General Description The are quad, single-pole/single-throw (SPST), fault-protected analog switches. They are pin compatible with the industry-standard
Features. Instruction. Decoder Control Logic, And Clock Generators. Address Compare amd Write Enable. Protect Register V PP.
February 1999 NM9366 (MICROWIRE Bus Interface) 4096-Bit Serial EEPROM General Description The NM9366 devices are 4096 bits of CMOS non-volatile electrically erasable memory divided into 256 16-bit registers.
Hardware Documentation. Data Sheet HAL 202. Hall-Effect Sensor. Edition Sept. 18, 2014 DSH000159_002EN
Hardware Documentation Data Sheet HAL 202 Hall-Effect Sensor Edition Sept. 18, 2014 DSH000159_002EN HAL202 Copyright, Warranty, and Limitation of Liability The information and data contained in this document
M25P40 3V 4Mb Serial Flash Embedded Memory
Features M25P40 3V 4Mb Serial Flash Embedded Memory Features SPI bus-compatible serial interface 4Mb Flash memory 75 MHz clock frequency (maximum) 2.3V to 3.6V single supply voltage Page program (up to
AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)
Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:
DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs
DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits
Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff
Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to
INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook. 1997 Jun 30
INTEGRATED CIRCUITS IC24 Data Handbook 1997 Jun 30 FEATURES Wide supply voltage range of 1.2 V to 3.6 V In accordance with JEDEC standard no. 8-1A Inputs accept voltages up to 5.5 V CMOS low power consumption
1.5A Very L.D.O Voltage Regulator LM29150/29151/29152
FEATURES High Current Capability 1.5A Low Dropout Voltage 350mV Low Ground Current Accurate 1% Guaranteed Initial Tolerance Extremely Fast Transient Response Reverse-Battery and "Load Dump" Protection
MAX14759/MAX14761/MAX14763 Above- and Below-the-Rails Low On-Resistance Analog Switches
19-651; Rev ; 9/11 /MX14761/ General Description The /MX14761/ analog switches are capable of passing bipolar signals that are beyond their supply rails. These devices operate from a single +3.V to +5.5V
PCT2075. 1. General description. I 2 C-bus Fm+, 1 degree C accuracy, digital temperature sensor and thermal watchdog
I 2 C-bus Fm+, 1 degree C accuracy, digital temperature sensor and thermal watchdog Rev. 9 24 October 2014 Product data sheet 1. General description The is a temperature-to-digital converter featuring
STWD100. Watchdog timer circuit. Description. Features. Applications
Watchdog timer circuit Description Datasheet - production data SOT23-5 (WY) Features SC70-5, SOT323-5 (W8) Current consumption 13 µa typ. Available watchdog timeout periods are 3.4 ms, 6.3 ms, 102 ms,
PCF85063A. 1. General description. 2. Features and benefits. 3. Applications. Tiny Real-Time Clock/calendar with alarm function and I 2 C-bus
Tiny Real-Time Clock/calendar with alarm function and I 2 C-bus Rev. 6 18 November 2015 Product data sheet 1. General description The is a CMOS 1 Real-Time Clock (RTC) and calendar optimized for low power
M24512-W M24512-R M24512-HR M24256-BW M24256-BR M24256-BHR
M24512-W M24512-R M24512-HR M24256-BW M24256-BR M24256-BHR 512 Kbit and 256 Kbit serial I²C bus EEPROM with three Chip Enable lines Features Two-wire I 2 C serial interface supports the 1 MHz protocol
10-Bit Digital Temperature Sensor (AD7416) and Four/Single-Channel ADC (AD7417/AD7418) AD7416/AD7417/AD7418
a FEATURES 10-Bit ADC with 15 s and 30 s Conversion Times Single and Four Single-Ended Analog Input Channels On-Chip Temperature Sensor: 55 C to +125 C On-Chip Track/Hold Over-Temperature Indicator Automatic
AN_6521_035 APRIL 2009
71M6521 Energy Meter IC A Maxim Integrated Products Brand APPLICATION NOTE AN_6521_035 APRIL 2009 This document describes how to use software to compensate the real time clock (RTC) in Teridian meter chips.
Bi-directional level shifter for I²C-bus and other systems.
APPLICATION NOTE Bi-directional level shifter for I²C-bus and other Abstract With a single MOS-FET a bi-directional level shifter circuit can be realised to connect devices with different supply voltages
256K (32K x 8) Static RAM
256K (32K x 8) Static RAM Features High speed: 55 ns and 70 ns Voltage range: 4.5V 5.5V operation Low active power (70 ns, LL version) 275 mw (max.) Low standby power (70 ns, LL version) 28 µw (max.) Easy
HT1632C 32 8 &24 16 LED Driver
328 &216 LED Driver Features Operating voltage: 2.V~5.5V Multiple LED display 32 ROW /8 COM and 2 ROW & 16 COM Integrated display RAM select 32 ROW & 8 COM for 6 display RAM, or select 2 ROW & 16 COM for
How To Power A Power Supply On A Microprocessor (Mii) Or Microprocessor Power Supply (Miio) (Power Supply) (Microprocessor) (Miniio) Or Power Supply Power Control (Power) (Mio) Power Control
November 200 HI-010, HI-110 CMOS High oltage Display Driver GENERAL DESCRIPTION PIN CONFIGURATION (Top iew) The HI-010 & HI-110 high voltage display drivers are constructed of MOS P Channel and N Channel
200mA, Automotive, Ultra-Low Quiescent Current, Linear Regulator
EVALUATION KIT AVAILABLE MAX1691 General Description The MAX1691 ultra-low quiescent current, high-voltage linear regulator is ideal for use in automotive and batteryoperated systems. The device operates
Maxim Integrated Products 1
19-542; Rev 1; 5/6 Stereo Volume Control General Description The dual, 4kΩ logarithmic taper volume control features a debounced up/down interface for use with a simple rotary encoder without using a microcontroller
MIC2940A/2941A. Features. General Description. Applications. Pin Configuration. 1.2A Low-Dropout Voltage Regulator
MIC294A/2941A 1.2A Low-Dropout oltage Regulator General Description The MIC294A and MIC2941A are bulletproof efficient voltage regulators with very low dropout voltage (typically 4 at light loads and 35
MM74HC4538 Dual Retriggerable Monostable Multivibrator
MM74HC4538 Dual Retriggerable Monostable Multivibrator General Description The MM74HC4538 high speed monostable multivibrator (one shots) is implemented in advanced silicon-gate CMOS technology. They feature
