CHAPTER TEE VILLAGE PMAYAKDRICHI AS AH ECOSYSTEM. recent years ecology has become an ubiquitous

Size: px
Start display at page:

Download "CHAPTER TEE VILLAGE PMAYAKDRICHI AS AH ECOSYSTEM. recent years ecology has become an ubiquitous"

Transcription

1 16 CHAPTER II TEE VILLAGE PMAYAKDRICHI AS AH ECOSYSTEM In recent years ecology has become an ubiquitous word. It has begun to enter into discussions on economic development,industrial growth, standards of living and more especially regarding the threats to the quality of human life ( Vyas and Golley >,1975)* The word ecology was first coined by Haeckel (1869) who defined it as the total relationship of an organism to its organic and inorganic environment. Odum (1963) defined ecology as the study of the structure and function of nature. According to Mitchell (1976) ecology is the study of the processes responsible for the conversion of light energy from the sun into the biomass of plants (producers) and the processes that determine the numbers and abundances of the animals (consumers) that eat the plants and other animals. The focal theme of ecological studies is the concept of an ecosystem. The term ecosystem was coined by Tansley (1935) and according to him the term includes not only the living organisms but also the whole complex of physical factors forming what we call the environment. According to Lindeman (19^2 ) an ecosystem is a system composed of physical -chemicalbiological processes active within a space-time unit of any

2 17 dim ension. Odum ('1959).defined an ecosystem as any a re a of n a tu re th a t in clu d es liv in g organism s and n o n -liv in g substances in te r a c tin g to produce an exchange of m a te ria ls between th e liv in g and n o n -liv in g p a r ts. components j An ecosystem i s composed of th e follow ing fo u r a. b. c. d. A biotic (n o n -liv in g ) substances P roducer organism s namely green p la n ts Consumer organism s namely th e anim als which consume th e food prepared by th e green p la n ts B a c te ria and fu n g i which break down th e organic m atter a t the death of th e p la n ts and anim als and re le a s e th e m inerals f o r re c y c lin g. The re la tio n s h ip s between th e various components of an ecosystem a re based on th e trophic-dynam ic asp ect (Lindeman, 19^2; C olinvaux, 1973 and G a llu e c i, 1973). The green p la n ts a re cap able of sy n th e sisin g complex organic m olecules from sim ple in o rg an ic m olecules w ith th e h elp of sun«s energy by the. procese of p h o to sy n th e sis. T his is the process of primary p ro d u ctio n. The green p la n ts are a u to tro p h ic ( s e lf fe e d in g ) and form th e f i r s t tro p h ic le v e l. Animals a re h e te ro tro p h ic because they cannot prepare t h e i r own food and depend on food alread y prepared by o th er organism s. H erbivorous anim als consume p la n t p a rts and

3 18 utilise the energy rich organic molecules of the plant body f o r their growth and metabolism. These animals comprise the s e cond trophic level of the ecosystem. Carnivorous animals consume the herbivores and utilise the energy rich organic molecules of the animal tissue f o r their growth and metabolism. This is the third trophic level. Both the herbivores and carnivores are collectively called phagotrophs. The decomposers are c a lled saprotrophs b e cause they subsist on dead plant and animal organic matter. They break d o w n dead plant and animal matter and release the c o n s t i t u ents which can b e reused by other organisms. The herbivores, carnivores and the decomposers together constitute the c o n s u m e r component of the ecosystem, and they all derive their energy ultimately from the sun. Ecosystems are solar po w e r e d machines (Mitchell, 1980). The l i v i n g part of the environment is the biotic community. A community is a n aturally occuring assemblage of plants and animals that live together in the same environment, are mutually sustaining and interdependent and are constantly fixing, utilising and storing energy (Smith, 197*+)«A commu n i t y is made up of populations of plants a n d animals. A population is a group of interacting organisms of the same kind occupying a particular space. A h a b i t a t is the n a t u r a l abode of a population. It includes all the features

4 19 o f the environment i n a given locality including the physical a n d b iological features. S o l a r energy enters the e c osystem through green plants (producers), flows to the carnivores through the herbivores and finally to the decomposers which release it o u t of the ecosystem as heat energy. The transfer of energy from one component to another is governed by two laws of thermodynamics. The first law states that energy can neither be created nor destroyed, b u t can be transformed f r o m one f o r m to another. Solar energy is transformed into potential (chemical) energy of plant matter by green plants: herbivorous animals t r a n s f o r m this p otential energy of plant body into potential energy of animal tissues. According to the II law of thermodynamics, processes involving energy transformations w i l l not occur spontaneously unless there is a degradation o f energy into heat. In the flow of energy through the d ifferent compartments of an ecosystem, there is a progressive d i m i n u t i o n of the total energy b e cause at every step there is loss of energy as heat. In his w o r k on silver springs, O d u m (1957) observed that the solar energy available for the ecosystem was ,700,000 kcal m y r. The gross primary productivity (the total p h o t osynthesis) was.20,810 kcal m 2 y r ~ 1. The

5 20 net primary productivity (photosynthesis after respiration of plants) -was 8,833 keal m yr. The secondary productivity _2 of herbivores (second trophic level) was 383 keal m yr and the secondary productivity of carnivores (third trophic -2-1 level) was 21 kcal m yr These trophic levels can be represented in the form of a diagram which is palled the ecological pyramid or the energy pyramid (Fig. 3), The most striking feature of the energy pyramid is the progressive loss of energy as it moves through various trophic levels of the ecosystem. The flow of energy in the ecosystem can also be represented in the form of compartments linked together by arrows denoting the direction of the flow of energy. Fig. b is the energy flow diagram for the Cedar Bog Lake (Lindeman, 19^2). The most important character of the energy flow in ecosystems is that it is unidirectional. The energy trapped by the green plants cannot be reconverted to solar energy; that which passes to the herbivore cannot pass back to the green plants and so on. Fig. 5 is the energy flow diagram of a generalised ecosystem (Odum, 1959 )* This model can be adopted with suitable modifications for working out the energy flows of actual ecosystems. While energy is flowing unidirectionally through the ecosystem and is finally released out of it, there is a distinct cycling of nutrients within the ecosystem.

6 21 A very important point about the concept of ecosystem is that it can be applied at any scale: a d r o p of water f r o m a pond is an ecosystem; so is the entire planet earth. There are some ecosystems which are incomplete e.g. caves and the floor of the d e e p seas. D u e to the absence of sunlight, no photosynthesis can take place and so there are no producers. Organic matter is imported f r o m outside, and in the case of the deep sea floor, the,,rain,, of dead organic matter f r o m the upper layers of the seas sustains a detritus food chain. U r b a n industrial areas which are sustained by huge subsidies of fossil fuel, and where there is practically no primary p roduction and which are totally ^dependent upon food imported from rural centres can be classified in the s a m e category of i n complete ecosystems. M i t c h e l l (1976) h i nted that subsistence agriculture in India operated with insignificant amounts of f o ssil fuel inputs and is almost entirely dependent upon solar energy f o r its input of la.bour and n utrient cycling. Agricultural operations are conducted with the muscle power of the humans a n d the bullocks, which depend upon food produced from the previous year's crops i.e. t h e previous year's solar energy. Therefore Indian agriculture is solar powered. Secondly, in subsistence agriculture in d r yland farming in India, very

7 22 l i ttle of fertilizers or. pesticides are used. Fertilizers a n d pesticides are manufactured with the h e l p of fossil fuels. In the case of Indian agriculture the tendency is to recycle nutrients by the use of 'farmyard manure prepared from the dung of cattle. Since dung is only the r e sidue of the previous year's crop, the organic nutrient recycling is also solar powered. Thus in an I n d i a n village there are a set of producers (crops ) which trap sunlight a n d produce energy rich organic food to s u s t a i n the consumers (human and the i cattle). The h u m a n and bullock populations in turn invest their labour, in the agroecosystem. The dung is used as f armyard manure a n d so the nutrients are recycled (Fig. 1*+). Thus the Indian village has all the components of an ecosystem- it is an agroecosystem. Hence the agroecosystem of an Indian v i llage needs to be analysed qualitatively and quantitatively f r o m an ecological point of view. M i s r a (1972 b ) has shown that the methods of ecosystem analysis can be a p p l i e d to the croplands as w e l l as to grasslands and forests. In fact it is easier to apply ecosystem analysis to an agroecosystem b e cause there are very few species and the basic physiology of these species has been worked out threadbare (Mitchell, 1980). On the contrary, a w o r k e r on a n a tural e cosystem is p l agued by many ambiguities as pointed out by Engelman (1966) and Kormondy (1976). A w o r k e r on agroecosystem

8 23 however has a more unambiguous data base. While systems theory is not new either to the physical or social sciences, its application to the study of agriculture is just beginning. According to Saint and Coward (1977) an ecological systems approach is emerging among scientific researchers, in which both physical and organisational aspects of agricultural production are included as components of the same system that includes agronomy, biology and ecology / and vice versa. Relations that link the crop, the crop producer and the crop producing community are explored. Such studies are in progress in the International Institute of Tropical Agriculture, Nigeria and the International Maize and Wheat Improvement Center, Mexico. An interdisciplinary approach is emerging, as evidenced by the work of the botanist Loomis (1976) on agricultural systems. Hence there is ample lacuna in approaching the study of agroecosystem from an ecological point of view. The energy flow of the village Panayakurichi in the Tiruchirapalli district is investigated by the method of input-output analysis of energy and an ecosystem model is construetured. The aims of the present study ares 1. Constructing the. agroecosystem model of energy flow for the village Panayakurichi in the district of Tiruchirapalli.

9 2b 2. Evaluating the extent to which the study of agroecosystem in an Indian village can contribute to the science of ecology in terms of concepts and principles. 3. Comparing the productive efficiencies of the crops and cropping systems of the village Panayakurichi with other systems. *+. ' Examining the food producing potential of the Indian agroecosystem in terms of future prospects. The study encompasses the following spheres: i. Estimating the M P of the grasslands present in the village Panayakurichi and assessing their contribution to the energy flow of the cattle of the village. ii. Working out the productivities and photosynthetic efficiencies of the various crops growing in the village. iii. Drawing up the energy budgets of the various components of the agroecosystem in the village. iv. Constructing the agroecosystem model of energy ' flow for the village. v. Comparing the ecosystem model of Panayakurichi with the standard reference model of Indian

10 25 k&)\ agroecosystem (Figs.18 and 19) constructed by Mitchell (1980) and with other ecosystems. India has a population of 628 million (1977) and agriculture is central to its economy. Nearly half of the GNP is generated in agriculture. Before 19*4-0, asian countries were all net exporters of wheat, rice etc. to industrial nations. Ey the end of the war they lost their surpluses (Ehrlich and Ehrlich, ). The study of the solar powered agriculture of India is important from the point of view of evolving new strategies of food production (Mitchell, 1980). According to Levins (1973) researchers working in basic science must be convinced that agriculturally relevant research is of fundamental significance, and at the same time agricultural scientists must also be convinced that \ theory is practical, in the context of the global energy crisis, energy analysis has become a supplement to other methods of analysing questions concerning resources and environment. Just like economic analysis, energy analysis permits different production processes to,be compared (Johnson et al., 1977). In the light of these remarks the relevance and importance of this study cannot be. overemphasized.

Energy Flow in the Pond Teacher s Guide February 2011

Energy Flow in the Pond Teacher s Guide February 2011 Energy Flow in the Pond Teacher s Guide February 2011 Grades: 6, 7 & 8 Time: 3 hours With the pond as a model, students explore how energy that originates from the sun keeps changing shape and form as

More information

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids Energy Flow Through an Ecosystem Food Chains, Food Webs, and Ecological Pyramids What is Ecology? ECOLOGY is a branch of biology that studies ecosystems. Ecological Terminology Environment Ecology Biotic

More information

Introduction to Ecology

Introduction to Ecology Introduction to Ecology Ecology is the scientific study of the interactions between living organisms and their environment. Scientists who study ecology are called ecologists. Because our planet has many

More information

The main source of energy in most ecosystems is sunlight.

The main source of energy in most ecosystems is sunlight. Energy in Ecosystems: Ecology: Part 2: Energy and Biomass The main source of energy in most ecosystems is sunlight. What is the amount of energy from the sun? 100 W/ft 2 The energy gets transferred through

More information

Ecosystems and Food Webs

Ecosystems and Food Webs Ecosystems and Food Webs How do AIS affect our lakes? Background Information All things on the planet both living and nonliving interact. An Ecosystem is defined as the set of elements, living and nonliving,

More information

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS SECTION 1 In an ecosystem, plants capture the sun's energy and use it to convert inorganic compounds into energy-rich organic compounds. This process of using

More information

ENERGY FLOW THROUGH LIVING SYSTEMS

ENERGY FLOW THROUGH LIVING SYSTEMS reflect Enter the word domino as a search term on the Internet; you can fi nd some amazing domino runs. You can make your own by setting up a series of dominoes in a line. When you push the fi rst domino

More information

Energy flow in ecosystems. Lecture 6 Chap. 6

Energy flow in ecosystems. Lecture 6 Chap. 6 Energy flow in ecosystems Lecture 6 Chap. 6 1 What is an ecosystem? System = regularly interacting and interdependent components forming a unified whole Ecosystem = an ecological system; = a community

More information

a. a population. c. an ecosystem. b. a community. d. a species.

a. a population. c. an ecosystem. b. a community. d. a species. Name: practice test Score: 0 / 35 (0%) [12 subjective questions not graded] The Biosphere Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the

More information

Section 5.1 Food chains and food webs

Section 5.1 Food chains and food webs Section 5.1 Food chains and food webs The ultimate source of energy in an ecosystem comes from sunlight This energy is converted to an organic form using photosynthesis which is then passed between organisms

More information

Section 3: Trophic Structures

Section 3: Trophic Structures Marine Conservation Science and Policy Service learning Program Trophic Structure refers to the way in which organisms utilize food resources and hence where energy transfer occurs within an ecosystem.

More information

Ecosystems Processes: Energy Flow

Ecosystems Processes: Energy Flow Ecosystems Processes: Energy Flow 6 STRUCTURE 6.1 Introduction 6.2 Objectives 6.3 Understanding Energy Flow 6.4 Energy in Ecological Systems 6.5 Food Chains 6.6 Understanding Food Chains 6.7 Conclusion

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

5.1 Ecosystems, Energy, and Nutrients

5.1 Ecosystems, Energy, and Nutrients CHAPTER 5 ECOSYSTEMS 5.1 Ecosystems, Energy, and Nutrients Did anyone ever ask you the question: Where do you get your energy? Energy enters our world from the Sun but how does the Sun s energy become

More information

Use this diagram of a food web to answer questions 1 through 5.

Use this diagram of a food web to answer questions 1 through 5. North arolina Testing Program EO iology Sample Items Goal 4 Use this diagram of a food web to answer questions 1 through 5. coyotes 3. If these organisms were arranged in a food pyramid, which organism

More information

7 Energy Flow Through an Ecosystem investigation 2 c l a s s se s s i o n s

7 Energy Flow Through an Ecosystem investigation 2 c l a s s se s s i o n s 7 Energy Flow Through an Ecosystem investigation 2 c l a s s se s s i o n s Overview Students create a food web of a kelp forest ecosystem with which they explore the flow of energy between ecosystem organisms.

More information

FOOD CHAINS AND FOOD WEBS PHYTOPLANKTON ZOOPLANKTON SILVERSIDE BLUEFISH

FOOD CHAINS AND FOOD WEBS PHYTOPLANKTON ZOOPLANKTON SILVERSIDE BLUEFISH FOOD CHAINS AND FOOD WEBS Food Chains All living organisms (plants and animals) must eat some type of food for survival. Plants make their own food through a process called photosynthesis. Using the energy

More information

ECOSYSTEM 1. SOME IMPORTANT TERMS

ECOSYSTEM 1. SOME IMPORTANT TERMS ECOSYSTEM 1. SOME IMPORTANT TERMS ECOSYSTEM:- A functional unit of nature where interactions of living organisms with physical environment takes place. STRATIFICATION:- Vertical distribution of different

More information

STUDY GUIDE ECOLOGY. CHAPTER 21: Populations 1. An overview of ecology. Ecology is the study of interactions between organisms and their environment.

STUDY GUIDE ECOLOGY. CHAPTER 21: Populations 1. An overview of ecology. Ecology is the study of interactions between organisms and their environment. STUDY GUIDE ECOLOGY CHAPTER 21: Populations 1. An overview of ecology. Ecology is the study of interactions between organisms and their environment. 2. A Hierarchy of interactions: cells tissues organs

More information

13.1. Principles of Ecology CHAPTER 13. Ecology is the study of the relationships among organisms and their environment.

13.1. Principles of Ecology CHAPTER 13. Ecology is the study of the relationships among organisms and their environment. SECTION 13.1 KEY CONCEPT ECOLOGISTS STUDY RELATIONSHIPS Study Guide Ecology is the study of the relationships among organisms and their environment. VOCABULARY ecology community MAIN IDEA: Ecologists study

More information

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.

More information

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy Assessment Bank Matter and Energy in Living Things SC.8.L.18.4 1. What is energy? A. anything that takes up space B. anything that has mass C. the ability to conduct current D. the ability to do work 2.

More information

Energy Flow. Materials Per Group (groups of 4)

Energy Flow. Materials Per Group (groups of 4) Energy Flow Lesson Concept Link Energy flows through a food chain. In the previous lesson, students reviewed the basic components of a food chain: producer, consumer, decomposer and the concept that matter

More information

Ecology 1 Star. 1. Missing from the diagram of this ecosystem are the

Ecology 1 Star. 1. Missing from the diagram of this ecosystem are the Name: ate: 1. Missing from the diagram of this ecosystem are the 5. ase your answer(s) to the following question(s) on the diagram below and on your knowledge of biology.. biotic factors and decomposers.

More information

CCR Biology - Chapter 13 Practice Test - Summer 2012

CCR Biology - Chapter 13 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 13 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A group of organisms of the same

More information

The animals at higher levels are more competitive, so fewer animals survive. B.

The animals at higher levels are more competitive, so fewer animals survive. B. Energy Flow in Ecosystems 1. The diagram below shows an energy pyramid. Which of the following best explains why the number of organisms at each level decreases while moving up the energy pyramid? The

More information

THE ECOSYSTEM - Biomes

THE ECOSYSTEM - Biomes Biomes The Ecosystem - Biomes Side 2 THE ECOSYSTEM - Biomes By the end of this topic you should be able to:- SYLLABUS STATEMENT ASSESSMENT STATEMENT CHECK NOTES 2.4 BIOMES 2.4.1 Define the term biome.

More information

Matter and Energy in Ecosystems

Matter and Energy in Ecosystems Matter and Energy in Ecosystems The interactions that take place among biotic and abiotic factors lead to transfers of energy and matter. Every species has a particular role, or niche, in an ecosystem.

More information

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS Period Date REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS A. Sample Multiple Choice Questions Complete the multiple choice questions to review this unit. 1. All of the following are density-dependent factors

More information

1.2 The Biosphere and Energy

1.2 The Biosphere and Energy 1.2 The Biosphere and Energy All activities require a source of energy a fuel. For example, to sustain a campfire, you need to keep it supplied with wood. To reach a destination by car, you need to have

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

NOTE TO TEACHER: It is appropriate to introduce the mitochondria (where energy is made) as a major structure common to all cells.

NOTE TO TEACHER: It is appropriate to introduce the mitochondria (where energy is made) as a major structure common to all cells. 5.2.1 Recall the cell as the smallest unit of life and identify its major structures (including cell membrane, cytoplasm, nucleus, and vacuole). Taxonomy level: 1.1 and 1.2-A Remember Factual Knowledge

More information

Science Grade 7 Unit 01 & 02: Science Safety & Flow of Energy 2012 2013

Science Grade 7 Unit 01 & 02: Science Safety & Flow of Energy 2012 2013 Science Grade 7 Unit 01 & 02: Science Safety & Flow of Energy 2012 2013 1 2 Using the diagram above of a grassland ecosystem, complete the following: Draw and label an energy pyramid to represent this

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Name Period Overview: 1. What is an ecosystem? 2. Where does energy enter most ecosystems? How is it converted to chemical energy and then passed through the ecosystem? How is it lost? Remember this: energy

More information

The Balance of Nature Food Chains 101 (Suitable for grades 4-12)

The Balance of Nature Food Chains 101 (Suitable for grades 4-12) Environmental Education using Live Birds of Prey Thank you to Xcel Energy Foundation and their Environmental Partnership Program The Balance of Nature Food Chains 101 (Suitable for grades 4-12) OBJECTIVE

More information

AP Biology Unit I: Ecological Interactions

AP Biology Unit I: Ecological Interactions AP Biology Unit I: Ecological Interactions Essential knowledge 1.C.1: Speciation and extinction have occurred throughout the Earth s history. Species extinction rates are rapid at times of ecological stress.

More information

Energy Flow through an Ecosystem

Energy Flow through an Ecosystem OpenStax-CNX module: m47790 1 Energy Flow through an Ecosystem Miranda Dudzik Based on Energy Flow through Ecosystems by OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative

More information

Grassland Food Webs: Teacher Notes

Grassland Food Webs: Teacher Notes Grassland Food Webs: Teacher Notes Alan Henderson ecosystem Objectives After completing this activity students will be able to: Create a food web and identify producers and consumers. Assign organisms

More information

CSS 560 Principles of Ecology for Environmental Educators

CSS 560 Principles of Ecology for Environmental Educators CSS 560 Principles of Ecology for Environmental Educators Journaling task (15:00 min/each) Draw a diagram that shows the major components (boxes) and interactions (arrows) of a terrestrial ecosystem Conceptual

More information

Topic 3: Nutrition, Photosynthesis, and Respiration

Topic 3: Nutrition, Photosynthesis, and Respiration 1. Base your answer to the following question on the chemical reaction represented below and on your knowledge of biology. If this reaction takes place in an organism that requires sunlight to produce

More information

Prairie Food Chains & Webs Producers, Consumers & Decomposers

Prairie Food Chains & Webs Producers, Consumers & Decomposers Kansas Prairies s, s & Decomposers Science, Life Science, Reading, Math Materials Vocabulary worksheet Food Chain worksheet Overview To explore the organisms found on a prairie and identify the various

More information

Chapter 3. 3.3 Energy Flow in Ecosystems

Chapter 3. 3.3 Energy Flow in Ecosystems Chapter 3 3.3 Energy Flow in Ecosystems Key Questions: 1) What happens to energy stored in body tissues when one organism eats another? 2) How does energy flow through an ecosystem? 3) What do the three

More information

ENVIRONMENTAL SCIENCE CURRICULUM for CLASS IX to X

ENVIRONMENTAL SCIENCE CURRICULUM for CLASS IX to X ENVIRONMENTAL SCIENCE CURRICULUM for CLASS IX to X The Royal Society for Protection of Nature (RSPN) in collaboration with Department of Curriculum Research & Development (DCRD) of Ministry of Education

More information

Key Idea 2: Ecosystems

Key Idea 2: Ecosystems Key Idea 2: Ecosystems Ecosystems An ecosystem is a living community of plants and animals sharing an environment with non-living elements such as climate and soil. An example of a small scale ecosystem

More information

Importance of Wildlife

Importance of Wildlife Importance of Wildlife The wildlife comprises all living organism (plants, animals, microorganisms) in their natural habitats which are neither cultivated or domesticated nor tamed. But in its strictest

More information

Prairie Food Chains & Webs Producers, Consumers, & Decomposers

Prairie Food Chains & Webs Producers, Consumers, & Decomposers Kansas Prairies Prairie Food Chains & Webs Producers, s, & Decomposers Life Science, Math, Reading, Science Materials Student Worksheet A: Vocabulary Student Worksheet B: Food Chain Overview To explore

More information

Worksheet: The food chain

Worksheet: The food chain Worksheet: The food chain Foundation Phase Grade 1-3 Learning area: Natural Science Specific Aim 2: Investigating phenomena in natural sciences Activity Sheet Activity 1: What is a food chain? Every time

More information

12.5: Generating Current Electricity pg. 518

12.5: Generating Current Electricity pg. 518 12.5: Generating Current Electricity pg. 518 Key Concepts: 1. Electrical energy is produced by energy transformations. 2. Electrical energy is produced from renewable and non-renewable resources. 4. Electrical

More information

Creating Chains and Webs to Model Ecological Relationships

Creating Chains and Webs to Model Ecological Relationships Creating Chains and Webs to Model Ecological Relationships Overview This hands-on activity supports the HHMI short film The Guide and the 2015 Holiday Lectures on Science: Patterns and Processes in Ecology.

More information

Grade 10 - Sustainability of Ecosystems - Pre-Assessment. Grade 7 - Interactions Within Ecosystems. Grade 10 - Sustainability of Ecosystems

Grade 10 - Sustainability of Ecosystems - Pre-Assessment. Grade 7 - Interactions Within Ecosystems. Grade 10 - Sustainability of Ecosystems Purpose: This document is for grade 10 teachers to use as a pre-assessment for the Sustainability of Ecosystems unit. It assesses students understanding of the of the end of unit knowledge outcomes from

More information

What s For Lunch? Exploring the Role of GloFish in Its Ecosystem, Food Chain and Energy Pyramid

What s For Lunch? Exploring the Role of GloFish in Its Ecosystem, Food Chain and Energy Pyramid Name Period Date What s For Lunch? Exploring the Role of GloFish in Its Ecosystem, Food Chain and Energy Pyramid Objective The learner will define terms related to relationships and energy transfer in

More information

What are the subsystems of the Earth? The 4 spheres

What are the subsystems of the Earth? The 4 spheres What are the subsystems of the Earth? The 4 spheres Essential Questions What are the 4 spheres of the Earth? How do these spheres interact? What are the major cycles of the Earth? How do humans impact

More information

Food Chains (and webs) Flow of energy through an ecosystem Grade 5 Austin Carter, Dale Rucker, Allison Hursey

Food Chains (and webs) Flow of energy through an ecosystem Grade 5 Austin Carter, Dale Rucker, Allison Hursey Food Chains (and webs) Flow of energy through an ecosystem Grade 5 Austin Carter, Dale Rucker, Allison Hursey References: Columbus Public Schools Curriculum Guide- Grade 5 GK-12 Biological Science Lesson

More information

Chapter 3 Communities, Biomes, and Ecosystems

Chapter 3 Communities, Biomes, and Ecosystems Communities, Biomes, and Ecosystems Section 1: Community Ecology Section 2: Terrestrial Biomes Section 3: Aquatic Ecosystems Click on a lesson name to select. 3.1 Community Ecology Communities A biological

More information

ENVIRONMENTAL SCIENCE (877)

ENVIRONMENTAL SCIENCE (877) ENVIRONMENTAL SCIENCE (877) Aims: 1. To help the student appreciate man's place in the natural systems. 2. To provide a wide understanding of knowledge resources relevant to environment protection and

More information

GLOBAL CIRCULATION OF WATER

GLOBAL CIRCULATION OF WATER Global Circulation of Water MODULE - 8A 27 GLOBAL CIRCULATION OF WATER More than three-fourths of the earth s surface is covered by water. Water is an odorless, tasteless, substance than can naturally

More information

Curriculum Policy of the Graduate School of Agricultural Science, Graduate Program

Curriculum Policy of the Graduate School of Agricultural Science, Graduate Program Curriculum Policy of the Graduate School of Agricultural Science, Graduate Program Agricultural Science plans to conserve natural and artificial ecosystems and its ideal of "Sustainable coexistence science"

More information

Biology Keystone (PA Core) Quiz Ecology - (BIO.B.4.1.1 ) Ecological Organization, (BIO.B.4.1.2 ) Ecosystem Characteristics, (BIO.B.4.2.

Biology Keystone (PA Core) Quiz Ecology - (BIO.B.4.1.1 ) Ecological Organization, (BIO.B.4.1.2 ) Ecosystem Characteristics, (BIO.B.4.2. Biology Keystone (PA Core) Quiz Ecology - (BIO.B.4.1.1 ) Ecological Organization, (BIO.B.4.1.2 ) Ecosystem Characteristics, (BIO.B.4.2.1 ) Energy Flow 1) Student Name: Teacher Name: Jared George Date:

More information

You are What You Eat

You are What You Eat You are What You Eat By: Tanja Schollmeier, marine biologist, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks Grade level: 6-8th grade Context: This lesson emphasizes human impacts

More information

THE WATER CYCLE. Ecology

THE WATER CYCLE. Ecology THE WATER CYCLE Water is the most abundant substance in living things. The human body, for example, is composed of about 70% water, and jellyfish are 95% water. Water participates in many important biochemical

More information

Analysis of the energy flow in the mulberry Dike-carp pond farming system

Analysis of the energy flow in the mulberry Dike-carp pond farming system Roskilde University 4 th semester Project Analysis of the energy flow in the mulberry Dike-carp pond farming system Group 6 Natural Science Basic Studies (Nat-Bas) Supervisor: Ken Haste Andersen Group

More information

Lesson 1. Objectives: ocus: Subjects:

Lesson 1. Objectives: ocus: Subjects: Lesson 1 The Web of Life Objectives: 1. Understand the concept of an ecosystem. 2. Understand the interdependence of members of an ecosystem. Subjects: 1. Ecology 2. Language 3. Art MATERIALS: Copies of

More information

GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world.

GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world. GRADE 6 SCIENCE STRAND A Value and Attitudes Catholic Schools exist so that curriculum may be taught in the light of Gospel teachings. Teachers must reinforce Gospel truths and values so that students

More information

Stage 4. Geography. Blackline Masters. By Karen Devine

Stage 4. Geography. Blackline Masters. By Karen Devine 1 Devine Educational Consultancy Services Stage 4 Geography Blackline Masters By Karen Devine Updated January 2010 2 This book is intended for the exclusive use in NSW Secondary Schools. It is meant to

More information

PLANET EARTH: Seasonal Forests

PLANET EARTH: Seasonal Forests PLANET EARTH: Seasonal Forests Teacher s Guide Grade Level: 6-8 Running Time: 42 minutes Program Description Investigate temperate forests and find some of the most elusive creatures and welladapted plant

More information

ECOSYSTEM RESPONSES. reflect

ECOSYSTEM RESPONSES. reflect reflect There is a saying, No man is an island, which means that people need one another in order to survive. Everyone on Earth is interconnected in some way. This is not only true of human beings, but

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

1. Biodiversity & Distribution of Life

1. Biodiversity & Distribution of Life National 5 Biology Unit 3 Life on Earth Summary notes 1. Biodiversity & Distribution of Life Perhaps the best place to start in this topic is with Biomes. Biomes are regions of our planet which have a

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

food webs reflect look out! what do you think?

food webs reflect look out! what do you think? reflect Imagine for a moment that you stay after school one day to clean up the classroom. While cleaning, you move some plants away from the sunny windows. A week later, you remember to move the plants

More information

Lesson Plan Two - Ecosystems

Lesson Plan Two - Ecosystems Lesson Plan Two - Ecosystems Summary Students discuss what living things need to survive. They identify the abiotic and biotic components of an ecosystem and describe the roles and interactions of producers

More information

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011 Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011 HEALTH Kindergarten: Grade 1: Grade 2: Know that litter can spoil the environment. Grade 3: Grade 4:

More information

Communities, Biomes, and Ecosystems

Communities, Biomes, and Ecosystems Communities, Biomes, and Ecosystems Before You Read Before you read the chapter, respond to these statements. 1. Write an A if you agree with the statement. 2. Write a D if you disagree with the statement.

More information

Life Science Study Guide. Environment Everything that surrounds and influences (has an effect on) an organism.

Life Science Study Guide. Environment Everything that surrounds and influences (has an effect on) an organism. Life Science Study Guide Environment Everything that surrounds and influences (has an effect on) an organism. Organism Any living thing, including plants and animals. Environmental Factor An environmental

More information

CHAPTER 20 COMMUNITY ECOLOGY

CHAPTER 20 COMMUNITY ECOLOGY CHAPTER 20 COMMUNITY ECOLOGY MULTIPLE CHOICE 1. The relationship between a predator and its prey is best illustrated by a. a snake eating a bird. c. a lion eating a zebra. b. a fox eating a mouse. d. a

More information

SALEM COMMUNITY COLLEGE Course Syllabus. Course Title: Environmental Science I. Course Code: BIO103. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4

SALEM COMMUNITY COLLEGE Course Syllabus. Course Title: Environmental Science I. Course Code: BIO103. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 SALEM COMMUNITY COLLEGE Course Syllabus Course Title: Environmental Science I Course Code: BIO103 Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 Course Description: Environmental Science I is the first

More information

8.2 - A Local Ecosystem:

8.2 - A Local Ecosystem: 8.2 - A Local Ecosystem: 1. The distribution, diversity and numbers of plants and animals found in ecosystems are determined by biotic and abiotic factors: Distinguish between the abiotic and biotic factors

More information

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do.

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do. 1. Plant and animal cells have some similarities as well as differences. What is one thing that plant and animal cells have in common? A. cell wall B. chlorophyll C. nucleus D. chloroplasts 2. Fill in

More information

Food Web Crasher. An introduction to food chains and food webs

Food Web Crasher. An introduction to food chains and food webs Food Web Crasher An introduction to food chains and food webs Activity Students create a physical food web and watch what happens when an aquatic nuisance species is introduced into the ecosystem. Grade

More information

Unit 5 Photosynthesis and Cellular Respiration

Unit 5 Photosynthesis and Cellular Respiration Unit 5 Photosynthesis and Cellular Respiration Advanced Concepts What is the abbreviated name of this molecule? What is its purpose? What are the three parts of this molecule? Label each part with the

More information

The Food-Energy-Water Nexus in Agronomy, Crop and Soil Sciences

The Food-Energy-Water Nexus in Agronomy, Crop and Soil Sciences The Food-Energy-Water Nexus in Agronomy, Crop and Soil Sciences February 4, 2016 In the fall of 2015 the Agronomy, Crop Science and Soil Science societies put out a call for white papers to help inform

More information

EM EA. D is trib u te d D e n ia l O f S e rv ic e

EM EA. D is trib u te d D e n ia l O f S e rv ic e EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es

More information

W h a t is m e tro e th e rn e t

W h a t is m e tro e th e rn e t 110 tv c h a n n e ls to 10 0 0 0 0 u s e rs U lf V in n e ra s C is c o S y s te m s 2 0 0 2, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d. 1 W h a t is m e tro e th e rn e t O b je c tiv

More information

Risø-R-1512(EN) Green Technological Foresight on Environmental Friendly Agriculture: Executive Summary

Risø-R-1512(EN) Green Technological Foresight on Environmental Friendly Agriculture: Executive Summary Risø-R-1512(EN) Green Technological Foresight on Environmental Friendly Agriculture: Executive Summary Risø National Laboratory Roskilde Denmark December 2004 Authors: Kristian Borch 1, Svend Christensen

More information

Liquid Biofuels for Transport

Liquid Biofuels for Transport page 1/11 Scientific Facts on Liquid Biofuels for Transport Prospects, risks and opportunities Source document: FAO (2008) Summary & Details: GreenFacts Context - Serious questions are being raised about

More information

Complete tests for CO 2 and H 2 Link observations of acid reactions to species

Complete tests for CO 2 and H 2 Link observations of acid reactions to species Acids and Bases 1. Name common acids and bases found at home and at school 2. Use formulae for common acids and bases 3. Give examples of the uses of acids and bases 4. State that all solutions are acidic,

More information

The University earned a Green Rating for its campus wide initiatives from the Princeton Review.

The University earned a Green Rating for its campus wide initiatives from the Princeton Review. The University earned a Green Rating for its campus wide initiatives from the Princeton Review. Green incorporated into our academic programs, facilities, and campus initiatives. Committed to developing

More information

reflect look out! organisms: living things

reflect look out! organisms: living things reflect Imagine that a student in your school fell down and is having difficulty breathing. Sirens wail as an ambulance pulls into the school parking lot. The emergency workers rush over to help the student.

More information

Food Chains and Food Webs

Food Chains and Food Webs Program Support Notes by: Spiro Liacos B.Ed. Produced by: VEA Pty Ltd Commissioning Editor: Sandra Frerichs B.Ed, M.Ed. Executive Producers: Edwina Baden-Powell B.A, CVP. Sandra Frerichs B.Ed, M.Ed. You

More information

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan ENVIRONMENTAL IMPACT OF FOOD PRODUCTION AND CONSUMPTION Palaniappa Krishnan Bioresources Engineering Department, University of Delaware, USA Keywords: Soil organisms, soil fertility, water quality, solar

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information

Future Workshop by HBS Oct.6 Oct.11 (Turkey, Lebanon, Palestine, Egypt)

Future Workshop by HBS Oct.6 Oct.11 (Turkey, Lebanon, Palestine, Egypt) Future Workshop by HBS Oct.6 Oct.11 (Turkey, Lebanon, Palestine, Egypt) The Future workshop took place in Hasankeyf, Turkey, from October 6,2012 till October 11,2012 where individuals from Turkey, Lebanon,

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

Discover Entomology. Discover Entomology. A Science, a Career, a Lifetime. A Science, a Career, a Lifetime

Discover Entomology. Discover Entomology. A Science, a Career, a Lifetime. A Science, a Career, a Lifetime Discover Entomology A Science, a Career, a Lifetime Discover Entomology A Science, a Career, a Lifetime What is Entomology? Entomology is the study of insects. Entomologists study bees, ants, beetles,

More information

The IMES Master Programme

The IMES Master Programme The IMES Master Programme The IMES Master Programme is built to reach the main goal of the Master, which is to provide to the students the professional skills required for private or public entities undertaking

More information

What Is Humic Acid? Where Does It Come From?

What Is Humic Acid? Where Does It Come From? What Is Humic Acid? Humic and Fulvic acids are the final break-down constituents of the natural decay of plant and animal materials. These organic acids are found in pre-historic deposits. Humic matter

More information

2015 2016 Environmental Science Scope & Sequence

2015 2016 Environmental Science Scope & Sequence 2015 2016 Environmental Science Scope & Sequence The suggested time frames in this document are for a year long environmental science class with approximately 45 minute class periods. All of the material

More information

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site Amherst County Public Schools AP Environmental Science Curriculum Pacing Guide College Board AP Environmental Science Site REV: 8/12 1 st 9 weeks AP Objectives Energy Resources and Consumption A. Energy

More information

Biodiversity Concepts

Biodiversity Concepts Biodiversity Concepts WHAT IS BIODIVERSITY? Biodiversity is the variety of life on Earth. For any kind of animal or plant each individual is not exactly the same as any other; nor are species or ecosystems.

More information

Plants, like all living organisms have basic needs: a source of nutrition (food), water,

Plants, like all living organisms have basic needs: a source of nutrition (food), water, WHAT PLANTS NEED IN ORDER TO SURVIVE AND GROW: LIGHT Grades 3 6 I. Introduction Plants, like all living organisms have basic needs: a source of nutrition (food), water, space in which to live, air, and

More information