Theoretical Aspects of Storage Systems Autumn 2009

Size: px
Start display at page:

Download "Theoretical Aspects of Storage Systems Autumn 2009"

Transcription

1 Theoretical Aspects of Storage Systems Autumn 2009 Chapter 1: RAID André Brinkmann

2 University of Paderborn Personnel Students: ~ students Professors: ~230 Other staff: ~600 scientific, ~630 non-scientific Five Departments: Cultural studies, economic science, natural science, mechanical engineering, electrical engineering/ computer science/mathematics Master / bachelor degrees, master of education, PhD Research 9 central research institutes 1 DFG Collaborative Research Centers (SFB) 1 European Graduate School on Large Scale Storage Systems 7 graduate colleges / schools 2 Fraunhofer Institutes

3 Computer Science at UPB Computer science department Professors: 21 Other staff: 95 scientific, 23 non-scientific Students: 1600 Research areas Embedded systems and system software Models and algorithms Human-computer interaction Software engineering and information systems Ranking DFG (national science foundation): 7/129 in approval of science funds ACM: best German institution for software engineering CHE ranking: leading position among 77 universities regarding 3rd party funds, teaching, infrastructure, research reputation

4 PC 2 Paderborn Center for Parallel Computing Regional competence center for parallel and distributed data processing in research and application Founded in 1991 Scientific institute of Uni. Paderborn Goal: Foster and explore efficient use of parallel and distributed systems Mandate in research and service Funding from regional and federal government, industrial and EU-projects Research: ~15 PhD students, 2 post docs in 8 projects Services: High performance computing systems, currently ~ 20 user projects and ~40 researchers ~55% resource usage of non-paderborn users

5 Syllabus RAID-Systems Reliability based on efficient multi-error correcting Codes Data De-duplication: Rabin Fingerprints Bloom Filters Delta Encoding Long Term Archiving and Algebraic Signatures Consistent Hashing and Key Value Stores Adaptive, Large Scale Storage Systems

6 Introduction to Disk Arrays Outline Why Disk Arrays? MTTF, MTTR, MTTDL RAID 0, RAID 1, RAID 5 Multiple Disk Failures and RAID 6

7 Use Arrays of Small Disks Katz and Patterson asked in 1987: Can smaller disks be used to close gap in performance between disks and CPUs? Conventional: 4 disk designs Low End High End Disk Array: 1 disk design 3.5 Slide is based on talk from Prof. D. Patterson (Berkeley)

8 Exchange big disks by arrays of small disks (Example 1988) IBM 3390K IBM x70 Improvement Capacity 20 GB 320 MB 23 GB 1x Volume 97 ft ft 2 11 ft 2 9x Power Consumption 3 KW 11 W 1 KW 3x Bandwidth 15 MB/s 1.5 MB/s 120 MB/s 8x IO Rate 600 IOs/s 55 IOs/s 3900 IOs/s 6x MTTF 250 KHrs 50 KHrs?? Hrs Costs $250,000 $2,000 $150,000 1,6x Disk arrays have good performance properties nice MBs/volume and MBs/kW values... but what about reliablity? Slide is based on talk from Prof. D. Patterson (Berkeley)

9 MTTF, MTTR, MTTDL Mean Time to Failure (MTTF): Expected time until a disk fails. MTTF can be defined in terms of the expected value of the failure density function f: Mean Time to Repair (MTTR): Expected time from the failure of a disk until completing its recovery (if possible) Mean Time between Data Loss (MTTDL): Expected time from starting a storage system until the loss of data

10 Bathtub Curve MTTF calculated for normal operating period of a disk Nearly constant over a period of 3 4 years Failure rate before and afterwards significantly higher

11 RAID Parallel Disk Arrays are able to provide high bandwidth good properties concerning MB/Volume und MB/KW, but what about reliability? MTTF of n disks: Inside the example: MTTF 70 = 50,000 h / 70 = 700 h MTTF of the disk array decreases from six years to a single month Arrays (without redundancy) too unreliable to be useful!

12 Reliability / Availability Reliability Reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time Based on Mean Time to Failure Availability Availability is the degree to which a system or component is operational and accessible when required for use Assumption: System cannot be accessed when under construction Slide is based on IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries andtorell / Avelar: Mean Time between Failure- Explanations and Standards

13 Redundant Array of Inexpensive Disks Files are striped across multiple disks Redundancy yields high data availability Availability: Service is still provided to user, even if some components have failed Disks will still fail Contents can be reconstructed from data redundantly stored in the array Capacity penalty to store redundant info Bandwidth penalty to update redundant info See D. A. Patterson, G. A. Gibson, R. H. Katz: A Case for Redundant Arrays of Inexpensive Disks (RAID)

14 RAID I (1989) SUN 4/280 workstation with 128 MByte DRAM Four SCSI-controller disk and Dedicated Disk-Striping Software RAID has become 27 bn $ industry 80% of all non PC-disks are sold inside RAID-systems Berkeley History, RAID-I Slide is based on talk from Prof. D. Patterson (Berkeley)

15 RAID Level RAID = Redundant Array of Independent Disks Standard RAID Levels 0: no Redundancy (JBOD) 1: Mirroring 10: Striped Mirrors 2: Hamming Codes/ECC (not used) 3: Byte-Interleaved Parity 4: Block-Interleaved Parity 5: Rotated Block-Interleaved Parity 6: e.g. Double Parity

16 RAID 0 RAID 0 stripes data over set of disks Size of each data block is several Kbyte Increase of bandwidth for big accesses or for many parallel, but small accesses RAID 0 does not include redundancy information No protection against single disk failures Legend: x-y means 0 1 block 2 x from 3 stripe y Location can be efficiently calculated for n disks Stripe address y = Address / n Disk number x = Address % n Logical address 12 will be mapped to stripe 2 and disk 2

17 RAID 1 Every Disk is fully mirrored 0 1 Very high availability can be achieved Bandwidth sacrifice on write: Logical write = two physical writes Reads can be optimized Legend: x-y means block x on disk y Most expensive RAID solution: 100% capacity overhead

18 Parity RAID Properties of previous RAID levels: Mirroring produces high overhead Striping does not include failure correction Function required with low capacity overhead good failure protection properties low computing costs Idea of RAID 3 and RAID 4 Use striping plus Parity computation Parity computed using XOR Example: Divide data block 1101 in 4 sub blocks plus one Parity block

19 Striping unit Block used to distribute data Stripe Terminology Set of striping units that share parity computation Parity block Block that keeps the parity of a stripe Same size as a striping unit

20 Small Write Problem Read performance of Parity RAID nearly as good as performance of RAID 0 but each small write to a single block x needs to update the parity block! Solution 1: Read all other data blocks except the changed one Calculate new parity Write the new data block and the parity block Overhead proportional to stripe size Solution 2: Use properties of XOR function: and We can read the ONE old data block x and the old parity block p We know the new data block x new Just calculate new parity block to:

21 RAID 5 RAID 4 produces bottleneck at the parity disk Each write access to an arbitrary block produces one write request at the parity disk RAID 4 does not scale concerning the stripe size Idea of RAID 5: Distribute the function of the parity disk over all disks Legend: x-y means block x from stripe y

22 Does redundancy help? Failure probability of 1-error correcting codes for n disks can be calculated to Failure probability during recovery depends on Time to recover the data MTTF of the remaining devices

23 Assumptions Error does not occur in wear-out phase MTTF (of one disk) is constant Exponential failure distribution leads to failure density function: is probability that an element fails; described in failures per unit of measurement It holds that

24 Probability of second Failure Probability of a second failure as integral over density function: Here: and therefore

25 Probability of second Failure Exponential function can be calculated as series with MTTR << MTTF: and MTTDL can be calculated as

26 Does redundancy help? Standard RAID schemes are able to increase MTTDL for n disks from without data protection to Drawbacks writing becomes slower complexity of implementation and administration significantly increases

27 Is this safe enough? Assumption for storage cluster environment: 1 PByte of data stored on 2000 computers Environment is grouped into 200 RAID 5 systems with 10 disks each MTTF of each computer (including disks) is 1000 days Recovery time of a computer is 1 day MTTDL = (1000) d 55d Protection against single disk failures not enough in large scale environments Example taken from Lustre Manual v1.6, August 2007

ES-1 Elettronica dei Sistemi 1 Computer Architecture

ES-1 Elettronica dei Sistemi 1 Computer Architecture ES- Elettronica dei Sistemi Computer Architecture Lesson 7 Disk Arrays Network Attached Storage 4"» "» 8"» 525"» 35"» 25"» 8"» 3"» high bandwidth disk systems based on arrays of disks Decreasing Disk Diameters

More information

Case for storage. Outline. Magnetic disks. CS2410: Computer Architecture. Storage systems. Sangyeun Cho

Case for storage. Outline. Magnetic disks. CS2410: Computer Architecture. Storage systems. Sangyeun Cho Case for storage CS24: Computer Architecture Storage systems Sangyeun Cho Computer Science Department Shift in focus from computation to communication & storage of information Eg, Cray Research/Thinking

More information

Reliability and Fault Tolerance in Storage

Reliability and Fault Tolerance in Storage Reliability and Fault Tolerance in Storage Dalit Naor/ Dima Sotnikov IBM Haifa Research Storage Systems 1 Advanced Topics on Storage Systems - Spring 2014, Tel-Aviv University http://www.eng.tau.ac.il/semcom

More information

CS 61C: Great Ideas in Computer Architecture. Dependability: Parity, RAID, ECC

CS 61C: Great Ideas in Computer Architecture. Dependability: Parity, RAID, ECC CS 61C: Great Ideas in Computer Architecture Dependability: Parity, RAID, ECC Instructor: Justin Hsia 8/08/2013 Summer 2013 Lecture #27 1 Review of Last Lecture MapReduce Data Level Parallelism Framework

More information

CS161: Operating Systems

CS161: Operating Systems CS161: Operating Systems Matt Welsh mdw@eecs.harvard.edu Lecture 18: RAID April 19, 2007 2007 Matt Welsh Harvard University 1 RAID Redundant Arrays of Inexpensive Disks Invented in 1986-1987 by David Patterson

More information

Operating Systems. RAID Redundant Array of Independent Disks. Submitted by Ankur Niyogi 2003EE20367

Operating Systems. RAID Redundant Array of Independent Disks. Submitted by Ankur Niyogi 2003EE20367 Operating Systems RAID Redundant Array of Independent Disks Submitted by Ankur Niyogi 2003EE20367 YOUR DATA IS LOST@#!! Do we have backups of all our data???? - The stuff we cannot afford to lose?? How

More information

Data Corruption In Storage Stack - Review

Data Corruption In Storage Stack - Review Theoretical Aspects of Storage Systems Autumn 2009 Chapter 2: Double Disk Failures André Brinkmann Data Corruption in the Storage Stack What are Latent Sector Errors What is Silent Data Corruption Checksum

More information

Lecture 36: Chapter 6

Lecture 36: Chapter 6 Lecture 36: Chapter 6 Today s topic RAID 1 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for

More information

How To Write A Disk Array

How To Write A Disk Array 200 Chapter 7 (This observation is reinforced and elaborated in Exercises 7.5 and 7.6, and the reader is urged to work through them.) 7.2 RAID Disks are potential bottlenecks for system performance and

More information

How To Improve Performance On A Single Chip Computer

How To Improve Performance On A Single Chip Computer : Redundant Arrays of Inexpensive Disks this discussion is based on the paper:» A Case for Redundant Arrays of Inexpensive Disks (),» David A Patterson, Garth Gibson, and Randy H Katz,» In Proceedings

More information

Why disk arrays? CPUs speeds increase faster than disks. - Time won t really help workloads where disk in bottleneck

Why disk arrays? CPUs speeds increase faster than disks. - Time won t really help workloads where disk in bottleneck 1/19 Why disk arrays? CPUs speeds increase faster than disks - Time won t really help workloads where disk in bottleneck Some applications (audio/video) require big files Disk arrays - make one logical

More information

Why disk arrays? CPUs improving faster than disks

Why disk arrays? CPUs improving faster than disks Why disk arrays? CPUs improving faster than disks - disks will increasingly be bottleneck New applications (audio/video) require big files (motivation for XFS) Disk arrays - make one logical disk out of

More information

technology brief RAID Levels March 1997 Introduction Characteristics of RAID Levels

technology brief RAID Levels March 1997 Introduction Characteristics of RAID Levels technology brief RAID Levels March 1997 Introduction RAID is an acronym for Redundant Array of Independent Disks (originally Redundant Array of Inexpensive Disks) coined in a 1987 University of California

More information

A Case for Virtualized Arrays of RAID

A Case for Virtualized Arrays of RAID A Case for Virtualized Arrays of RAID André Brinkmann, Kay Salzwedel, Mario Vodisek University of Paderborn, Germany Email: brinkman@hni.upb.de, {nkz, vodisek}@upb.de. Abstract Redundant arrays of independent

More information

RAID Storage, Network File Systems, and DropBox

RAID Storage, Network File Systems, and DropBox RAID Storage, Network File Systems, and DropBox George Porter CSE 124 February 24, 2015 * Thanks to Dave Patterson and Hong Jiang Announcements Project 2 due by end of today Office hour today 2-3pm in

More information

Input / Ouput devices. I/O Chapter 8. Goals & Constraints. Measures of Performance. Anatomy of a Disk Drive. Introduction - 8.1

Input / Ouput devices. I/O Chapter 8. Goals & Constraints. Measures of Performance. Anatomy of a Disk Drive. Introduction - 8.1 Introduction - 8.1 I/O Chapter 8 Disk Storage and Dependability 8.2 Buses and other connectors 8.4 I/O performance measures 8.6 Input / Ouput devices keyboard, mouse, printer, game controllers, hard drive,

More information

Disk Storage & Dependability

Disk Storage & Dependability Disk Storage & Dependability Computer Organization Architectures for Embedded Computing Wednesday 19 November 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition,

More information

Disks and RAID. Profs. Bracy and Van Renesse. based on slides by Prof. Sirer

Disks and RAID. Profs. Bracy and Van Renesse. based on slides by Prof. Sirer Disks and RAID Profs. Bracy and Van Renesse based on slides by Prof. Sirer 50 Years Old! 13th September 1956 The IBM RAMAC 350 Stored less than 5 MByte Reading from a Disk Must specify: cylinder # (distance

More information

CS 153 Design of Operating Systems Spring 2015

CS 153 Design of Operating Systems Spring 2015 CS 153 Design of Operating Systems Spring 2015 Lecture 22: File system optimizations Physical Disk Structure Disk components Platters Surfaces Tracks Arm Track Sector Surface Sectors Cylinders Arm Heads

More information

Chapter 6 External Memory. Dr. Mohamed H. Al-Meer

Chapter 6 External Memory. Dr. Mohamed H. Al-Meer Chapter 6 External Memory Dr. Mohamed H. Al-Meer 6.1 Magnetic Disks Types of External Memory Magnetic Disks RAID Removable Optical CD ROM CD Recordable CD-R CD Re writable CD-RW DVD Magnetic Tape 2 Introduction

More information

PIONEER RESEARCH & DEVELOPMENT GROUP

PIONEER RESEARCH & DEVELOPMENT GROUP SURVEY ON RAID Aishwarya Airen 1, Aarsh Pandit 2, Anshul Sogani 3 1,2,3 A.I.T.R, Indore. Abstract RAID stands for Redundant Array of Independent Disk that is a concept which provides an efficient way for

More information

CS 6290 I/O and Storage. Milos Prvulovic

CS 6290 I/O and Storage. Milos Prvulovic CS 6290 I/O and Storage Milos Prvulovic Storage Systems I/O performance (bandwidth, latency) Bandwidth improving, but not as fast as CPU Latency improving very slowly Consequently, by Amdahl s Law: fraction

More information

RAID: Redundant Arrays of Independent Disks

RAID: Redundant Arrays of Independent Disks RAID: Redundant Arrays of Independent Disks Dependable Systems Dr.-Ing. Jan Richling Kommunikations- und Betriebssysteme TU Berlin Winter 2012/2013 RAID: Introduction Redundant array of inexpensive disks

More information

Non-Redundant (RAID Level 0)

Non-Redundant (RAID Level 0) There are many types of RAID and some of the important ones are introduced below: Non-Redundant (RAID Level 0) A non-redundant disk array, or RAID level 0, has the lowest cost of any RAID organization

More information

RAID Performance Analysis

RAID Performance Analysis RAID Performance Analysis We have six 500 GB disks with 8 ms average seek time. They rotate at 7200 RPM and have a transfer rate of 20 MB/sec. The minimum unit of transfer to each disk is a 512 byte sector.

More information

Price/performance Modern Memory Hierarchy

Price/performance Modern Memory Hierarchy Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion

More information

Reliability of Data Storage Systems

Reliability of Data Storage Systems Zurich Research Laboratory Ilias Iliadis April 2, 25 Keynote NexComm 25 www.zurich.ibm.com 25 IBM Corporation Long-term Storage of Increasing Amount of Information An increasing amount of information is

More information

Striped Set, Advantages and Disadvantages of Using RAID

Striped Set, Advantages and Disadvantages of Using RAID Algorithms and Methods for Distributed Storage Networks 4: Volume Manager and RAID Institut für Informatik Wintersemester 2007/08 RAID Redundant Array of Independent Disks Patterson, Gibson, Katz, A Case

More information

RAID. RAID 0 No redundancy ( AID?) Just stripe data over multiple disks But it does improve performance. Chapter 6 Storage and Other I/O Topics 29

RAID. RAID 0 No redundancy ( AID?) Just stripe data over multiple disks But it does improve performance. Chapter 6 Storage and Other I/O Topics 29 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for redundant data storage Provides fault tolerant

More information

RAID. Contents. Definition and Use of the Different RAID Levels. The different RAID levels: Definition Cost / Efficiency Reliability Performance

RAID. Contents. Definition and Use of the Different RAID Levels. The different RAID levels: Definition Cost / Efficiency Reliability Performance RAID Definition and Use of the Different RAID Levels Contents The different RAID levels: Definition Cost / Efficiency Reliability Performance Further High Availability Aspects Performance Optimization

More information

COMP 7970 Storage Systems

COMP 7970 Storage Systems COMP 797 Storage Systems Dr. Xiao Qin Department of Computer Science and Software Engineering Auburn University http://www.eng.auburn.edu/~xqin xqin@auburn.edu COMP 797, Auburn University Slide 3b- Problems

More information

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University. (http://www.cs.princeton.edu/courses/cos318/)

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University. (http://www.cs.princeton.edu/courses/cos318/) COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Today s Topics Magnetic disks Magnetic disk performance

More information

RAID. Storage-centric computing, cloud computing. Benefits:

RAID. Storage-centric computing, cloud computing. Benefits: RAID Storage-centric computing, cloud computing. Benefits: Improved reliability (via error correcting code, redundancy). Improved performance (via redundancy). Independent disks. RAID Level 0 Provides

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files (From Chapter 9 of textbook) Storing and Retrieving Data Database Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve

More information

RAID Overview 91.520

RAID Overview 91.520 RAID Overview 91.520 1 The Motivation for RAID Computing speeds double every 3 years Disk speeds can t keep up Data needs higher MTBF than any component in system IO Performance and Availability Issues!

More information

Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections

Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections Chapter 6 Storage and Other I/O Topics 6.1 Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

IBM System x GPFS Storage Server

IBM System x GPFS Storage Server IBM System x GPFS Storage Server Schöne Aussicht en für HPC Speicher ZKI-Arbeitskreis Paderborn, 15.03.2013 Karsten Kutzer Client Technical Architect Technical Computing IBM Systems & Technology Group

More information

Data Storage - II: Efficient Usage & Errors

Data Storage - II: Efficient Usage & Errors Data Storage - II: Efficient Usage & Errors Week 10, Spring 2005 Updated by M. Naci Akkøk, 27.02.2004, 03.03.2005 based upon slides by Pål Halvorsen, 12.3.2002. Contains slides from: Hector Garcia-Molina

More information

Definition of RAID Levels

Definition of RAID Levels RAID The basic idea of RAID (Redundant Array of Independent Disks) is to combine multiple inexpensive disk drives into an array of disk drives to obtain performance, capacity and reliability that exceeds

More information

COS 318: Operating Systems. Storage Devices. Kai Li and Andy Bavier Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Kai Li and Andy Bavier Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Kai Li and Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Today s Topics! Magnetic disks!

More information

IBM General Parallel File System (GPFS ) 3.5 File Placement Optimizer (FPO)

IBM General Parallel File System (GPFS ) 3.5 File Placement Optimizer (FPO) IBM General Parallel File System (GPFS ) 3.5 File Placement Optimizer (FPO) Rick Koopman IBM Technical Computing Business Development Benelux Rick_koopman@nl.ibm.com Enterprise class replacement for HDFS

More information

1 Storage Devices Summary

1 Storage Devices Summary Chapter 1 Storage Devices Summary Dependability is vital Suitable measures Latency how long to the first bit arrives Bandwidth/throughput how fast does stuff come through after the latency period Obvious

More information

PARALLEL I/O FOR HIGH PERFORMANCE COMPUTING

PARALLEL I/O FOR HIGH PERFORMANCE COMPUTING o. rof. Dr. eter Brezany arallele and Verteilte Datenbanksysteme 1 ARALLEL I/O FOR HIGH ERFORMANCE COMUTING Skriptum zur Vorlesung eter Brezany Institut für Scientific Computing Universität Wien E-Mail:

More information

An Introduction to RAID. Giovanni Stracquadanio stracquadanio@dmi.unict.it www.dmi.unict.it/~stracquadanio

An Introduction to RAID. Giovanni Stracquadanio stracquadanio@dmi.unict.it www.dmi.unict.it/~stracquadanio An Introduction to RAID Giovanni Stracquadanio stracquadanio@dmi.unict.it www.dmi.unict.it/~stracquadanio Outline A definition of RAID An ensemble of RAIDs JBOD RAID 0...5 Configuring and testing a Linux

More information

Improving Lustre OST Performance with ClusterStor GridRAID. John Fragalla Principal Architect High Performance Computing

Improving Lustre OST Performance with ClusterStor GridRAID. John Fragalla Principal Architect High Performance Computing Improving Lustre OST Performance with ClusterStor GridRAID John Fragalla Principal Architect High Performance Computing Legacy RAID 6 No Longer Sufficient 2013 RAID 6 data protection challenges Long rebuild

More information

Theoretical Aspects of Storage Systems Autumn 2009

Theoretical Aspects of Storage Systems Autumn 2009 Theoretical Aspects of Storage Systems Autumn 2009 Chapter 3: Data Deduplication André Brinkmann News Outline Data Deduplication Compare-by-hash strategies Delta-encoding based strategies Measurements

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Fall 2004 Lecture 13: FFS, LFS, RAID Geoffrey M. Voelker Overview We ve looked at disks and file systems generically Now we re going to look at some example file

More information

RAID. Tiffany Yu-Han Chen. # The performance of different RAID levels # read/write/reliability (fault-tolerant)/overhead

RAID. Tiffany Yu-Han Chen. # The performance of different RAID levels # read/write/reliability (fault-tolerant)/overhead RAID # The performance of different RAID levels # read/write/reliability (fault-tolerant)/overhead Tiffany Yu-Han Chen (These slides modified from Hao-Hua Chu National Taiwan University) RAID 0 - Striping

More information

V:Drive - Costs and Benefits of an Out-of-Band Storage Virtualization System

V:Drive - Costs and Benefits of an Out-of-Band Storage Virtualization System V:Drive - Costs and Benefits of an Out-of-Band Storage Virtualization System André Brinkmann, Michael Heidebuer, Friedhelm Meyer auf der Heide, Ulrich Rückert, Kay Salzwedel, and Mario Vodisek Paderborn

More information

RAID 5 rebuild performance in ProLiant

RAID 5 rebuild performance in ProLiant RAID 5 rebuild performance in ProLiant technology brief Abstract... 2 Overview of the RAID 5 rebuild process... 2 Estimating the mean-time-to-failure (MTTF)... 3 Factors affecting RAID 5 array rebuild

More information

Solving Data Loss in Massive Storage Systems Jason Resch Cleversafe

Solving Data Loss in Massive Storage Systems Jason Resch Cleversafe Solving Data Loss in Massive Storage Systems Jason Resch Cleversafe 2010 Storage Developer Conference. Insert Your Company Name. All Rights Reserved. 1 In the beginning There was replication Long before

More information

Today s Papers. RAID Basics (Two optional papers) Array Reliability. EECS 262a Advanced Topics in Computer Systems Lecture 4

Today s Papers. RAID Basics (Two optional papers) Array Reliability. EECS 262a Advanced Topics in Computer Systems Lecture 4 EECS 262a Advanced Topics in Computer Systems Lecture 4 Filesystems (Con t) September 15 th, 2014 John Kubiatowicz Electrical Engineering and Computer Sciences University of California, Berkeley Today

More information

3PAR Fast RAID: High Performance Without Compromise

3PAR Fast RAID: High Performance Without Compromise 3PAR Fast RAID: High Performance Without Compromise Karl L. Swartz Document Abstract: 3PAR Fast RAID allows the 3PAR InServ Storage Server to deliver higher performance with less hardware, reducing storage

More information

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters COSC 6374 Parallel I/O (I) I/O basics Fall 2012 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network card 1 Network card

More information

RAID Basics Training Guide

RAID Basics Training Guide RAID Basics Training Guide Discover a Higher Level of Performance RAID matters. Rely on Intel RAID. Table of Contents 1. What is RAID? 2. RAID Levels RAID 0 RAID 1 RAID 5 RAID 6 RAID 10 RAID 0+1 RAID 1E

More information

Storage. The text highlighted in green in these slides contain external hyperlinks. 1 / 14

Storage. The text highlighted in green in these slides contain external hyperlinks. 1 / 14 Storage Compared to the performance parameters of the other components we have been studying, storage systems are much slower devices. Typical access times to rotating disk storage devices are in the millisecond

More information

Three-Dimensional Redundancy Codes for Archival Storage

Three-Dimensional Redundancy Codes for Archival Storage Three-Dimensional Redundancy Codes for Archival Storage Jehan-François Pâris Darrell D. E. Long Witold Litwin Department of Computer Science University of Houston Houston, T, USA jfparis@uh.edu Department

More information

High Performance Computing. Course Notes 2007-2008. High Performance Storage

High Performance Computing. Course Notes 2007-2008. High Performance Storage High Performance Computing Course Notes 2007-2008 2008 High Performance Storage Storage devices Primary storage: register (1 CPU cycle, a few ns) Cache (10-200 cycles, 0.02-0.5us) Main memory Local main

More information

William Stallings Computer Organization and Architecture 7 th Edition. Chapter 6 External Memory

William Stallings Computer Organization and Architecture 7 th Edition. Chapter 6 External Memory William Stallings Computer Organization and Architecture 7 th Edition Chapter 6 External Memory Types of External Memory Magnetic Disk RAID Removable Optical CD-ROM CD-Recordable (CD-R) CD-R/W DVD Magnetic

More information

SSDs and RAID: What s the right strategy. Paul Goodwin VP Product Development Avant Technology

SSDs and RAID: What s the right strategy. Paul Goodwin VP Product Development Avant Technology SSDs and RAID: What s the right strategy Paul Goodwin VP Product Development Avant Technology SSDs and RAID: What s the right strategy Flash Overview SSD Overview RAID overview Thoughts about Raid Strategies

More information

How To Understand And Understand The Power Of Aird 6 On Clariion

How To Understand And Understand The Power Of Aird 6 On Clariion A Detailed Review Abstract This white paper discusses the EMC CLARiiON RAID 6 implementation available in FLARE 26 and later, including an overview of RAID 6 and the CLARiiON-specific implementation, when

More information

RAID Overview: Identifying What RAID Levels Best Meet Customer Needs. Diamond Series RAID Storage Array

RAID Overview: Identifying What RAID Levels Best Meet Customer Needs. Diamond Series RAID Storage Array ATTO Technology, Inc. Corporate Headquarters 155 Crosspoint Parkway Amherst, NY 14068 Phone: 716-691-1999 Fax: 716-691-9353 www.attotech.com sales@attotech.com RAID Overview: Identifying What RAID Levels

More information

RAID0.5: Active Data Replication for Low Cost Disk Array Data Protection

RAID0.5: Active Data Replication for Low Cost Disk Array Data Protection RAID0.5: Active Data Replication for Low Cost Disk Array Data Protection John A. Chandy Department of Electrical and Computer Engineering University of Connecticut Storrs, CT 06269-2157 john.chandy@uconn.edu

More information

Storage Systems Autumn 2009. Chapter 6: Distributed Hash Tables and their Applications André Brinkmann

Storage Systems Autumn 2009. Chapter 6: Distributed Hash Tables and their Applications André Brinkmann Storage Systems Autumn 2009 Chapter 6: Distributed Hash Tables and their Applications André Brinkmann Scaling RAID architectures Using traditional RAID architecture does not scale Adding news disk implies

More information

Fault Tolerance & Reliability CDA 5140. Chapter 3 RAID & Sample Commercial FT Systems

Fault Tolerance & Reliability CDA 5140. Chapter 3 RAID & Sample Commercial FT Systems Fault Tolerance & Reliability CDA 5140 Chapter 3 RAID & Sample Commercial FT Systems - basic concept in these, as with codes, is redundancy to allow system to continue operation even if some components

More information

W4118: RAID. Instructor: Junfeng Yang

W4118: RAID. Instructor: Junfeng Yang W4118: RAID Instructor: Junfeng Yang References: Modern Operating Systems (3 rd edition), Operating Systems Concepts (8 th edition), previous W4118, and OS at MIT, Stanford, and UWisc RAID motivation Performance

More information

Dependable Systems. 9. Redundant arrays of. Prof. Dr. Miroslaw Malek. Wintersemester 2004/05 www.informatik.hu-berlin.de/rok/zs

Dependable Systems. 9. Redundant arrays of. Prof. Dr. Miroslaw Malek. Wintersemester 2004/05 www.informatik.hu-berlin.de/rok/zs Dependable Systems 9. Redundant arrays of inexpensive disks (RAID) Prof. Dr. Miroslaw Malek Wintersemester 2004/05 www.informatik.hu-berlin.de/rok/zs Redundant Arrays of Inexpensive Disks (RAID) RAID is

More information

Distributed Storage Networks and Computer Forensics

Distributed Storage Networks and Computer Forensics Distributed Storage Networks 5 Raid-6 Encoding Technical Faculty Winter Semester 2011/12 RAID Redundant Array of Independent Disks Patterson, Gibson, Katz, A Case for Redundant Array of Inexpensive Disks,

More information

an analysis of RAID 5DP

an analysis of RAID 5DP an analysis of RAID 5DP a qualitative and quantitative comparison of RAID levels and data protection hp white paper for information about the va 7000 series and periodic updates to this white paper see

More information

Algorithms and Methods for Distributed Storage Networks 5 Raid-6 Encoding Christian Schindelhauer

Algorithms and Methods for Distributed Storage Networks 5 Raid-6 Encoding Christian Schindelhauer Algorithms and Methods for Distributed Storage Networks 5 Raid-6 Encoding Institut für Informatik Wintersemester 2007/08 RAID Redundant Array of Independent Disks Patterson, Gibson, Katz, A Case for Redundant

More information

Lecture 13: I/O: RAID, I/O Benchmarks, UNIX File System Performance Professor David A. Patterson Computer Science 252 Fall 1996

Lecture 13: I/O: RAID, I/O Benchmarks, UNIX File System Performance Professor David A. Patterson Computer Science 252 Fall 1996 Lecture 3: I/O: RAID, I/O Benchmarks, UNIX File System Performance Professor David A. Patterson Computer Science 252 Fall 996 DAP.F96 Summary: A Little Queuing Theory Queue System server Proc IOC Device

More information

HARD DRIVE CHARACTERISTICS REFRESHER

HARD DRIVE CHARACTERISTICS REFRESHER The read/write head of a hard drive only detects changes in the magnetic polarity of the material passing beneath it, not the direction of the polarity. Writes are performed by sending current either one

More information

RAID Level Descriptions. RAID 0 (Striping)

RAID Level Descriptions. RAID 0 (Striping) RAID Level Descriptions RAID 0 (Striping) Offers low cost and maximum performance, but offers no fault tolerance; a single disk failure results in TOTAL data loss. Businesses use RAID 0 mainly for tasks

More information

File System Design and Implementation

File System Design and Implementation Transactions and Reliability Sarah Diesburg Operating Systems CS 3430 Motivation File systems have lots of metadata: Free blocks, directories, file headers, indirect blocks Metadata is heavily cached for

More information

A Tutorial on RAID Storage Systems

A Tutorial on RAID Storage Systems A Tutorial on RAID Storage Systems Sameshan Perumal and Pieter Kritzinger CS04-05-00 May 6, 2004 Data Network Architectures Group Department of Computer Science University of Cape Town Private Bag, RONDEBOSCH

More information

Distributed RAID Architectures for Cluster I/O Computing. Kai Hwang

Distributed RAID Architectures for Cluster I/O Computing. Kai Hwang Distributed RAID Architectures for Cluster I/O Computing Kai Hwang Internet and Cluster Computing Lab. University of Southern California 1 Presentation Outline : Scalable Cluster I/O The RAID-x Architecture

More information

Summer Student Project Report

Summer Student Project Report Summer Student Project Report Dimitris Kalimeris National and Kapodistrian University of Athens June September 2014 Abstract This report will outline two projects that were done as part of a three months

More information

How To Create A Multi Disk Raid

How To Create A Multi Disk Raid Click on the diagram to see RAID 0 in action RAID Level 0 requires a minimum of 2 drives to implement RAID 0 implements a striped disk array, the data is broken down into blocks and each block is written

More information

Disk Array Data Organizations and RAID

Disk Array Data Organizations and RAID Guest Lecture for 15-440 Disk Array Data Organizations and RAID October 2010, Greg Ganger 1 Plan for today Why have multiple disks? Storage capacity, performance capacity, reliability Load distribution

More information

Comprehending the Tradeoffs between Deploying Oracle Database on RAID 5 and RAID 10 Storage Configurations. Database Solutions Engineering

Comprehending the Tradeoffs between Deploying Oracle Database on RAID 5 and RAID 10 Storage Configurations. Database Solutions Engineering Comprehending the Tradeoffs between Deploying Oracle Database on RAID 5 and RAID 10 Storage Configurations A Dell Technical White Paper Database Solutions Engineering By Sudhansu Sekhar and Raghunatha

More information

Sistemas Operativos: Input/Output Disks

Sistemas Operativos: Input/Output Disks Sistemas Operativos: Input/Output Disks Pedro F. Souto (pfs@fe.up.pt) April 28, 2012 Topics Magnetic Disks RAID Solid State Disks Topics Magnetic Disks RAID Solid State Disks Magnetic Disk Construction

More information

Chapter 9: Peripheral Devices: Magnetic Disks

Chapter 9: Peripheral Devices: Magnetic Disks Chapter 9: Peripheral Devices: Magnetic Disks Basic Disk Operation Performance Parameters and History of Improvement Example disks RAID (Redundant Arrays of Inexpensive Disks) Improving Reliability Improving

More information

Input/output (I/O) I/O devices. Performance aspects. CS/COE1541: Intro. to Computer Architecture. Input/output subsystem.

Input/output (I/O) I/O devices. Performance aspects. CS/COE1541: Intro. to Computer Architecture. Input/output subsystem. Input/output (I/O) CS/COE1541: Intro. to Computer Architecture Input/output subsystem Sangyeun Cho Computer Science Department I/O connects User (human) and CPU (or a program running on it) Environment

More information

CHAPTER 4 RAID. Section Goals. Upon completion of this section you should be able to:

CHAPTER 4 RAID. Section Goals. Upon completion of this section you should be able to: HPTER 4 RI s it was originally proposed, the acronym RI stood for Redundant rray of Inexpensive isks. However, it has since come to be known as Redundant rray of Independent isks. RI was originally described

More information

Exercise 2 : checksums, RAID and erasure coding

Exercise 2 : checksums, RAID and erasure coding Exercise 2 : checksums, RAID and erasure coding Sébastien Ponce May 22, 2015 1 Goals of the exercise Play with checksums and compare efficiency and robustness Use hand written version of RAID systems and

More information

IBM ^ xseries ServeRAID Technology

IBM ^ xseries ServeRAID Technology IBM ^ xseries ServeRAID Technology Reliability through RAID technology Executive Summary: t long ago, business-critical computing on industry-standard platforms was unheard of. Proprietary systems were

More information

Self-Adaptive Disk Arrays

Self-Adaptive Disk Arrays Proc. 8 th International Symposium on Stabilization, Safety and Securiity of Distributed Systems (SSS 006), Dallas, TX, Nov. 006, to appear Self-Adaptive Disk Arrays Jehan-François Pâris 1*, Thomas J.

More information

Database Management Systems

Database Management Systems 4411 Database Management Systems Acknowledgements and copyrights: these slides are a result of combination of notes and slides with contributions from: Michael Kiffer, Arthur Bernstein, Philip Lewis, Anestis

More information

California Software Labs

California Software Labs WHITE PAPERS FEBRUARY 2006 California Software Labs CSWL INC R e a l i z e Y o u r I d e a s Redundant Array of Inexpensive Disks (RAID) Redundant Array of Inexpensive Disks (RAID) aids development of

More information

Chapter 10: Mass-Storage Systems

Chapter 10: Mass-Storage Systems Chapter 10: Mass-Storage Systems Physical structure of secondary storage devices and its effects on the uses of the devices Performance characteristics of mass-storage devices Disk scheduling algorithms

More information

CS420: Operating Systems

CS420: Operating Systems NK YORK COLLEGE OF PENNSYLVANIA HG OK 2 RAID YORK COLLEGE OF PENNSYLVAN James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz,

More information

File System & Device Drive. Overview of Mass Storage Structure. Moving head Disk Mechanism. HDD Pictures 11/13/2014. CS341: Operating System

File System & Device Drive. Overview of Mass Storage Structure. Moving head Disk Mechanism. HDD Pictures 11/13/2014. CS341: Operating System CS341: Operating System Lect 36: 1 st Nov 2014 Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati File System & Device Drive Mass Storage Disk Structure Disk Arm Scheduling RAID

More information

Reliability of Systems and Components

Reliability of Systems and Components Reliability of Systems and Components GNS Systems GmbH Am Gaußberg 2 38114 Braunschweig / Germany Fri 13 Apr 2012, Revision 0.1.1 Please send comments about this document to: norman.krebs@gns-systems.de

More information

William Stallings Computer Organization and Architecture 8 th Edition. External Memory

William Stallings Computer Organization and Architecture 8 th Edition. External Memory William Stallings Computer Organization and Architecture 8 th Edition Chapter 6 External Memory Types of External Memory Magnetic Disk RAID Removable Optical CD-ROM CD-Recordable (CD-R) CD-R/W DVD Magnetic

More information

Operating Systems 2230

Operating Systems 2230 Operating Systems 2230 Computer Science & Software Engineering Lecture 10: File System Management A clear and obvious requirement of an operating system is the provision of a convenient, efficient, and

More information

Alternatives to Big Backup

Alternatives to Big Backup Alternatives to Big Backup Life Cycle Management, Object- Based Storage, and Self- Protecting Storage Systems Presented by: Chris Robertson Solution Architect Cambridge Computer Copyright 2010-2011, Cambridge

More information

A Novel Way of Deduplication Approach for Cloud Backup Services Using Block Index Caching Technique

A Novel Way of Deduplication Approach for Cloud Backup Services Using Block Index Caching Technique A Novel Way of Deduplication Approach for Cloud Backup Services Using Block Index Caching Technique Jyoti Malhotra 1,Priya Ghyare 2 Associate Professor, Dept. of Information Technology, MIT College of

More information

CONFIGURATION GUIDELINES: EMC STORAGE FOR PHYSICAL SECURITY

CONFIGURATION GUIDELINES: EMC STORAGE FOR PHYSICAL SECURITY White Paper CONFIGURATION GUIDELINES: EMC STORAGE FOR PHYSICAL SECURITY DVTel Latitude NVMS performance using EMC Isilon storage arrays Correct sizing for storage in a DVTel Latitude physical security

More information

Sonexion GridRAID Characteristics

Sonexion GridRAID Characteristics Sonexion GridRAID Characteristics Mark Swan Performance Team Cray Inc. Saint Paul, Minnesota, USA mswan@cray.com Abstract This paper will present performance characteristics of the Sonexion declustered

More information

Storage node capacity in RAID0 is equal to the sum total capacity of all disks in the storage node.

Storage node capacity in RAID0 is equal to the sum total capacity of all disks in the storage node. RAID configurations defined 1/7 Storage Configuration: Disk RAID and Disk Management > RAID configurations defined Next RAID configurations defined The RAID configuration you choose depends upon how you

More information