RAID. Tiffany Yu-Han Chen. # The performance of different RAID levels # read/write/reliability (fault-tolerant)/overhead
|
|
|
- Clarissa Lloyd
- 10 years ago
- Views:
Transcription
1 RAID # The performance of different RAID levels # read/write/reliability (fault-tolerant)/overhead Tiffany Yu-Han Chen (These slides modified from Hao-Hua Chu National Taiwan University)
2 RAID 0 - Striping Strip data across all drives (minimum 2 drives) Sequential blocks of data are written across multiple disks in stripes.
3 RAID 0 - Striping Strip data across all drives (minimum 2 drives) Sequential blocks of data are written across multiple disks in stripes. Read/write? Reliability? Failure recovery? Space redundancy overhead?
4 RAID 0 - Striping Strip data across all drives (minimum 2 drives) Sequential blocks of data are written across multiple disks in stripes. Read/write? Concurrent read/write Reliability? Failure recovery? No/No Space redundancy overhead? 0%
5 RAID 1 - Mirrored Redundancy by duplicating data on multiple disks Copy each block to both disks
6 RAID 1 - Mirrored Redundancy by duplicating data on different disks Copy each block to both disks Read? Write? Reliability? Failure recovery? Space redundancy overhead?
7 RAID 1 - Mirrored Redundancy by duplicating data on different disks Copy each block to both disks Read? Concurrent read Write? Need to write to both disks Reliability? Failure recovery? Yes Space redundancy overhead? 50%
8 RAID 3 RAID 5 Parity Disk for Error Correction Disk controllers can detect incorrect disk blocks while reading it Check disk does not need to do error detection, error correction would be sufficient
9 RAID 3 RAID 5 Parity Disk for Error Correction One parity disk for error correction Parity bit value = XOR across all data bit values 0 1 0?
10 RAID 3 RAID 5 Parity Disk for Error Correction One parity disk for error correction Parity bit value = XOR across all data bit values If one disk fails, recover the lost data XOR across all good data bit values and parity bit value? 0 0 1
11 RAID 4 - Block-Interleaved Parity Coarse-grained striping at the block level One parity disk
12 RAID 4 - Block-Interleaved Parity Coarse-grained striping at the block level One parity disk If one disk fails, # of disk access?
13 RAID 4 - Block-Interleaved Parity Coarse-grained striping at the block level One parity disk If one disk fails, # of disk access: Read from all good disks (including parity disk) to reconstruct the lost block.
14 RAID 4 - Block-Interleaved Parity Read? 1-block read, disk access? Reliability? Failure recovery? Space redundancy overhead?
15 RAID 4 - Block-Interleaved Parity Read? Concurrent read Reliability? Failure recovery? Can tolerate 1 disk failure Space redundancy overhead? 1 parity disk
16 RAID 4 - Block-Interleaved Parity Write Write also needs to update the parity disk. no need to read other disks!
17 RAID 4 - Block-Interleaved Parity Write Write also needs to update the parity block. no need to read other disks! Can compute new parity based on old data, new data, and old parity New parity = (old data XOR new data) XOR old parity 1-block write, # of disk access?
18 RAID 4 - Block-Interleaved Parity Write Write also needs to update the parity block. no need to read other disks! Can compute new parity based on old data, new data, and old parity New parity = (old data XOR new data) XOR old parity 1-block write, # of disk access? Result in bottleneck on the parity disk! (can do only one write at a time)
19 RAID 5- Block-Interleaved Distributed-Parity Remove the parity disk bottleneck in RAID 4 by distributing the parity uniformly over all of the disks. Comparing to RAID 4 Read? Write? Reliability, space redundancy?
20 RAID 5- Block-Interleaved Distributed-Parity Remove the parity disk bottleneck in RAID 4 by distributing the parity uniformly over all of the disks. Comparing to RAID 4 Read? Similar Write? Better Reliability, space redundancy? Similar
21 Questions?
22 Google File System (GFS) # Observations -> design decisions (These slides modified from Alex Moshchuk, University of Washington)
23 Assumptions GFS built with commodity hardware High component failure rates GFS stores a modest number of huge files A few million files Each is 100MB or larger
24 Workloads Read: Large streaming reads (> 1MB); small random reads (a few KBs)
25 Workloads Read: Large streaming reads (> 1MB); small random reads (a few KBs) Write: Files are write-once, mostly append to File is concurrently written by multiple clients (map-reduce)
26 GFS Design Decisions Files stored as/divided into chunks Chunk size: 64MB Reliability through replication Each chunk replicated across 3+ chunkservers Single master to coordinate access, keep metadata Simple Add record append operations Support concurrent appends
27 Architecture Single master Multiple chunkservers
28 Architecture Single master Multiple chunkservers 1.
29 Architecture Single master Multiple chunkservers 2.
30 Architecture Single master Multiple chunkservers 3.
31 Architecture Single master Multiple chunkservers 4.
32 Single Master - Simple Problem: Single point of failure Scalability bottleneck
33 Single Master - Simple Problem: Single point of failure Scalability bottleneck Solutions: Shadow masters
34 Single Master - Simple Problem: Single point of failure Scalability bottleneck Solutions: Shadow masters Minimize master involvement Chunk leases: master delegates authority to primary replicas in data mutations never move data through it, use only for metadata
35 Write Algorithm 1. Application originates the request 2. GFS client translates request and sends it to master 3. Master responds with chunk handle and replica locations
36 Write Algorithm 4. Client pushes write data to all locations. Data is stored in chunkserver s internal buffers
37 Write Algorithm 5. Client sends write command to primary 6. Primary determines serial order for data mutations in its buffer and writes the mutations in that order to the chunk 7. Primary sends the serial order to the secondaries and tells them to perform the write
38 Write Algorithm 8. Secondaries respond back to primary 9. Primary responds back to the client
39 Write Algorithm 4. Client pushes write data to all locations. Data is stored in chunkserver s internal buffers
40 Write Algorithm 4. Client pushes write data to all locations. Data is stored in chunkserver s internal buffers
41 Write Failure Applications need to deal with failures Rewrite Chunks are not bitwise identical Use checksum to skip inconsistent file regions xxxxx
42 Write Failure Applications need to deal with failures Rewrite Chunks are not bitwise identical Use checksum to skip inconsistent file regions D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 xxxxx D1 D2 D3 D4
43 Questions?
The Google File System
The Google File System By Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung (Presented at SOSP 2003) Introduction Google search engine. Applications process lots of data. Need good file system. Solution:
Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms
Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
Distributed File Systems
Distributed File Systems Mauro Fruet University of Trento - Italy 2011/12/19 Mauro Fruet (UniTN) Distributed File Systems 2011/12/19 1 / 39 Outline 1 Distributed File Systems 2 The Google File System (GFS)
The Google File System
The Google File System Motivations of NFS NFS (Network File System) Allow to access files in other systems as local files Actually a network protocol (initially only one server) Simple and fast server
Storing Data: Disks and Files
Storing Data: Disks and Files (From Chapter 9 of textbook) Storing and Retrieving Data Database Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve
Lecture 36: Chapter 6
Lecture 36: Chapter 6 Today s topic RAID 1 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for
technology brief RAID Levels March 1997 Introduction Characteristics of RAID Levels
technology brief RAID Levels March 1997 Introduction RAID is an acronym for Redundant Array of Independent Disks (originally Redundant Array of Inexpensive Disks) coined in a 1987 University of California
Distributed File Systems
Distributed File Systems Paul Krzyzanowski Rutgers University October 28, 2012 1 Introduction The classic network file systems we examined, NFS, CIFS, AFS, Coda, were designed as client-server applications.
Why disk arrays? CPUs speeds increase faster than disks. - Time won t really help workloads where disk in bottleneck
1/19 Why disk arrays? CPUs speeds increase faster than disks - Time won t really help workloads where disk in bottleneck Some applications (audio/video) require big files Disk arrays - make one logical
Massive Data Storage
Massive Data Storage Storage on the "Cloud" and the Google File System paper by: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung presentation by: Joshua Michalczak COP 4810 - Topics in Computer Science
Google File System. Web and scalability
Google File System Web and scalability The web: - How big is the Web right now? No one knows. - Number of pages that are crawled: o 100,000 pages in 1994 o 8 million pages in 2005 - Crawlable pages might
Lecture 5: GFS & HDFS! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 5: GFS & HDFS!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind
COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters
COSC 6374 Parallel I/O (I) I/O basics Fall 2012 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network card 1 Network card
Why disk arrays? CPUs improving faster than disks
Why disk arrays? CPUs improving faster than disks - disks will increasingly be bottleneck New applications (audio/video) require big files (motivation for XFS) Disk arrays - make one logical disk out of
Operating Systems. RAID Redundant Array of Independent Disks. Submitted by Ankur Niyogi 2003EE20367
Operating Systems RAID Redundant Array of Independent Disks Submitted by Ankur Niyogi 2003EE20367 YOUR DATA IS LOST@#!! Do we have backups of all our data???? - The stuff we cannot afford to lose?? How
Database Management Systems
4411 Database Management Systems Acknowledgements and copyrights: these slides are a result of combination of notes and slides with contributions from: Michael Kiffer, Arthur Bernstein, Philip Lewis, Anestis
RAID. Storage-centric computing, cloud computing. Benefits:
RAID Storage-centric computing, cloud computing. Benefits: Improved reliability (via error correcting code, redundancy). Improved performance (via redundancy). Independent disks. RAID Level 0 Provides
Data Storage - II: Efficient Usage & Errors
Data Storage - II: Efficient Usage & Errors Week 10, Spring 2005 Updated by M. Naci Akkøk, 27.02.2004, 03.03.2005 based upon slides by Pål Halvorsen, 12.3.2002. Contains slides from: Hector Garcia-Molina
Filing Systems. Filing Systems
Filing Systems At the outset we identified long-term storage as desirable characteristic of an OS. EG: On-line storage for an MIS. Convenience of not having to re-write programs. Sharing of data in an
Outline. Database Management and Tuning. Overview. Hardware Tuning. Johann Gamper. Unit 12
Outline Database Management and Tuning Hardware Tuning Johann Gamper 1 Free University of Bozen-Bolzano Faculty of Computer Science IDSE Unit 12 2 3 Conclusion Acknowledgements: The slides are provided
How To Write A Disk Array
200 Chapter 7 (This observation is reinforced and elaborated in Exercises 7.5 and 7.6, and the reader is urged to work through them.) 7.2 RAID Disks are potential bottlenecks for system performance and
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
File System Design and Implementation
Transactions and Reliability Sarah Diesburg Operating Systems CS 3430 Motivation File systems have lots of metadata: Free blocks, directories, file headers, indirect blocks Metadata is heavily cached for
RAID Overview 91.520
RAID Overview 91.520 1 The Motivation for RAID Computing speeds double every 3 years Disk speeds can t keep up Data needs higher MTBF than any component in system IO Performance and Availability Issues!
Chapter 6 External Memory. Dr. Mohamed H. Al-Meer
Chapter 6 External Memory Dr. Mohamed H. Al-Meer 6.1 Magnetic Disks Types of External Memory Magnetic Disks RAID Removable Optical CD ROM CD Recordable CD-R CD Re writable CD-RW DVD Magnetic Tape 2 Introduction
RAID. Contents. Definition and Use of the Different RAID Levels. The different RAID levels: Definition Cost / Efficiency Reliability Performance
RAID Definition and Use of the Different RAID Levels Contents The different RAID levels: Definition Cost / Efficiency Reliability Performance Further High Availability Aspects Performance Optimization
File System & Device Drive. Overview of Mass Storage Structure. Moving head Disk Mechanism. HDD Pictures 11/13/2014. CS341: Operating System
CS341: Operating System Lect 36: 1 st Nov 2014 Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati File System & Device Drive Mass Storage Disk Structure Disk Arm Scheduling RAID
RAID HARDWARE. On board SATA RAID controller. RAID drive caddy (hot swappable) SATA RAID controller card. Anne Watson 1
RAID HARDWARE On board SATA RAID controller SATA RAID controller card RAID drive caddy (hot swappable) Anne Watson 1 RAID The word redundant means an unnecessary repetition. The word array means a lineup.
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
Definition of RAID Levels
RAID The basic idea of RAID (Redundant Array of Independent Disks) is to combine multiple inexpensive disk drives into an array of disk drives to obtain performance, capacity and reliability that exceeds
RAID Performance Analysis
RAID Performance Analysis We have six 500 GB disks with 8 ms average seek time. They rotate at 7200 RPM and have a transfer rate of 20 MB/sec. The minimum unit of transfer to each disk is a 512 byte sector.
CS 153 Design of Operating Systems Spring 2015
CS 153 Design of Operating Systems Spring 2015 Lecture 22: File system optimizations Physical Disk Structure Disk components Platters Surfaces Tracks Arm Track Sector Surface Sectors Cylinders Arm Heads
Hadoop Distributed File System (HDFS) Overview
2012 coreservlets.com and Dima May Hadoop Distributed File System (HDFS) Overview Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/ Also see the customized
HP Smart Array Controllers and basic RAID performance factors
Technical white paper HP Smart Array Controllers and basic RAID performance factors Technology brief Table of contents Abstract 2 Benefits of drive arrays 2 Factors that affect performance 2 HP Smart Array
Exercise 2 : checksums, RAID and erasure coding
Exercise 2 : checksums, RAID and erasure coding Sébastien Ponce May 22, 2015 1 Goals of the exercise Play with checksums and compare efficiency and robustness Use hand written version of RAID systems and
Chapter 9: Peripheral Devices: Magnetic Disks
Chapter 9: Peripheral Devices: Magnetic Disks Basic Disk Operation Performance Parameters and History of Improvement Example disks RAID (Redundant Arrays of Inexpensive Disks) Improving Reliability Improving
W4118: RAID. Instructor: Junfeng Yang
W4118: RAID Instructor: Junfeng Yang References: Modern Operating Systems (3 rd edition), Operating Systems Concepts (8 th edition), previous W4118, and OS at MIT, Stanford, and UWisc RAID motivation Performance
How To Create A Multi Disk Raid
Click on the diagram to see RAID 0 in action RAID Level 0 requires a minimum of 2 drives to implement RAID 0 implements a striped disk array, the data is broken down into blocks and each block is written
Design and Evolution of the Apache Hadoop File System(HDFS)
Design and Evolution of the Apache Hadoop File System(HDFS) Dhruba Borthakur Engineer@Facebook Committer@Apache HDFS SDC, Sept 19 2011 Outline Introduction Yet another file-system, why? Goals of Hadoop
MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015
7/04/05 Fundamentals of Distributed Systems CC5- PROCESAMIENTO MASIVO DE DATOS OTOÑO 05 Lecture 4: DFS & MapReduce I Aidan Hogan [email protected] Inside Google circa 997/98 MASSIVE DATA PROCESSING (THE
Fault Tolerance & Reliability CDA 5140. Chapter 3 RAID & Sample Commercial FT Systems
Fault Tolerance & Reliability CDA 5140 Chapter 3 RAID & Sample Commercial FT Systems - basic concept in these, as with codes, is redundancy to allow system to continue operation even if some components
Sistemas Operativos: Input/Output Disks
Sistemas Operativos: Input/Output Disks Pedro F. Souto ([email protected]) April 28, 2012 Topics Magnetic Disks RAID Solid State Disks Topics Magnetic Disks RAID Solid State Disks Magnetic Disk Construction
How To Understand And Understand The Power Of Aird 6 On Clariion
A Detailed Review Abstract This white paper discusses the EMC CLARiiON RAID 6 implementation available in FLARE 26 and later, including an overview of RAID 6 and the CLARiiON-specific implementation, when
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Parallel Processing of cluster by Map Reduce
Parallel Processing of cluster by Map Reduce Abstract Madhavi Vaidya, Department of Computer Science Vivekanand College, Chembur, Mumbai [email protected] MapReduce is a parallel programming model
Lecture 23: Multiprocessors
Lecture 23: Multiprocessors Today s topics: RAID Multiprocessor taxonomy Snooping-based cache coherence protocol 1 RAID 0 and RAID 1 RAID 0 has no additional redundancy (misnomer) it uses an array of disks
CSE 120 Principles of Operating Systems
CSE 120 Principles of Operating Systems Fall 2004 Lecture 13: FFS, LFS, RAID Geoffrey M. Voelker Overview We ve looked at disks and file systems generically Now we re going to look at some example file
DELL RAID PRIMER DELL PERC RAID CONTROLLERS. Joe H. Trickey III. Dell Storage RAID Product Marketing. John Seward. Dell Storage RAID Engineering
DELL RAID PRIMER DELL PERC RAID CONTROLLERS Joe H. Trickey III Dell Storage RAID Product Marketing John Seward Dell Storage RAID Engineering http://www.dell.com/content/topics/topic.aspx/global/products/pvaul/top
Alternatives to Big Backup
Alternatives to Big Backup Life Cycle Management, Object- Based Storage, and Self- Protecting Storage Systems Presented by: Chris Robertson Solution Architect Cambridge Computer Copyright 2010-2011, Cambridge
COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University. (http://www.cs.princeton.edu/courses/cos318/)
COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Today s Topics Magnetic disks Magnetic disk performance
Seminar Presentation for ECE 658 Instructed by: Prof.Anura Jayasumana Distributed File Systems
Seminar Presentation for ECE 658 Instructed by: Prof.Anura Jayasumana Distributed File Systems Prabhakaran Murugesan Outline File Transfer Protocol (FTP) Network File System (NFS) Andrew File System (AFS)
Load Balancing in Fault Tolerant Video Server
Load Balancing in Fault Tolerant Video Server # D. N. Sujatha*, Girish K*, Rashmi B*, Venugopal K. R*, L. M. Patnaik** *Department of Computer Science and Engineering University Visvesvaraya College of
Storage Architectures for Big Data in the Cloud
Storage Architectures for Big Data in the Cloud Sam Fineberg HP Storage CT Office/ May 2013 Overview Introduction What is big data? Big Data I/O Hadoop/HDFS SAN Distributed FS Cloud Summary Research Areas
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
PARALLELS CLOUD STORAGE
PARALLELS CLOUD STORAGE Performance Benchmark Results 1 Table of Contents Executive Summary... Error! Bookmark not defined. Architecture Overview... 3 Key Features... 5 No Special Hardware Requirements...
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan [email protected] Abstract Every day, we create 2.5 quintillion
Distributed File Systems
Distributed File Systems Alemnew Sheferaw Asrese University of Trento - Italy December 12, 2012 Acknowledgement: Mauro Fruet Alemnew S. Asrese (UniTN) Distributed File Systems 2012/12/12 1 / 55 Outline
CS420: Operating Systems
NK YORK COLLEGE OF PENNSYLVANIA HG OK 2 RAID YORK COLLEGE OF PENNSYLVAN James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz,
OceanStor 9000 InfoProtector Technical White Paper. Issue 01. Date 2014-02-13 HUAWEI TECHNOLOGIES CO., LTD.
OceanStor 9000 InfoProtector Technical White Paper Issue 01 Date 2014-02-13 HUAWEI TECHNOLOGIES CO., LTD. Copyright Huawei Technologies Co., Ltd. 2014. All rights reserved. No part of this document may
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction
Data Corruption In Storage Stack - Review
Theoretical Aspects of Storage Systems Autumn 2009 Chapter 2: Double Disk Failures André Brinkmann Data Corruption in the Storage Stack What are Latent Sector Errors What is Silent Data Corruption Checksum
Price/performance Modern Memory Hierarchy
Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion
SSDs and RAID: What s the right strategy. Paul Goodwin VP Product Development Avant Technology
SSDs and RAID: What s the right strategy Paul Goodwin VP Product Development Avant Technology SSDs and RAID: What s the right strategy Flash Overview SSD Overview RAID overview Thoughts about Raid Strategies
How to choose the right RAID for your Dedicated Server
Overview of RAID Let's first address, "What is RAID and what does RAID stand for?" RAID, an acronym for "Redundant Array of Independent Disks, is a storage technology that links or combines multiple hard
Big Data Processing in the Cloud. Shadi Ibrahim Inria, Rennes - Bretagne Atlantique Research Center
Big Data Processing in the Cloud Shadi Ibrahim Inria, Rennes - Bretagne Atlantique Research Center Data is ONLY as useful as the decisions it enables 2 Data is ONLY as useful as the decisions it enables
Review. Lecture 21: Reliable, High Performance Storage. Overview. Basic Disk & File System properties CSC 468 / CSC 2204 11/23/2006
S 468 / S 2204 Review Lecture 2: Reliable, High Performance Storage S 469HF Fall 2006 ngela emke rown We ve looked at fault tolerance via server replication ontinue operating with up to f failures Recovery
Disks and RAID. Profs. Bracy and Van Renesse. based on slides by Prof. Sirer
Disks and RAID Profs. Bracy and Van Renesse based on slides by Prof. Sirer 50 Years Old! 13th September 1956 The IBM RAMAC 350 Stored less than 5 MByte Reading from a Disk Must specify: cylinder # (distance
Summer Student Project Report
Summer Student Project Report Dimitris Kalimeris National and Kapodistrian University of Athens June September 2014 Abstract This report will outline two projects that were done as part of a three months
Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 412, University of Maryland. Guest lecturer: David Hovemeyer.
Guest lecturer: David Hovemeyer November 15, 2004 The memory hierarchy Red = Level Access time Capacity Features Registers nanoseconds 100s of bytes fixed Cache nanoseconds 1-2 MB fixed RAM nanoseconds
Quantcast Petabyte Storage at Half Price with QFS!
9-131 Quantcast Petabyte Storage at Half Price with QFS Presented by Silvius Rus, Director, Big Data Platforms September 2013 Quantcast File System (QFS) A high performance alternative to the Hadoop Distributed
CSE-E5430 Scalable Cloud Computing P Lecture 5
CSE-E5430 Scalable Cloud Computing P Lecture 5 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 12.10-2015 1/34 Fault Tolerance Strategies for Storage
Reliability and Fault Tolerance in Storage
Reliability and Fault Tolerance in Storage Dalit Naor/ Dima Sotnikov IBM Haifa Research Storage Systems 1 Advanced Topics on Storage Systems - Spring 2014, Tel-Aviv University http://www.eng.tau.ac.il/semcom
RAID 5 rebuild performance in ProLiant
RAID 5 rebuild performance in ProLiant technology brief Abstract... 2 Overview of the RAID 5 rebuild process... 2 Estimating the mean-time-to-failure (MTTF)... 3 Factors affecting RAID 5 array rebuild
Distributed File Systems
Distributed File Systems File Characteristics From Andrew File System work: most files are small transfer files rather than disk blocks? reading more common than writing most access is sequential most
Cloud Storage. Parallels. Performance Benchmark Results. White Paper. www.parallels.com
Parallels Cloud Storage White Paper Performance Benchmark Results www.parallels.com Table of Contents Executive Summary... 3 Architecture Overview... 3 Key Features... 4 No Special Hardware Requirements...
Comprehending the Tradeoffs between Deploying Oracle Database on RAID 5 and RAID 10 Storage Configurations. Database Solutions Engineering
Comprehending the Tradeoffs between Deploying Oracle Database on RAID 5 and RAID 10 Storage Configurations A Dell Technical White Paper Database Solutions Engineering By Sudhansu Sekhar and Raghunatha
CS161: Operating Systems
CS161: Operating Systems Matt Welsh [email protected] Lecture 18: RAID April 19, 2007 2007 Matt Welsh Harvard University 1 RAID Redundant Arrays of Inexpensive Disks Invented in 1986-1987 by David Patterson
PIONEER RESEARCH & DEVELOPMENT GROUP
SURVEY ON RAID Aishwarya Airen 1, Aarsh Pandit 2, Anshul Sogani 3 1,2,3 A.I.T.R, Indore. Abstract RAID stands for Redundant Array of Independent Disk that is a concept which provides an efficient way for
How To Improve Performance On A Single Chip Computer
: Redundant Arrays of Inexpensive Disks this discussion is based on the paper:» A Case for Redundant Arrays of Inexpensive Disks (),» David A Patterson, Garth Gibson, and Randy H Katz,» In Proceedings
Chapter 11 I/O Management and Disk Scheduling
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization
MinCopysets: Derandomizing Replication In Cloud Storage
MinCopysets: Derandomizing Replication In Cloud Storage Asaf Cidon, Ryan Stutsman, Stephen Rumble, Sachin Katti, John Ousterhout and Mendel Rosenblum Stanford University [email protected], {stutsman,rumble,skatti,ouster,mendel}@cs.stanford.edu
Designing a Cloud Storage System
Designing a Cloud Storage System End to End Cloud Storage When designing a cloud storage system, there is value in decoupling the system s archival capacity (its ability to persistently store large volumes
Dependable Systems. 9. Redundant arrays of. Prof. Dr. Miroslaw Malek. Wintersemester 2004/05 www.informatik.hu-berlin.de/rok/zs
Dependable Systems 9. Redundant arrays of inexpensive disks (RAID) Prof. Dr. Miroslaw Malek Wintersemester 2004/05 www.informatik.hu-berlin.de/rok/zs Redundant Arrays of Inexpensive Disks (RAID) RAID is
Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections
Chapter 6 Storage and Other I/O Topics 6.1 Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections
Apache Hadoop FileSystem and its Usage in Facebook
Apache Hadoop FileSystem and its Usage in Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System [email protected] Presented at Indian Institute of Technology November, 2010 http://www.facebook.com/hadoopfs
Storage and File Structure
Storage and File Structure Chapter 10: Storage and File Structure Overview of Physical Storage Media Magnetic Disks RAID Tertiary Storage Storage Access File Organization Organization of Records in Files
Sunita Suralkar, Ashwini Mujumdar, Gayatri Masiwal, Manasi Kulkarni Department of Computer Technology, Veermata Jijabai Technological Institute
Review of Distributed File Systems: Case Studies Sunita Suralkar, Ashwini Mujumdar, Gayatri Masiwal, Manasi Kulkarni Department of Computer Technology, Veermata Jijabai Technological Institute Abstract
Accelerating and Simplifying Apache
Accelerating and Simplifying Apache Hadoop with Panasas ActiveStor White paper NOvember 2012 1.888.PANASAS www.panasas.com Executive Overview The technology requirements for big data vary significantly
