William Stallings Computer Organization and Architecture 7 th Edition. Chapter 6 External Memory
|
|
|
- Claude Payne
- 10 years ago
- Views:
Transcription
1 William Stallings Computer Organization and Architecture 7 th Edition Chapter 6 External Memory
2 Types of External Memory Magnetic Disk RAID Removable Optical CD-ROM CD-Recordable (CD-R) CD-R/W DVD Magnetic Tape
3 Magnetic Disk Disk substrate coated with magnetizable material (iron oxide rust) Substrate used to be aluminium Now glass Improved surface uniformity Increases reliability Reduction in surface defects Reduced read/write errors Lower flight heights (See later) Better stiffness Better shock/damage resistance
4 Read and Write Mechanisms Recording & retrieval via conductive coil called a head May be single read/write head or separate ones During read/write, head is stationary, platter rotates Write Current through coil produces magnetic field Pulses sent to head Magnetic pattern recorded on surface below Read (traditional) Magnetic field moving relative to coil produces current Coil is the same for read and write Read (contemporary) Separate read head, close to write head Partially shielded magneto resistive (MR) sensor Electrical resistance depends on direction of magnetic field MR design allows higher frequency operation Higher storage density and speed
5 Inductive Write MR Read
6 Data Organization and Formatting Concentric rings or tracks Gaps between tracks Reduce gap to increase capacity Same number of bits per track (variable packing density) Constant angular velocity Tracks divided into sectors (~512 bytes) Minimum block size is one sector May have more than one sector per block
7 Disk Data Layout
8 Disk Velocity Bit near centre of rotating disk passes fixed point slower than bit on outside of disk Increase spacing between bits in different tracks Rotate disk at constant angular velocity (CAV) Gives pie shaped sectors and concentric tracks Individual tracks and sectors addressable Move head to given track and wait for given sector Waste of space on outer tracks Lower data density Can use zones to increase capacity Each zone has fixed bits per track More complex circuitry
9 Disk Layout Methods Diagram
10 Multiple Zone Recording
11 Finding Sectors Must be able to identify start of track and sector Format disk Additional information not available to user Marks tracks and sectors
12 Winchester Disk Format Seagate ST506
13 Characteristics Fixed (rare) or movable head Removable or fixed Single or double (usually) sided Single or multiple platter Head mechanism Contact (Floppy) Fixed gap Flying (Winchester)
14 Fixed/Movable Head Disk Fixed head One read write head per track Heads mounted on fixed ridged arm Movable head One read write head per side Mounted on a movable arm
15 Removable or Not Removable disk Can be removed from drive and replaced with another disk Provides unlimited storage capacity Easy data transfer between systems Nonremovable disk Permanently mounted in the drive
16 Multiple Platter One head per side Heads are joined and aligned Aligned tracks on each platter form cylinders Data is striped by cylinder reduces head movement Increases speed (transfer rate)
17 Multiple Platters
18 Tracks and Cylinders
19 Floppy Disk 8, 5.25, 3.5 Small capacity Up to 1.44Mbyte (2.88M never popular) Slow Universal Cheap Obsolete?
20 Winchester Hard Disk (1) Developed by IBM in Winchester (USA) Sealed unit One or more platters (disks) Heads fly on boundary layer of air as disk spins Very small head to disk gap Getting more robust
21 Winchester Hard Disk (2) Universal Cheap Fastest external storage Getting larger capacity all the time 250 Gigabyte now easily available
22 Speed Seek time Moving head to correct track (Rotational) latency Waiting for data to rotate under head Access time = Seek + Latency Transfer rate
23 Timing of Disk I/O Transfer
24 Transfer Time: T = b/rn T : transfer time b : number of bytes to be transferred N : number of bytes on a track r : rotation speed, in revolution per second The total average access time: T a = T s + 1/2r + b/rn Where T s is the average seek time. Second and third terms are average rotational delay and transfer time, respectively.
25 EXAMPLE: Assume: T s = 4ms, r = 15,000rpm (15,000/60 = 250rps), 512 Bytes/sector, 500 sectors/track and we will read a file of 2500 sectors (1.28MB) a) Assume the file is on 5 adjacent tracks (5 tracks 500sectors/track = 2500 sectors). For the first track: Average seek: 4ms Average rot. Delay: 2ms [1/2r = 1/(2 250) = 0.002] Read 500 sectors: 4ms [b/rn = ( )/( )] Total 10ms Suppose the remaining tracks can be read with no seek time. Then we have rotational delays and transfer times for the succeeding tracks: each succeeding track is read in 2+4 = 6ms. Thus total time becomes : 10 + (4 6) = 34ms seconds
26 Now suppose that the sectors are distributed randomly over the disk. For each sector to be accessed we have: Average seek: 4ms Average rot. Delay: 2ms [1/2r = 1/(2 250) = 0.002] Read 1 sector: 0.008ms [b/rn = (1 512)/( )] Total 6.008ms Thus, the total time becomes: = seconds
27 RAID Redundant Array of Independent Disks Redundant Array of Inexpensive Disks 6 levels in common use Not a hierarchy Set of physical disks viewed as single logical drive by O/S Data distributed across physical drives Can use redundant capacity to store parity information
28 RAID 0 No redundancy Data striped across all disks Round Robin striping Increase speed Multiple data requests probably not on same disk Disks seek in parallel A set of data is likely to be striped across multiple disks
29 RAID 1 Mirrored Disks Data is striped across disks 2 copies of each stripe on separate disks Read from either Write to both Recovery is simple Swap faulty disk & re-mirror No down time Expensive
30 RAID 2 Disks are synchronized Very small stripes Often single byte/word Error correction calculated across corresponding bits on disks Multiple parity disks store Hamming code error correction in corresponding positions Lots of redundancy Expensive Not used
31 RAID 3 Similar to RAID 2 Only one redundant disk, no matter how large the array Simple parity bit for each set of corresponding bits Data on failed drive can be reconstructed from surviving data and parity info Very high transfer rates X4(i) = X3(i) X2(i) X1(i) X0(i) X1(i) = X4(i) X3(i) X2(i) X0(i)
32 RAID 4 Each disk operates independently Good for high I/O request rate Large stripes Bit by bit parity calculated across stripes on each disk Parity stored on parity disk
33 RAID 5 Like RAID 4 Parity striped across all disks Round robin allocation for parity stripe Avoids RAID 4 bottleneck at parity disk Commonly used in network servers
34 RAID 6 Two parity calculations Stored in separate blocks on different disks User requirement of N disks needs N+2 High data availability Three disks need to fail for data loss Significant write penalty
35 RAID 0, 1, 2
36 RAID 3 & 4
37 RAID 5 & 6
38 Data Mapping For RAID 0
39 Optical Storage CD-ROM Originally for audio 650Mbytes giving over 70 minutes audio Polycarbonate coated with highly reflective coat, usually aluminium Data stored as pits Read by reflecting laser Constant packing density Constant linear velocity (CLV)
40
41 CD Operation
42
43
44
45
46
47
48 CD-ROM Drive Speeds Audio is single speed Constant linier velocity 1.2 ms -1 Track (spiral) is 5.27km long Gives 4391 seconds = 73.2 minutes Other speeds are quoted as multiples e.g. 24x Quoted figure is maximum drive can achieve
49 CD-ROM Block Format Mode 0=blank data field Mode 1=2048 byte data+error correction Mode 2=2336 byte data
50 Random Access on CD-ROM Difficult Move head to rough position Set correct speed Read address Adjust to required location
51 CD-ROM for & against Large capacity (?) Easy to mass produce Removable Robust Expensive for small runs Slow Read only
52 Other Optical Storage CD-Recordable (CD-R) WORM Now affordable Compatible with CD-ROM drives CD-RW Erasable Getting cheaper Mostly CD-ROM drive compatible Phase change Material has two different reflectivities in different phase states
53 DVD - what s in a name? Digital Video Disk Used to indicate a player for movies Only plays video disks Digital Versatile Disk Used to indicate a computer drive Will read computer disks and play video disks ~x7 capacity of a CD for ordinary DVD (4.7GB) 8.5GB and 17 GB for dual layer & double side
54 DVD - technology Multi-layer Very high capacity (4.7G per layer) Full length movie on single disk Using MPEG compression Finally standardized (honest!) Movies carry regional coding Players only play correct region films Can be fixed 0.74µm loop, 0.4µm pit spacing (1.6µm and 0.834µm for CD), shorter wavelength laser
55 DVD Writable Loads of trouble with standards First generation DVD drives may not read first generation DVD-W disks First generation DVD drives may not read CD-RW disks Wait for it to settle down before buying!
56 CD and DVD
57 Magnetic Tape Serial access Slow Very cheap Backup and archive
58 Internet Resources Optical Storage Technology Association Good source of information about optical storage technology and vendors Extensive list of relevant links DLTtape Good collection of technical information and links to vendors Search on RAID
William Stallings Computer Organization and Architecture 8 th Edition. External Memory
William Stallings Computer Organization and Architecture 8 th Edition Chapter 6 External Memory Types of External Memory Magnetic Disk RAID Removable Optical CD-ROM CD-Recordable (CD-R) CD-R/W DVD Magnetic
HARD DRIVE CHARACTERISTICS REFRESHER
The read/write head of a hard drive only detects changes in the magnetic polarity of the material passing beneath it, not the direction of the polarity. Writes are performed by sending current either one
Chapter 6 External Memory. Dr. Mohamed H. Al-Meer
Chapter 6 External Memory Dr. Mohamed H. Al-Meer 6.1 Magnetic Disks Types of External Memory Magnetic Disks RAID Removable Optical CD ROM CD Recordable CD-R CD Re writable CD-RW DVD Magnetic Tape 2 Introduction
Disks and RAID. Profs. Bracy and Van Renesse. based on slides by Prof. Sirer
Disks and RAID Profs. Bracy and Van Renesse based on slides by Prof. Sirer 50 Years Old! 13th September 1956 The IBM RAMAC 350 Stored less than 5 MByte Reading from a Disk Must specify: cylinder # (distance
Price/performance Modern Memory Hierarchy
Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion
Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 412, University of Maryland. Guest lecturer: David Hovemeyer.
Guest lecturer: David Hovemeyer November 15, 2004 The memory hierarchy Red = Level Access time Capacity Features Registers nanoseconds 100s of bytes fixed Cache nanoseconds 1-2 MB fixed RAM nanoseconds
Chapter 9: Peripheral Devices: Magnetic Disks
Chapter 9: Peripheral Devices: Magnetic Disks Basic Disk Operation Performance Parameters and History of Improvement Example disks RAID (Redundant Arrays of Inexpensive Disks) Improving Reliability Improving
Types Of Storage Device
Types Of Storage Device by AA A POG D EE SRM U Outline Categorizing Storage Devices Magnetic Storage Devices Optical Storage Devices Categorizing Storage Devices Storage devices hold data, even when the
McGraw-Hill Technology Education McGraw-Hill Technology Education
McGraw-Hill Technology Education McGraw-Hill Technology Education Copyright 2006 by The McGraw-Hill Companies, Inc. All rights reserved. Copyright 2006 by The McGraw-Hill Companies, Inc. All rights reserved.
An Introduction to RAID. Giovanni Stracquadanio [email protected] www.dmi.unict.it/~stracquadanio
An Introduction to RAID Giovanni Stracquadanio [email protected] www.dmi.unict.it/~stracquadanio Outline A definition of RAID An ensemble of RAIDs JBOD RAID 0...5 Configuring and testing a Linux
Introduction to I/O and Disk Management
Introduction to I/O and Disk Management 1 Secondary Storage Management Disks just like memory, only different Why have disks? Memory is small. Disks are large. Short term storage for memory contents (e.g.,
Chapter 8. Secondary Storage. McGraw-Hill/Irwin. Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 8 Secondary Storage McGraw-Hill/Irwin Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Competencies (Page 1 of 2) Distinguish between primary and secondary storage Describe
Digital Image Formation. Storage Technology
Digital Image Formation Storage Technology Storage Technology Quiz Name one type of data storage?! Storage Technology Data Storage Device is a device for recording (storing) information (data).!! Recording
Writing Assignment #2 due Today (5:00pm) - Post on your CSC101 webpage - Ask if you have questions! Lab #2 Today. Quiz #1 Tomorrow (Lectures 1-7)
Overview of Computer Science CSC 101 Summer 2011 Main Memory vs. Auxiliary Storage Lecture 7 July 14, 2011 Announcements Writing Assignment #2 due Today (5:00pm) - Post on your CSC101 webpage - Ask if
Storing Data: Disks and Files
Storing Data: Disks and Files (From Chapter 9 of textbook) Storing and Retrieving Data Database Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve
File System & Device Drive. Overview of Mass Storage Structure. Moving head Disk Mechanism. HDD Pictures 11/13/2014. CS341: Operating System
CS341: Operating System Lect 36: 1 st Nov 2014 Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati File System & Device Drive Mass Storage Disk Structure Disk Arm Scheduling RAID
COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University. (http://www.cs.princeton.edu/courses/cos318/)
COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Today s Topics Magnetic disks Magnetic disk performance
Two main categories of storage technology used today are magnetic storage and optical storage.
Types of Storage Devices Physical components or materials on which data is stored are called storage media. Hardware components that read/write to storage media are called storage devices. Two main categories
Chapter 8 Memory Units
Chapter 8 Memory Units Contents: I. Introduction Basic units of Measurement II. RAM,ROM,PROM,EPROM Storage versus Memory III. Auxiliary Storage Devices-Magnetic Tape, Hard Disk, Floppy Disk IV.Optical
CS 6290 I/O and Storage. Milos Prvulovic
CS 6290 I/O and Storage Milos Prvulovic Storage Systems I/O performance (bandwidth, latency) Bandwidth improving, but not as fast as CPU Latency improving very slowly Consequently, by Amdahl s Law: fraction
Computer Peripherals
Computer Peripherals Reading: Chapter 10 (except 10.6) Peripherals Devices that are separate from the basic computer Not the CPU, memory, or power supply Classified as input, output, and storage Connect
COS 318: Operating Systems. Storage Devices. Kai Li and Andy Bavier Computer Science Department Princeton University
COS 318: Operating Systems Storage Devices Kai Li and Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Today s Topics! Magnetic disks!
Chapter 8: Secondary Storage Devices
Computer Fundamentals: Pradeep K. Sinha & Priti Sinha Slide 1/98 Learning Objectives Computer Fundamentals: Pradeep K. Sinha & Priti Sinha In this chapter you will learn about: Secondary storage devices
Sistemas Operativos: Input/Output Disks
Sistemas Operativos: Input/Output Disks Pedro F. Souto ([email protected]) April 28, 2012 Topics Magnetic Disks RAID Solid State Disks Topics Magnetic Disks RAID Solid State Disks Magnetic Disk Construction
Outline. CS 245: Database System Principles. Notes 02: Hardware. Hardware DBMS ... ... Data Storage
CS 245: Database System Principles Notes 02: Hardware Hector Garcia-Molina Outline Hardware: Disks Access Times Solid State Drives Optimizations Other Topics: Storage costs Using secondary storage Disk
Chapter 12: Secondary-Storage Structure
Chapter 12: Secondary-Storage Structure Chapter 12: Secondary-Storage Structure Overview of Mass Storage Structure Disk Structure Disk Attachment Disk Scheduling Disk Management Swap-Space Management RAID
How To Store Data On A Computer (For A Computer)
TH3. Data storage http://www.bbc.co.uk/schools/gcsebitesize/ict/ A computer uses two types of storage. A main store consisting of ROM and RAM, and backing stores which can be internal, eg hard disk, or
NCTE Advice Sheet Storage and Backup Advice Sheet 7
Storage and Backup No matter how well you treat your system, no matter how much care you take, you cannot guarantee that your data will be safe if it exists in only one place. The risks are much greater
Chapter 10: Mass-Storage Systems
Chapter 10: Mass-Storage Systems Physical structure of secondary storage devices and its effects on the uses of the devices Performance characteristics of mass-storage devices Disk scheduling algorithms
Chapter 3: Computer Hardware Components: CPU, Memory, and I/O
Chapter 3: Computer Hardware Components: CPU, Memory, and I/O What is the typical configuration of a computer sold today? The Computer Continuum 1-1 Computer Hardware Components In this chapter: How did
CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen
CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen LECTURE 14: DATA STORAGE AND REPRESENTATION Data Storage Memory Hierarchy Disks Fields, Records, Blocks Variable-length
Operating System Concepts. Operating System 資 訊 工 程 學 系 袁 賢 銘 老 師
Lecture 6: Secondary Storage Systems Moving-head Disk Mechanism 6.2 Overview of Mass-Storage Structure Magnetic disks provide bulk of secondary storage of modern computers Drives rotate at 60 to 200 times
CSCA0201 FUNDAMENTALS OF COMPUTING. Chapter 5 Storage Devices
CSCA0201 FUNDAMENTALS OF COMPUTING Chapter 5 Storage Devices 1 1. Computer Data Storage 2. Types of Storage 3. Storage Device Features 4. Other Examples of Storage Device 2 Storage Devices A storage device
Primary Memory. Input Units CPU (Central Processing Unit)
Basic Concepts of Computer Hardware Primary Memory Input Units CPU (Central Processing Unit) Output Units This model of the typical digital computer is often called the von Neuman compute Programs and
Input / Ouput devices. I/O Chapter 8. Goals & Constraints. Measures of Performance. Anatomy of a Disk Drive. Introduction - 8.1
Introduction - 8.1 I/O Chapter 8 Disk Storage and Dependability 8.2 Buses and other connectors 8.4 I/O performance measures 8.6 Input / Ouput devices keyboard, mouse, printer, game controllers, hard drive,
CPS104 Computer Organization and Programming Lecture 18: Input-Output. Robert Wagner
CPS104 Computer Organization and Programming Lecture 18: Input-Output Robert Wagner cps 104 I/O.1 RW Fall 2000 Outline of Today s Lecture The I/O system Magnetic Disk Tape Buses DMA cps 104 I/O.2 RW Fall
Disk Storage & Dependability
Disk Storage & Dependability Computer Organization Architectures for Embedded Computing Wednesday 19 November 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition,
Chapter 2: Computer-System Structures. Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture
Chapter 2: Computer-System Structures Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture Operating System Concepts 2.1 Computer-System Architecture
Data Storage - II: Efficient Usage & Errors
Data Storage - II: Efficient Usage & Errors Week 10, Spring 2005 Updated by M. Naci Akkøk, 27.02.2004, 03.03.2005 based upon slides by Pål Halvorsen, 12.3.2002. Contains slides from: Hector Garcia-Molina
Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections
Chapter 6 Storage and Other I/O Topics 6.1 Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections
Storing Data: Disks and Files. Disks and Files. Why Not Store Everything in Main Memory? Chapter 7
Storing : Disks and Files Chapter 7 Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet base Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Disks and
Communicating with devices
Introduction to I/O Where does the data for our CPU and memory come from or go to? Computers communicate with the outside world via I/O devices. Input devices supply computers with data to operate on.
Computer Storage. Computer Technology. (S1 Obj 2-3 and S3 Obj 1-1)
Computer Storage Computer Technology (S1 Obj 2-3 and S3 Obj 1-1) Storage The place in the computer where data is held while it is not needed for processing A storage device is device used to record (store)
1 Storage Devices Summary
Chapter 1 Storage Devices Summary Dependability is vital Suitable measures Latency how long to the first bit arrives Bandwidth/throughput how fast does stuff come through after the latency period Obvious
Chapter 12: Mass-Storage Systems
Chapter 12: Mass-Storage Systems Chapter 12: Mass-Storage Systems Overview of Mass Storage Structure Disk Structure Disk Attachment Disk Scheduling Disk Management Swap-Space Management RAID Structure
DISTRIBUTED MULTIMEDIA SYSTEMS
Components of distributed multimedia system DISTRIBUTED MULTIMEDIA SYSTEMS Application software Container object store Image and still video store Audio and component store Object directory service agent
BACKUP SECURITY GUIDELINE
Section: Information Security Revised: December 2004 Guideline: Description: Backup Security Guidelines: are recommended processes, models, or actions to assist with implementing procedures with respect
RAID Performance Analysis
RAID Performance Analysis We have six 500 GB disks with 8 ms average seek time. They rotate at 7200 RPM and have a transfer rate of 20 MB/sec. The minimum unit of transfer to each disk is a 512 byte sector.
Chapter 7 Types of Storage. Discovering Computers 2012. Your Interactive Guide to the Digital World
Chapter 7 Types of Storage Discovering Computers 2012 Your Interactive Guide to the Digital World Objectives Overview Differentiate between storage devices and storage media Describe the characteristics
Discovering Computers 2008. Chapter 7 Storage
Discovering Computers 2008 Chapter 7 Storage Chapter 7 Objectives Differentiate between storage devices and storage media Describe the characteristics of magnetic disks Describe the characteristics of
Chapter 2 Data Storage
Chapter 2 22 CHAPTER 2. DATA STORAGE 2.1. THE MEMORY HIERARCHY 23 26 CHAPTER 2. DATA STORAGE main memory, yet is essentially random-access, with relatively small differences Figure 2.4: A typical
4.2: Multimedia File Systems Traditional File Systems. Multimedia File Systems. Multimedia File Systems. Disk Scheduling
Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Chapter 4: Multimedia Systems Storage Aspects Optical Storage Media Multimedia File Systems
Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2014/15
Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2014/15 Lecture I: Storage Storage Part I of this course Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 3 The
PIONEER RESEARCH & DEVELOPMENT GROUP
SURVEY ON RAID Aishwarya Airen 1, Aarsh Pandit 2, Anshul Sogani 3 1,2,3 A.I.T.R, Indore. Abstract RAID stands for Redundant Array of Independent Disk that is a concept which provides an efficient way for
Outline. Principles of Database Management Systems. Memory Hierarchy: Capacities and access times. CPU vs. Disk Speed ... ...
Outline Principles of Database Management Systems Pekka Kilpeläinen (after Stanford CS245 slide originals by Hector Garcia-Molina, Jeff Ullman and Jennifer Widom) Hardware: Disks Access Times Example -
Lecture 36: Chapter 6
Lecture 36: Chapter 6 Today s topic RAID 1 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for
Punch Tape. Punch Cards for computers. Cylinder vs Disc - 1890 Cylinder Records since 1878. Phonograph (gramophone) Telegraphone and Magnetic Wire
The Modern Digital Computer: A Historical Perspective Seminar 1725 0 External Data Storage Technologies 1898 External Data Storage - Outline AD BC Svetlana Sheptiy EARLY STORAGE METHODS SOLID-STATE STORAGE
& Data Processing 2. Exercise 2: File Systems. Dipl.-Ing. Bogdan Marin. Universität Duisburg-Essen
Folie a: Name & Data Processing 2 2: File Systems Dipl.-Ing. Bogdan Marin Fakultät für Ingenieurwissenschaften Abteilung Elektro-und Informationstechnik -Technische Informatik- Objectives File System Concept
Operating Systems. RAID Redundant Array of Independent Disks. Submitted by Ankur Niyogi 2003EE20367
Operating Systems RAID Redundant Array of Independent Disks Submitted by Ankur Niyogi 2003EE20367 YOUR DATA IS LOST@#!! Do we have backups of all our data???? - The stuff we cannot afford to lose?? How
Storage Options for Document Management
Storage Options for Document Management Document management and imaging systems store large volumes of data, which must be maintained for long periods of time. Choosing storage is not simply a matter of
13.1 Characteristics of the Memory Hierarchy
CHAPTER THIRTEEN Memory Hierarchy 13.1 Characteristics of the Memory Hierarchy We've discussed the organization and operation of RAM, but RAM is only one level of the group of components used to store
Floppy Drive & Hard Drive
Overview Floppy Drive & Hard Drive In this chapter, you will learn to Learn how the organization of data on floppy drives and hard drives is similar Explain how hard drives work Identify and explain the
Chapter 3 Storage. 15 th Edition Understanding Computers Today and Tomorrow Comprehensive. Deborah Morley Charles S. Parker
15 th Edition Understanding Computers Today and Tomorrow Comprehensive Chapter 3 Storage Deborah Morley Charles S. Parker Copyright 2015 Cengage Learning Learning Objectives 1. Name several general characteristics
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 13-1
Slide 13-1 Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible
Overview of I/O Performance and RAID in an RDBMS Environment. By: Edward Whalen Performance Tuning Corporation
Overview of I/O Performance and RAID in an RDBMS Environment By: Edward Whalen Performance Tuning Corporation Abstract This paper covers the fundamentals of I/O topics and an overview of RAID levels commonly
Chapter 11 I/O Management and Disk Scheduling
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization
Performance. Storage capacity. Software support. Reliability
HARD DISK DRIVES Performance Storage capacity Software support Reliability Why we call it as. Hard disk Fixed disk Winchester disk Hard Disk Drive Components Disk platter Read/Write head Head arm/head
History of Optical Disks. Basic Technology. Basic Technology of Compact Disc
History of Optical Disks Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Chapter : Multimedia Systems Storage Aspects Optical Storage Media Multimedia File Systems Multimedia
RAID HARDWARE. On board SATA RAID controller. RAID drive caddy (hot swappable) SATA RAID controller card. Anne Watson 1
RAID HARDWARE On board SATA RAID controller SATA RAID controller card RAID drive caddy (hot swappable) Anne Watson 1 RAID The word redundant means an unnecessary repetition. The word array means a lineup.
Data Storage Solutions
Data Storage Solutions Module 1.2 2006 EMC Corporation. All rights reserved. Data Storage Solutions - 1 Data Storage Solutions Upon completion of this module, you will be able to: List the common storage
DELL RAID PRIMER DELL PERC RAID CONTROLLERS. Joe H. Trickey III. Dell Storage RAID Product Marketing. John Seward. Dell Storage RAID Engineering
DELL RAID PRIMER DELL PERC RAID CONTROLLERS Joe H. Trickey III Dell Storage RAID Product Marketing John Seward Dell Storage RAID Engineering http://www.dell.com/content/topics/topic.aspx/global/products/pvaul/top
MICROSOFT EXCHANGE 2003. best practices BEST PRACTICES - DATA STORAGE SETUP
MICROSOFT EXCHANGE 2003 best practices BEST PRACTICES - DATA STORAGE SETUP TABLE OF CONTENTS E-mail has become a business critical communication tool 3 Build a disaster recovery solution with VSS and Data
TELE 301 Lecture 7: Linux/Unix file
Overview Last Lecture Scripting This Lecture Linux/Unix file system Next Lecture System installation Sources Installation and Getting Started Guide Linux System Administrators Guide Chapter 6 in Principles
WHITE PAPER FUJITSU PRIMERGY SERVER BASICS OF DISK I/O PERFORMANCE
WHITE PAPER BASICS OF DISK I/O PERFORMANCE WHITE PAPER FUJITSU PRIMERGY SERVER BASICS OF DISK I/O PERFORMANCE This technical documentation is aimed at the persons responsible for the disk I/O performance
Main Memory & Backing Store. Main memory backing storage devices
Main Memory & Backing Store Main memory backing storage devices 1 Introduction computers store programs & data in two different ways: nmain memory ntemporarily stores programs & data that are being processed
Platter. Track. Index Mark. Disk Storage. PHY 406F - Microprocessor Interfacing Techniques
Platter PHY 406F - icroprocessor Interfacing Techniques Disk Storage The major "permanent" storage medium for computers is, at present, generally magnetic media in the form of either magnetic tape or disks.
Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?
Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers
Hard Disk Drives and RAID
Hard Disk Drives and RAID Janaka Harambearachchi (Engineer/Systems Development) INTERFACES FOR HDD A computer interfaces is what allows a computer to send and retrieve information for storage devices such
Q & A From Hitachi Data Systems WebTech Presentation:
Q & A From Hitachi Data Systems WebTech Presentation: RAID Concepts 1. Is the chunk size the same for all Hitachi Data Systems storage systems, i.e., Adaptable Modular Systems, Network Storage Controller,
System Architecture. CS143: Disks and Files. Magnetic disk vs SSD. Structure of a Platter CPU. Disk Controller...
System Architecture CS143: Disks and Files CPU Word (1B 64B) ~ 10 GB/sec Main Memory System Bus Disk Controller... Block (512B 50KB) ~ 100 MB/sec Disk 1 2 Magnetic disk vs SSD Magnetic Disk Stores data
To understand how data is processed, by a computer, we can draw a simple analogy between computers and humans.
UNIT 3 MEMORY SYSTEM Memory System Structure Page No. 3.0 Introduction 43 3.1 Objectives 46 3.2 Memory Types and Storage Devices 46 3.2.1 Semiconductor (Main) Memory 52 3.2.2 Magnetic Memory 56 3.2.3 Optical
RAID. RAID 0 No redundancy ( AID?) Just stripe data over multiple disks But it does improve performance. Chapter 6 Storage and Other I/O Topics 29
RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for redundant data storage Provides fault tolerant
CS420: Operating Systems
NK YORK COLLEGE OF PENNSYLVANIA HG OK 2 RAID YORK COLLEGE OF PENNSYLVAN James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz,
Read this before starting!
Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 4717 Computer Architecture TEST 2 for Fall Semester, 2006 Section
How To Store Data On A Disk Disk (Or Hard Drive)
Computer Peripherals School of Computer Engineering Nanyang Technological University Singapore These notes are part of a 3rd year undergraduate course called "Computer Peripherals", taught at Nanyang Technological
technology brief RAID Levels March 1997 Introduction Characteristics of RAID Levels
technology brief RAID Levels March 1997 Introduction RAID is an acronym for Redundant Array of Independent Disks (originally Redundant Array of Inexpensive Disks) coined in a 1987 University of California
CS161: Operating Systems
CS161: Operating Systems Matt Welsh [email protected] Lecture 18: RAID April 19, 2007 2007 Matt Welsh Harvard University 1 RAID Redundant Arrays of Inexpensive Disks Invented in 1986-1987 by David Patterson
Chapter 13 Disk Storage, Basic File Structures, and Hashing.
Chapter 13 Disk Storage, Basic File Structures, and Hashing. Copyright 2004 Pearson Education, Inc. Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files
Physical Data Organization
Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor
Chap-02, Hardware and Software. Hardware Model
Philadelphia University School of Business Administration INFO-101 Information Systems Prof London Chap-02, Hardware and Software Hardware Components Central processing unit (CPU) Arithmetic/logic unit
Tech Application Chapter 3 STUDY GUIDE
Name: Class: Date: Tech Application Chapter 3 STUDY GUIDE Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. This type of device retains data
RAID Levels and Components Explained Page 1 of 23
RAID Levels and Components Explained Page 1 of 23 What's RAID? The purpose of this document is to explain the many forms or RAID systems, and why they are useful, and their disadvantages. RAID - Redundant
Storage in Database Systems. CMPSCI 445 Fall 2010
Storage in Database Systems CMPSCI 445 Fall 2010 1 Storage Topics Architecture and Overview Disks Buffer management Files of records 2 DBMS Architecture Query Parser Query Rewriter Query Optimizer Query
SSDs and RAID: What s the right strategy. Paul Goodwin VP Product Development Avant Technology
SSDs and RAID: What s the right strategy Paul Goodwin VP Product Development Avant Technology SSDs and RAID: What s the right strategy Flash Overview SSD Overview RAID overview Thoughts about Raid Strategies
Chapter 11 I/O Management and Disk Scheduling
Operatin g Systems: Internals and Design Principle s Chapter 11 I/O Management and Disk Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles An artifact can
