FEPA Project status and further steps
|
|
|
- Alexandrina Porter
- 10 years ago
- Views:
Transcription
1 ERLANGEN REGIONAL COMPUTING CENTER FEPA Project status and further steps J. Eitzinger, T. Röhl, W. Hesse, A. Jeutter, E. Focht
2 Motivation Cluster administrators employ monitoring to Detect errors or faulty operation Observe total system utilization Application developers use (mostly GUI) tools to do performance profiling Ein flexibles Framework zur Energie- und Performanceanalyse hochparalleler Applikationen im Rechenzentrum Primary Target Provide a monitoring infrastructure to allow for a continuous system-wide application performance and energy profiling based on hardware performance counter measurements 2
3 Objectives Allow to detect applications with pathological performance behavior Help to identify applications with large optimization potential Give users feedback about application performance Ease access to hardware performance counter data 3
4 STATUS
5 RRZE (Thomas Röhl) Support for new architectures: Intel Silvermont, Intel Broadwell and Broadwell-EP, Intel Skylake Improved overflow detection (including RAPL) Improved documentation with many new examples (Cilk+, C++11 threads) More performance groups and validated metrics for many architectures Improvements in likwid-bench and likwid-mpirun New access layer to support platform-independent code (x86, Power, ARM) 5
6 NEC (Andreas Jeuter) collector group collector group collector group Instantiate Program tagger Componentized Fully distributed Separate per processes: job truly parallel Implemented aggregator in Python store Connected per job through ZeroMQ aggregator store Instantiate at job start (Trigger aggregation) Kill when job stops controller instantiate per group store AggMon Sharding + Replication NoSQL DB NoSQL DB NoSQL DB Resource Scheduler job start/stop 6
7 AggMon: Collector Add tag Remove tag Subscribe Unsubscribe modified gmond ZMQ PUSH RPC collector O(50k) msg/s ZMQ PULL queue tagger match & publish Messages: JSON serialized dicts/maps Tagger: adds a key-value to message, based on match condition Subscribe: based on match condition (key-value, key-value regex) ZMQ PUSH O(10k) msg/s 7
8 AggMon: Data Store TokuMX: MongoDB compatible Collections can be sharded Spread Documents on different mongod instances Entry point: any mongos instance Replication (for example master-slave) is possible Group master mongos... Group master mongos O(10k) msg/s { group:rack1, } configsvr shard key mongod rack1... mongod mongod mongod rack2 rack3... 8
9 LRZ (Wolfram Hesse, Carla Guillen) Erfolgreicher Abschluss der Promotion von C. Guillen Knowledge-based Performance Monitoring for Large Scale HPC Architectures; Dissertation C. Guillen Carias; 2015; Validierung der verwendeten Performancemuster Statistische Auswertung der Performancemuster Dokumentation des PerSyst-Monitoring-System 9
10 LRZ: PerSyst Status PerSyst-Monitoring ist SuperMUC Phase I + II Definition und Umsetzung der Performancemuster Phase 1 (Westmere- EX,SandyBridge-EP) und Phase 2 (Haswell-EP) Nutzung und Verifikation durch: LRZ-Applikationsunterstützungsgruppe und IBM-Mitarbeiter Benachrichtigung der Benutzer, falls offensichtliche Bottlenecks vorliegen + Vorschläge für Optimierungen Sichtung von Anwendungen für Extreme Scaling und Benchmarks SuperMUC-Benutzer Pos. Feedback bzg. Nützlichkeit Umsetzung des PerSyst Web-Frontend am RRZE 10
11 ONGOING WORK Integrate complete stack at RRZE Validate Performance Patterns from profiling data
12 Current Questions How to deal with established monitoring infrastructure (Ganglia)? Easy: Use existing monitoring infrastructures Target: Replace existing software with FEPA stack Concerns about large overhead of continous HPM profiling Overhead could be lower with a better interface to HPM (ISA, OS) Missing knowledge about overheads in general Picking the right building blocks. Backend daemon: diamond ( Communication protocol: ZeroMQ ( Storage: TokuMX (NoSQL) 12
13 Integration of FEPA components Target system: 80- Nehalem cluster system in normal production use Objectives Sort out issues between components Validate and benchmark solution: diamond mongodb/tokumx Liferay framework based PerSyst frontend Experiment on application profiling data Required granularity for phase detection Performance Pattern validation on set of known codes 13
14 Conclusion and Outlook Layers are ready to be integrated into complete stack Convergence for finding external building blocks LRZ PerSyst System in production use Next: Continue integrating stack to make FEPA ready to be distributed at associated HPC centers Validate FEPA on a set of known benchmarks (Mantevo, NPB, SPEC) 14
15 ERLANGEN REGIONAL COMPUTING CENTER Regionales Rechenzentrum Erlangen NEC Deutschland GmbH Leibniz- Rechenzentrum Thank You.
Lustre & Cluster. - monitoring the whole thing Erich Focht
Lustre & Cluster - monitoring the whole thing Erich Focht NEC HPC Europe LAD 2014, Reims, September 22-23, 2014 1 Overview Introduction LXFS Lustre in a Data Center IBviz: Infiniband Fabric visualization
MongoDB Developer and Administrator Certification Course Agenda
MongoDB Developer and Administrator Certification Course Agenda Lesson 1: NoSQL Database Introduction What is NoSQL? Why NoSQL? Difference Between RDBMS and NoSQL Databases Benefits of NoSQL Types of NoSQL
for High Performance Computing
Technische Universität München Institut für Informatik Lehrstuhl für Rechnertechnik und Rechnerorganisation Automatic Performance Engineering Workflows for High Performance Computing Ventsislav Petkov
MongoDB and Couchbase
Benchmarking MongoDB and Couchbase No-SQL Databases Alex Voss Chris Choi University of St Andrews TOP 2 Questions Should a social scientist buy MORE or UPGRADE computers? Which DATABASE(s)? Document Oriented
Tagesordnung WIN/IP-Forum
Tagesordnung WIN/IP-Forum Mittwoch 19.10.2005 9:00 11:00 Uhr 9:00-9:15 Uhr Bericht des WiN-Labors Verena Venus, WiN-Labor RRZE Erlangen 9:15-9:30 Uhr Customer Network Management für das G-WiN, X-WiN und
NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB, Cassandra, and MongoDB
bankmark UG (haftungsbeschränkt) Bahnhofstraße 1 9432 Passau Germany www.bankmark.de [email protected] T +49 851 25 49 49 F +49 851 25 49 499 NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB,
Rackspace Cloud Databases and Container-based Virtualization
Rackspace Cloud Databases and Container-based Virtualization August 2012 J.R. Arredondo @jrarredondo Page 1 of 6 INTRODUCTION When Rackspace set out to build the Cloud Databases product, we asked many
Windows HPC 2008 Cluster Launch
Windows HPC 2008 Cluster Launch Regionales Rechenzentrum Erlangen (RRZE) Johannes Habich [email protected] Launch overview Small presentation and basic introduction Questions and answers Hands-On
Windows HPC Server 2008 Deployment
Windows HPC Server 2008 Michael Wirtz [email protected] Rechen- und Kommunikationszentrum RWTH Aachen Windows-HPC 2008 19. Sept 08, RWTH Aachen Windows HPC Server 2008 - Agenda o eines 2 Knoten Clusters
Benchmarking Couchbase Server for Interactive Applications. By Alexey Diomin and Kirill Grigorchuk
Benchmarking Couchbase Server for Interactive Applications By Alexey Diomin and Kirill Grigorchuk Contents 1. Introduction... 3 2. A brief overview of Cassandra, MongoDB, and Couchbase... 3 3. Key criteria
Can High-Performance Interconnects Benefit Memcached and Hadoop?
Can High-Performance Interconnects Benefit Memcached and Hadoop? D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,
NoSQL in der Cloud Why? Andreas Hartmann
NoSQL in der Cloud Why? Andreas Hartmann 17.04.2013 17.04.2013 2 NoSQL in der Cloud Why? Quelle: http://res.sys-con.com/story/mar12/2188748/cloudbigdata_0_0.jpg Why Cloud??? 17.04.2013 3 NoSQL in der Cloud
MADOCA II Data Logging System Using NoSQL Database for SPring-8
MADOCA II Data Logging System Using NoSQL Database for SPring-8 A.Yamashita and M.Kago SPring-8/JASRI, Japan NoSQL WED3O03 OR: How I Learned to Stop Worrying and Love Cassandra Outline SPring-8 logging
GigaSpaces Real-Time Analytics for Big Data
GigaSpaces Real-Time Analytics for Big Data GigaSpaces makes it easy to build and deploy large-scale real-time analytics systems Rapidly increasing use of large-scale and location-aware social media and
NOCTUA by init.at THE FLEXIBLE MONITORING WEB FRONTEND
NOCTUA by init.at THE FLEXIBLE MONITORING WEB FRONTEND init.at informationstechnologie GmbH - Tannhäuserplatz 2 - A-1150 Wien - www.init.at Dieses Dokument und alle Teile von ihm bilden ein geistiges Eigentum
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
Übersetzerbau in der Industrie: CacaoVM
work-items with acceptance criteria Übersetzerbau in der Industrie: CacaoVM Michael Starzinger Theobroma Systems Design und Consulting GmbH Gutheil-Schoder Gasse 17, 1230 Wien, Austria www.-.com 1 Agenda
Benchmarking and Analysis of NoSQL Technologies
Benchmarking and Analysis of NoSQL Technologies Suman Kashyap 1, Shruti Zamwar 2, Tanvi Bhavsar 3, Snigdha Singh 4 1,2,3,4 Cummins College of Engineering for Women, Karvenagar, Pune 411052 Abstract The
Sharding with postgres_fdw
Sharding with postgres_fdw Postgres Open 2013 Chicago Stephen Frost [email protected] Resonate, Inc. Digital Media PostgreSQL Hadoop [email protected] http://www.resonateinsights.com Stephen
NoSQL - What we ve learned with mongodb. Paul Pedersen, Deputy CTO [email protected] DAMA SF December 15, 2011
NoSQL - What we ve learned with mongodb Paul Pedersen, Deputy CTO [email protected] DAMA SF December 15, 2011 DW2.0 and NoSQL management decision support intgrated access - local v. global - structured v.
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform Page 1 of 16 Table of Contents Table of Contents... 2 Introduction... 3 NoSQL Databases... 3 CumuLogic NoSQL Database Service...
SPECjEnterprise2010 & Java Enterprise Edition (EE) PCM Model Generation DevOps Performance WG Meeting 2014-07-11
SPECjEnterprise2010 & Java Enterprise Edition (EE) PCM Model Generation DevOps Performance WG Meeting 2014-07-11 Andreas Brunnert Performance & Virtualization Group, Information Systems Division fortiss
Querying MongoDB without programming using FUNQL
Querying MongoDB without programming using FUNQL FUNQL? Federated Unified Query Language What does this mean? Federated - Integrates different independent stand alone data sources into one coherent view
Scalable Architecture on Amazon AWS Cloud
Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies [email protected] 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect
Evaluator s Guide. McKnight. Consulting Group. McKnight Consulting Group
NoSQL Evaluator s Guide McKnight Consulting Group William McKnight is the former IT VP of a Fortune 50 company and the author of Information Management: Strategies for Gaining a Competitive Advantage with
Scaling Graphite Installations
Scaling Graphite Installations Graphite basics Graphite is a web based Graphing program for time series data series plots. Written in Python Consists of multiple separate daemons Has it's own storage backend
Cloud computing - Architecting in the cloud
Cloud computing - Architecting in the cloud [email protected] 1 Outline Cloud computing What is? Levels of cloud computing: IaaS, PaaS, SaaS Moving to the cloud? Architecting in the cloud Best practices
Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software
WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications
TECHNISCHE UNIVERSITÄT MÜNCHEN Institut für Informatik Lehrstuhl für Rechnertechnik und Rechnerorganisation
TECHNISCHE UNIVERSITÄT MÜNCHEN Institut für Informatik Lehrstuhl für Rechnertechnik und Rechnerorganisation Knowledge-based Performance Monitoring for Large Scale HPC Architectures Carla Beatriz Guillén
Comparison of computational services at LRZ
Dedicated resources: Housing and virtual Servers Dr. Christoph Biardzki, Group Leader IT Infrastructure and Services 1 Comparison of computational services at LRZ SuperMUC Linux- Cluster Linux-Cluster
Building an energy dashboard. Energy measurement and visualization in current HPC systems
Building an energy dashboard Energy measurement and visualization in current HPC systems Thomas Geenen 1/58 [email protected] SURFsara The Dutch national HPC center 2H 2014 > 1PFlop GPGPU accelerators
Scaling up = getting a better machine. Scaling out = use another server and add it to your cluster.
MongoDB 1. Introduction MongoDB is a document-oriented database, not a relation one. It replaces the concept of a row with a document. This makes it possible to represent complex hierarchical relationships
Big Data & Data Science Course Example using MapReduce. Presented by Juan C. Vega
Big Data & Data Science Course Example using MapReduce Presented by What is Mongo? Why Mongo? Mongo Model Mongo Deployment Mongo Query Language Built-In MapReduce Demo Q & A Agenda Founders Max Schireson
MongoDB. The Definitive Guide to. The NoSQL Database for Cloud and Desktop Computing. Apress8. Eelco Plugge, Peter Membrey and Tim Hawkins
The Definitive Guide to MongoDB The NoSQL Database for Cloud and Desktop Computing 11 111 TECHNISCHE INFORMATIONSBIBLIO 1 HEK UNIVERSITATSBIBLIOTHEK HANNOVER Eelco Plugge, Peter Membrey and Tim Hawkins
MONGODB - THE NOSQL DATABASE
MONGODB - THE NOSQL DATABASE Akhil Latta Software Engineer Z Systems, Mohali, Punjab MongoDB is an open source document-oriented database system developed and supported by 10gen. It is part of the NoSQL
STeP-IN SUMMIT 2014. June 2014 at Bangalore, Hyderabad, Pune - INDIA. Performance testing Hadoop based big data analytics solutions
11 th International Conference on Software Testing June 2014 at Bangalore, Hyderabad, Pune - INDIA Performance testing Hadoop based big data analytics solutions by Mustufa Batterywala, Performance Architect,
How To Use The Persyst Tool On A Supercomputer
Technical Report Knowledge-based Performance Monitoring for Large Scale HPC Architectures Carla Beatriz Guillen Carias Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
The MongoDB Tutorial Introduction for MySQL Users. Stephane Combaudon April 1st, 2014
The MongoDB Tutorial Introduction for MySQL Users Stephane Combaudon April 1st, 2014 Agenda 2 Introduction Install & First Steps CRUD Aggregation Framework Performance Tuning Replication and High Availability
Big Data-Anwendungsbeispiele aus Industrie und Forschung
Big Data-Anwendungsbeispiele aus Industrie und Forschung Dr. Patrick Traxler +43 7236 3343 898 [email protected] www.scch.at Das SCCH ist eine Initiative der Das SCCH befindet sich im Organizational
Mobile Analytics. mit Elasticsearch und Kibana. Dominik Helleberg
Mobile Analytics mit Elasticsearch und Kibana Dominik Helleberg Speaker Dominik Helleberg Mobile Development Android / Embedded Tools http://dominik-helleberg.de/+ Mobile Analytics Warum? Server Software
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Database Scalability and Oracle 12c
Database Scalability and Oracle 12c Marcelle Kratochvil CTO Piction ACE Director All Data/Any Data [email protected] Warning I will be covering topics and saying things that will cause a rethink in
E-Commerce Design and Implementation Tutorial
A Mediated Access Control Infrastructure for Dynamic Service Selection Dissertation zur Erlangung des Grades eines Doktors der Wirtschaftswissenschaften (Dr. rer. pol.) eingereicht an der Fakultat fur
RDBMS vs NoSQL: Performance and Scaling Comparison
RDBMS vs NoSQL: Performance and Scaling Comparison Christoforos Hadjigeorgiou August 23, 2013 MSc in High Performance Computing The University of Edinburgh Year of Presentation: 2013 Abstract The massive
Cloud Scale Distributed Data Storage. Jürmo Mehine
Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented
Monitoring HTCondor with Ganglia
Monitoring HTCondor with Ganglia Ganglia Overview Scalable distributed monitoring for HPC clusters Two daemons gmond every host; collects and send metrics gmetad single host; persists metrics from local
DATA INTEGRATION. in the world of microservices
DATA INTEGRATION in the world of microservices About me Valentine Gogichashvili Head of Data Engineering @ZalandoTech twitter: @valgog google+: +valgog email: [email protected] One of
Satellite-UMTS - Specification of Protocols and Traffic Performance Analysis
Satellite-UMTS - Specification of Protocols and Traffic Performance Analysis Von der Fakultat fur Elektrotechnik und Informationstechnik der Rheinisch-Westfalichen Technischen Hochschule Aachen zur Erlangung
An OS-oriented performance monitoring tool for multicore systems
An OS-oriented performance monitoring tool for multicore systems J.C. Sáez, J. Casas, A. Serrano, R. Rodríguez-Rodríguez, F. Castro, D. Chaver, M. Prieto-Matias Department of Computer Architecture Complutense
the missing log collector Treasure Data, Inc. Muga Nishizawa
the missing log collector Treasure Data, Inc. Muga Nishizawa Muga Nishizawa (@muga_nishizawa) Chief Software Architect, Treasure Data Treasure Data Overview Founded to deliver big data analytics in days
Social Networks and the Richness of Data
Social Networks and the Richness of Data Getting distributed Webservices Done with NoSQL Fabrizio Schmidt, Lars George VZnet Netzwerke Ltd. Content Unique Challenges System Evolution Architecture Activity
Performance Analysis for NoSQL and SQL
Available online at www.ijiere.com International Journal of Innovative and Emerging Research in Engineering e-issn: 2394-3343 p-issn: 2394-5494 Performance Analysis for NoSQL and SQL Ms. Megha Katkar ME
Kashif Iqbal - PhD [email protected]
HPC/HTC vs. Cloud Benchmarking An empirical evalua.on of the performance and cost implica.ons Kashif Iqbal - PhD [email protected] ICHEC, NUI Galway, Ireland With acknowledgment to Michele MicheloDo
Chapter 5 Cloud Resource Virtualization
Chapter 5 Cloud Resource Virtualization Contents Virtualization. Layering and virtualization. Virtual machine monitor. Virtual machine. Performance and security isolation. Architectural support for virtualization.
CPU Session 1. Praktikum Parallele Rechnerarchtitekturen. Praktikum Parallele Rechnerarchitekturen / Johannes Hofmann April 14, 2015 1
CPU Session 1 Praktikum Parallele Rechnerarchtitekturen Praktikum Parallele Rechnerarchitekturen / Johannes Hofmann April 14, 2015 1 Overview Types of Parallelism in Modern Multi-Core CPUs o Multicore
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
The Sierra Clustered Database Engine, the technology at the heart of
A New Approach: Clustrix Sierra Database Engine The Sierra Clustered Database Engine, the technology at the heart of the Clustrix solution, is a shared-nothing environment that includes the Sierra Parallel
Networking in the Hadoop Cluster
Hadoop and other distributed systems are increasingly the solution of choice for next generation data volumes. A high capacity, any to any, easily manageable networking layer is critical for peak Hadoop
Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay
Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability
How To Compare The Economics Of A Database To A Microsoft Database
A MongoDB White Paper A Total Cost of Ownership Comparison of MongoDB & Oracle March 2013 Contents EXECUTIVE SUMMARY 1 COST CATEGORIES 1 TCO FOR EXAMPLE PROJECTS 3 Upfront Costs 3 Initial Developer Effort
Scaling Pinterest. Yash Nelapati Ascii Artist. Pinterest Engineering. Saturday, August 31, 13
Scaling Pinterest Yash Nelapati Ascii Artist Pinterest is... An online pinboard to organize and share what inspires you. Growth March 2010 Page views per day Mar 2010 Jan 2011 Jan 2012 May 2012 Growth
Couchbase Server Technical Overview. Key concepts, system architecture and subsystem design
Couchbase Server Technical Overview Key concepts, system architecture and subsystem design Table of Contents What is Couchbase Server? 3 System overview and architecture 5 Overview Couchbase Server and
Lustre Monitoring with OpenTSDB
Lustre Monitoring with OpenTSDB 2015/9/22 DataDirect Networks Japan, Inc. Shuichi Ihara 2 Lustre Monitoring Background Lustre is a black box Users and Administrators want to know what s going on? Find
Optimizing Shared Resource Contention in HPC Clusters
Optimizing Shared Resource Contention in HPC Clusters Sergey Blagodurov Simon Fraser University Alexandra Fedorova Simon Fraser University Abstract Contention for shared resources in HPC clusters occurs
Building Heavy Load Messaging System
CASE STUDY Building Heavy Load Messaging System About IntelliSMS Intelli Messaging simplifies mobile communication methods so you can cost effectively build mobile communication into your business processes;
HDMQ :Towards In-Order and Exactly-Once Delivery using Hierarchical Distributed Message Queues. Dharmit Patel Faraj Khasib Shiva Srivastava
HDMQ :Towards In-Order and Exactly-Once Delivery using Hierarchical Distributed Message Queues Dharmit Patel Faraj Khasib Shiva Srivastava Outline What is Distributed Queue Service? Major Queue Service
Lustre * Filesystem for Cloud and Hadoop *
OpenFabrics Software User Group Workshop Lustre * Filesystem for Cloud and Hadoop * Robert Read, Intel Lustre * for Cloud and Hadoop * Brief Lustre History and Overview Using Lustre with Hadoop Intel Cloud
Architecture. Evaluation and Classification of Computer Architectures. Bewertung und Klassifikation von Rechnerarchitekturen.
3 Architecture Evaluation and Classification of Computer Architectures Bewertung und Klassifikation von Rechnerarchitekturen " System Architecture " Software Architecture " Hardware Architecture " Hardware
MongoDB. An introduction and performance analysis. Seminar Thesis
MongoDB An introduction and performance analysis Seminar Thesis Master of Science in Engineering Major Software and Systems HSR Hochschule für Technik Rapperswil www.hsr.ch/mse Advisor: Author: Prof. Stefan
Practical Hadoop. Security. Bhushan Lakhe
Practical Hadoop Security Bhushan Lakhe Contents J About the Author About the Technical Reviewer Acknowledgments Introduction xiii xv xvii xix Part I: Introducing Hadoop and Its Security 1 Chapter 1: Understanding
MySQL és Hadoop mint Big Data platform (SQL + NoSQL = MySQL Cluster?!)
MySQL és Hadoop mint Big Data platform (SQL + NoSQL = MySQL Cluster?!) Erdélyi Ernő, Component Soft Kft. [email protected] www.component.hu 2013 (c) Component Soft Ltd Leading Hadoop Vendor Copyright 2013,
NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases
NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases Background Inspiration: postgresapp.com demo.beatstream.fi (modern desktop browsers without
Databases for text storage
Databases for text storage Jonathan Ronen New York University [email protected] December 1, 2014 Jonathan Ronen (NYU) databases December 1, 2014 1 / 24 Overview 1 Introduction 2 PostgresSQL 3 MongoDB Jonathan
Aktives Service-, Asset- und Lizenzmanagement mit Altiris
Aktives Service-, Asset- und Lizenzmanagement mit Altiris Mike Goedeker, Principal Systems Engineer Now Part of Symantec Agenda Kernthemen in IT Organisationen Kurzüberblick Portfolio / Architektur Altiris
Wir begleiten Sie in die Cloud
Wir begleiten Sie in die Cloud Version 1.0 Christian Messerschmidt Client Solutions Director EMC Deutschland GmbH Copyright 2012 EMC Corporation. All rights reserved. 1 Agenda Welche Cloud? Warum Journey?
Customer Intimacy Analytics
Customer Intimacy Analytics Leveraging Operational Data to Assess Customer Knowledge and Relationships and to Measure their Business Impact by Francois Habryn Scientific Publishing CUSTOMER INTIMACY ANALYTICS
Visual Statement. NoSQL Data Storage. MongoDB Project. April 10, 2014. Bobby Esfandiari Stefan Schielke Nicole Saat
Visual Statement NoSQL Data Storage April 10, 2014 Bobby Esfandiari Stefan Schielke Nicole Saat Contents Table of Contents 1 Timeline... 5 Requirements... 8 Document History...8 Revision History... 8 Introduction...9
A Software and Hardware Architecture for a Modular, Portable, Extensible Reliability. Availability and Serviceability System
1 A Software and Hardware Architecture for a Modular, Portable, Extensible Reliability Availability and Serviceability System James H. Laros III, Sandia National Laboratories (USA) [1] Abstract This paper
Björn Kraus. Session Aware Full Page Caching For Magento With Varnish ESI
Björn Kraus PHOENIX MEDIA Session Aware Full Page Caching For Magento With Varnish ESI Was ist Varnish? Reverse Proxy Speichert beliebige Inhalte (HTML, CSS, JS, JPG/GIF) Gültigkeit über TTL/maxage im
An Approach to Implement Map Reduce with NoSQL Databases
www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh
Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1
Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots
GraySort and MinuteSort at Yahoo on Hadoop 0.23
GraySort and at Yahoo on Hadoop.23 Thomas Graves Yahoo! May, 213 The Apache Hadoop[1] software library is an open source framework that allows for the distributed processing of large data sets across clusters
Why Zalando trusts in PostgreSQL
Why Zalando trusts in PostgreSQL A developer s view on using the most advanced open-source database Henning Jacobs - Technical Lead Platform/Software Zalando GmbH Valentine Gogichashvili - Technical Lead
Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world
Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3
Real Time Fraud Detection With Sequence Mining on Big Data Platform. Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA
Real Time Fraud Detection With Sequence Mining on Big Data Platform Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA Open Source Big Data Eco System Query (NOSQL) : Cassandra,
Getting Started with SandStorm NoSQL Benchmark
Getting Started with SandStorm NoSQL Benchmark SandStorm is an enterprise performance testing tool for web, mobile, cloud and big data applications. It provides a framework for benchmarking NoSQL, Hadoop,
3 Case Studies of NoSQL and Java Apps in the Real World
Eugene Ciurana [email protected] - pr3d4t0r ##java, irc.freenode.net 3 Case Studies of NoSQL and Java Apps in the Real World This presentation is available from: http://ciurana.eu/geecon-2011 About Eugene...
