MongoDB and Couchbase
|
|
|
- Bridget Stafford
- 10 years ago
- Views:
Transcription
1 Benchmarking MongoDB and Couchbase No-SQL Databases Alex Voss Chris Choi University of St Andrews
2 TOP 2 Questions Should a social scientist buy MORE or UPGRADE computers? Which DATABASE(s)?
3 Document Oriented Databases
4 The central concept of a document-oriented database is the notion of a Document
5 Both and Uses JSON to store these Documents
6 Example Documents: { } FirstName:"Bob", Address:"5 Oak St.", Hobby:"sailing" { } FirstName:"Jonathan", Address:"15 Wanamassa Point Road", Children:[ {Name:"Michael",Age:10}, {Name:"Jennifer", Age:8}, {Name:"Samantha", Age:5}, {Name:"Elena", Age:2} ] there are no empty 'fields', and it does not require explicitly stating if other pieces of information are left out
7 The Database Tests
8 Database Test Aggregate/Count: Most User Mentioned Most Hashed Tags Most Shared URLs
9 Database Test Aggregate/Count: Typical questions Most User Mentioned Most Hashed Tags Most Shared URLs
10
11 Has two query approaches: Map Reduce & Aggregation Framework
12 Map Reduce For Aggregation Uses JavaScript
13 Aggregation Framework Similar to Map Reduce But Uses C++ (Faster!)
14 Single Node SSD vs HDD Map Reduce Aggregation Framework Most User Mentioned Most Hashed-Tags Most Shared URLs Most User Mentioned Most Hashed-Tags HDD SSD 0 HDD SSD
15 Single Node Aggregation Framework is roughly 2 times faster than Map Reduce
16 When we have more than 1 node ~ Scaling Generally...
17 Scaling Vertically BIGGER and FATTER machine! Scaling Horizontally MORE machines!
18 Replica-Set Master-Slave Replication Replicates data from master to slave Only one node is in charge (the Master), and data only travels in one direction (to the Slave)
19 Replica-Set Single Node vs Replica Set: Aggregation Framework Single Node Replica Set Time (minutes) User Mentioned Hashed-Tags Shared URLs
20 Replica-Set Single Node vs Replica Set: Map Reduce Single Node Replica Set 60 Time (minutes) User Mentioned Hashed-Tags Shared URLs
21 Replicating Data did not improve query performance (MapReduce and Aggregation Framework)... so we tried Sharding
22 Sharding One BIG stack Two or more smaller stacks
23 Master-Slave Replication uses a democratic hierarchical scaling approach
24 But Deployment is an issue with MongoDB... If you want to shard...
25 documentation suggests minimum 11 nodes, to build a fail-safe sharded cluster 2 Shards 6 nodes (3 each) 2 mongos (load balancer) 2 nodes 3 mongod (config servers) 3 nodes Total: 11 nodes
26 The investment to go from single node --> sharded cluster is very HIGH!
27 By omitting Fail-Safe features For our tests, we kind of cheated and used: Note: X is variable 2 X Shards 6 2 nodes 2 1 mongos (load balancer) node 3 1 mongod (config servers) node Total: 11 3 nodes NOT RECOMMENDED IN PRODUCTION
28 Which looks something like this: 4 Shard configuration
29 Or this: 8 Shard configuration
30 Another problem is with querying in a sharded environment...
31 We couldn't perform queries using the Aggregation Framework in the shards, because it was limited by: - Output at every stage of the aggregation can only contain 16MB - >10% RAM usage MongoDB would fail if the limits were reached
32 Sharded Cluster Map Reduce: On 3 modest machines 4 Cores 8GB RAM Most hash tags (mins) Most user mentions (mins) Most shared urls (mins) Time (minutes) Number of Shards Optimal
33 Sharded Cluster Map Reduce: On 3 modest machines 4 Cores 8GB RAM Single Node Three Nodes Time (minutes) Most Hashed-Tags Most User Mentioned Most Shared URLs Time (minutes) Most hash tags (mins) Most user mentions (mins) Most shared urls (mins) HDD SSD Number of Shards
34 Sharded Cluster Map Reduce: On 3 modest machines 4 Cores 8GB RAM Single Node Three Nodes Time (minutes) Time (minutes) Most Hashed-Tags Most Hashed-Tags User Mentioned Most User Shared Mentioned URLs Most Shared URLs Time (minutes) Most hash tags (mins) Most user mentions (mins) Most shared urls (mins) HDD SSD SSD Number of Shards
35 Performance of Single Node (SSD) is very comparable to 3 nodes (HDD) of different number of shards! (Single Node with SSD is 2-3 minutes slower than 3 nodes... [40 GB corpus]) Perhaps its worth purchasing a good SSD over investing more nodes to improve aggregate performance...
36 What happens when we scale vertically with ONE BIG BOX? we get --->
37 Sharded Cluster Map Reduce: On a Big Box 32 Cores 128GB RAM Most hash tags (mins) Most user mentions (mins) Most shared urls (mins) Optimal 8.00 Time (minutes) Number of Shards
38
39 uses a communistic scaling approach Master-Master Replication
40 Single Node Most user mentioned Most hashed tags Most shared urls Time (seconds) HDD Hard Drive Type SSD
41 Single Node VS Map Reduce Time (seconds) 60 Most user mentioned 50 Most hashed tags Most shared urls Most User Mentioned Most Hashed-Tags Most Shared URLs HDD Hard Drive Type SSD 0 HDD SSD
42 Single Node VS Aggregation Framework Time (seconds) 60 Most user mentioned 50 Most hashed tags Most shared urls Most User Mentioned Most Hashed-Tags HDD Hard Drive Type SSD 0 HDD SSD
43 On a SINGLE NODE, while CouchBase is FASTER than MongoDB's MapReduce MongoDB's Aggregation Framework is FASTER than CouchBase
44 That said adding more Couchbase nodes was disappointing...
45 In short...
46 1 Node VS 2 Nodes VS 3 Nodes One Node Two Nodes Three Nodes Most user mentioned Most hashed tags Most shared urls
47 Adding more nodes did not improve query performance...
48 Other users have found similar issues, Couchbase Support says: One known issue with the current developer preview of Couchbase is that it slows down on smaller clusters. The views are optimal on very large clusters. [1] But they did not specify what is very large [1] Couchbase performance - real tests - it's horrible - or am I doing somethin wrong?
49 That was November
50 Which one?
51 The obvious answer is From a performance standpoint.
52 Simple flat file aggregation with Java took approx 60 mins On the same machine, MongoDB took approx 30 mins (MapReduce) 10 mins (Aggregation Framework)
53 Deployment Options Hard drive Map Reduce Node HDD MR 1950 Total Execution Time Costs Total Execution Time (mins) Node SSD MR Nodes HDD MR MR Approximate Total Cost (GBP) Node #2 Fast SSD AF Big Box HDD MR 0 Aggregate Framework
54 But! Has problems with: - Full Text Search - Social Network Graphs - Aggregation
55 's Full Text Search is slow 1 simple query on a single node, 44GB corpus took approx 10 mins!
56 Solution: A Fast Full Text Search Engine The same search took only a fraction of a second
57 To create a Social Network Graph with Can be Complex, since you query multiple times to obtain relationships
58 Solution: A Popular Graph Database Where you can obtain a network graph with VERY FEW queries
59 Example: START john=node:node_auto_index(name = 'John') MATCH john-[:friend]->()-[:friend]->fof RETURN john, fof The above query fetches all nodes who are friends of friends of Johns
60 With Aggregation Is perhaps not the best, we have yet to play with
61 Or even An SQL language to build MapReduce queries With
62 Moral of the story Use the right tools for the right job
63 Future work We aim to experiment with: With possibility in integrating all with
MongoDB Developer and Administrator Certification Course Agenda
MongoDB Developer and Administrator Certification Course Agenda Lesson 1: NoSQL Database Introduction What is NoSQL? Why NoSQL? Difference Between RDBMS and NoSQL Databases Benefits of NoSQL Types of NoSQL
In Memory Accelerator for MongoDB
In Memory Accelerator for MongoDB Yakov Zhdanov, Director R&D GridGain Systems GridGain: In Memory Computing Leader 5 years in production 100s of customers & users Starts every 10 secs worldwide Over 15,000,000
Benchmarking Couchbase Server for Interactive Applications. By Alexey Diomin and Kirill Grigorchuk
Benchmarking Couchbase Server for Interactive Applications By Alexey Diomin and Kirill Grigorchuk Contents 1. Introduction... 3 2. A brief overview of Cassandra, MongoDB, and Couchbase... 3 3. Key criteria
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
Cloud Scale Distributed Data Storage. Jürmo Mehine
Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform Page 1 of 16 Table of Contents Table of Contents... 2 Introduction... 3 NoSQL Databases... 3 CumuLogic NoSQL Database Service...
Introduction to Big Data Training
Introduction to Big Data Training The quickest way to be introduce with NOSQL/BIG DATA offerings Learn and experience Big Data Solutions including Hadoop HDFS, Map Reduce, NoSQL DBs: Document Based DB
Big data and urban mobility
Big data and urban mobility Antònia Tugores,PereColet Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC(UIB-CSIC) Abstract. Data sources have been evolving the last decades and nowadays
The MongoDB Tutorial Introduction for MySQL Users. Stephane Combaudon April 1st, 2014
The MongoDB Tutorial Introduction for MySQL Users Stephane Combaudon April 1st, 2014 Agenda 2 Introduction Install & First Steps CRUD Aggregation Framework Performance Tuning Replication and High Availability
Big Data & Data Science Course Example using MapReduce. Presented by Juan C. Vega
Big Data & Data Science Course Example using MapReduce Presented by What is Mongo? Why Mongo? Mongo Model Mongo Deployment Mongo Query Language Built-In MapReduce Demo Q & A Agenda Founders Max Schireson
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect IT Insight podcast This podcast belongs to the IT Insight series You can subscribe to the podcast through
NoSQL Databases. Nikos Parlavantzas
!!!! NoSQL Databases Nikos Parlavantzas Lecture overview 2 Objective! Present the main concepts necessary for understanding NoSQL databases! Provide an overview of current NoSQL technologies Outline 3!
Scaling up = getting a better machine. Scaling out = use another server and add it to your cluster.
MongoDB 1. Introduction MongoDB is a document-oriented database, not a relation one. It replaces the concept of a row with a document. This makes it possible to represent complex hierarchical relationships
Evaluation of NoSQL databases for large-scale decentralized microblogging
Evaluation of NoSQL databases for large-scale decentralized microblogging Cassandra & Couchbase Alexandre Fonseca, Anh Thu Vu, Peter Grman Decentralized Systems - 2nd semester 2012/2013 Universitat Politècnica
MongoDB. The Definitive Guide to. The NoSQL Database for Cloud and Desktop Computing. Apress8. Eelco Plugge, Peter Membrey and Tim Hawkins
The Definitive Guide to MongoDB The NoSQL Database for Cloud and Desktop Computing 11 111 TECHNISCHE INFORMATIONSBIBLIO 1 HEK UNIVERSITATSBIBLIOTHEK HANNOVER Eelco Plugge, Peter Membrey and Tim Hawkins
NoSQL and Hadoop Technologies On Oracle Cloud
NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath
A Performance Analysis of Distributed Indexing using Terrier
A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search
MONGODB - THE NOSQL DATABASE
MONGODB - THE NOSQL DATABASE Akhil Latta Software Engineer Z Systems, Mohali, Punjab MongoDB is an open source document-oriented database system developed and supported by 10gen. It is part of the NoSQL
MongoDB: document-oriented database
MongoDB: document-oriented database Software Languages Team University of Koblenz-Landau Ralf Lämmel, Sebastian Jackel and Andrei Varanovich Motivation Need for a flexible schema High availability Scalability
MongoDB in the NoSQL and SQL world. Horst Rechner [email protected] Berlin, 2012-05-15
MongoDB in the NoSQL and SQL world. Horst Rechner [email protected] Berlin, 2012-05-15 1 MongoDB in the NoSQL and SQL world. NoSQL What? Why? - How? Say goodbye to ACID, hello BASE You
A survey of big data architectures for handling massive data
CSIT 6910 Independent Project A survey of big data architectures for handling massive data Jordy Domingos - [email protected] Supervisor : Dr David Rossiter Content Table 1 - Introduction a - Context
Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1
Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots
Domain driven design, NoSQL and multi-model databases
Domain driven design, NoSQL and multi-model databases Java Meetup New York, 10 November 2014 Max Neunhöffer www.arangodb.com Max Neunhöffer I am a mathematician Earlier life : Research in Computer Algebra
Performance Evaluation of NoSQL Systems Using YCSB in a resource Austere Environment
International Journal of Applied Information Systems (IJAIS) ISSN : 2249-868 Performance Evaluation of NoSQL Systems Using YCSB in a resource Austere Environment Yusuf Abubakar Department of Computer Science
MakeMyTrip CUSTOMER SUCCESS STORY
MakeMyTrip CUSTOMER SUCCESS STORY MakeMyTrip is the leading travel site in India that is running two ClustrixDB clusters as multi-master in two regions. It removed single point of failure. MakeMyTrip frequently
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
An Approach to Implement Map Reduce with NoSQL Databases
www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Scalable Architecture on Amazon AWS Cloud
Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies [email protected] 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect
Structured Data Storage
Structured Data Storage Xgen Congress Short Course 2010 Adam Kraut BioTeam Inc. Independent Consulting Shop: Vendor/technology agnostic Staffed by: Scientists forced to learn High Performance IT to conduct
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases
NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases Background Inspiration: postgresapp.com demo.beatstream.fi (modern desktop browsers without
Introduction to NoSQL and MongoDB. Kathleen Durant Lesson 20 CS 3200 Northeastern University
Introduction to NoSQL and MongoDB Kathleen Durant Lesson 20 CS 3200 Northeastern University 1 Outline for today Introduction to NoSQL Architecture Sharding Replica sets NoSQL Assumptions and the CAP Theorem
RDBMS vs NoSQL: Performance and Scaling Comparison
RDBMS vs NoSQL: Performance and Scaling Comparison Christoforos Hadjigeorgiou August 23, 2013 MSc in High Performance Computing The University of Edinburgh Year of Presentation: 2013 Abstract The massive
An Open Source NoSQL solution for Internet Access Logs Analysis
An Open Source NoSQL solution for Internet Access Logs Analysis A practical case of why, what and how to use a NoSQL Database Management System instead of a relational one José Manuel Ciges Regueiro
Sharding and MongoDB. Release 3.0.7. MongoDB, Inc.
Sharding and MongoDB Release 3.0.7 MongoDB, Inc. November 15, 2015 2 MongoDB, Inc. 2008-2015 This work is licensed under a Creative Commons Attribution-NonCommercial- ShareAlike 3.0 United States License
extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010
System/ Scale to Primary Secondary Joins/ Integrity Language/ Data Year Paper 1000s Index Indexes Transactions Analytics Constraints Views Algebra model my label 1971 RDBMS O tables sql-like 2003 memcached
Certified MongoDB Professional VS-1058
VS-1058 Certified MongoDB Professional Certification Code VS-1058 Vskills certification for MongoDB Professional assesses the candidate for MongoDB. The certification tests the candidates on various areas
[Hadoop, Storm and Couchbase: Faster Big Data]
[Hadoop, Storm and Couchbase: Faster Big Data] With over 8,500 clients, LivePerson is the global leader in intelligent online customer engagement. With an increasing amount of agent/customer engagements,
Understanding Neo4j Scalability
Understanding Neo4j Scalability David Montag January 2013 Understanding Neo4j Scalability Scalability means different things to different people. Common traits associated include: 1. Redundancy in the
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB, Cassandra, and MongoDB
bankmark UG (haftungsbeschränkt) Bahnhofstraße 1 9432 Passau Germany www.bankmark.de [email protected] T +49 851 25 49 49 F +49 851 25 49 499 NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB,
Techniques for Scaling Components of Web Application
, March 12-14, 2014, Hong Kong Techniques for Scaling Components of Web Application Ademola Adenubi, Olanrewaju Lewis, Bolanle Abimbola Abstract Every organisation is exploring the enormous benefits of
Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB
Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what
NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015
NoSQL Databases Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 Database Landscape Source: H. Lim, Y. Han, and S. Babu, How to Fit when No One Size Fits., in CIDR,
Sharding and MongoDB. Release 3.2.1. MongoDB, Inc.
Sharding and MongoDB Release 3.2.1 MongoDB, Inc. February 08, 2016 2 MongoDB, Inc. 2008-2015 This work is licensed under a Creative Commons Attribution-NonCommercial- ShareAlike 3.0 United States License
Benchmarking and Analysis of NoSQL Technologies
Benchmarking and Analysis of NoSQL Technologies Suman Kashyap 1, Shruti Zamwar 2, Tanvi Bhavsar 3, Snigdha Singh 4 1,2,3,4 Cummins College of Engineering for Women, Karvenagar, Pune 411052 Abstract The
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
Optimising the Mapnik Rendering Toolchain
Optimising the Mapnik Rendering Toolchain 2.0 Frederik Ramm [email protected] stopwatch CC-BY maedli @ flickr Basic Setup Hetzner dedicated server (US$ 150/mo) Ubuntu Linux Mapnik 2.1 pbf planet file
SURVEY ON MONGODB: AN OPEN- SOURCE DOCUMENT DATABASE
International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 6, Issue 12, Dec 2015, pp. 01-11, Article ID: IJARET_06_12_001 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=6&itype=12
How To Compare The Economics Of A Database To A Microsoft Database
A MongoDB White Paper A Total Cost of Ownership Comparison of MongoDB & Oracle March 2013 Contents EXECUTIVE SUMMARY 1 COST CATEGORIES 1 TCO FOR EXAMPLE PROJECTS 3 Upfront Costs 3 Initial Developer Effort
Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF)
Not Relational Models For The Management of Large Amount of Astronomical Data Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) What is a DBMS A Data Base Management System is a software infrastructure
Sentimental Analysis using Hadoop Phase 2: Week 2
Sentimental Analysis using Hadoop Phase 2: Week 2 MARKET / INDUSTRY, FUTURE SCOPE BY ANKUR UPRIT The key value type basically, uses a hash table in which there exists a unique key and a pointer to a particular
Benchmarking Top NoSQL Databases Apache Cassandra, Couchbase, HBase, and MongoDB Originally Published: April 13, 2015 Revised: May 27, 2015
Benchmarking Top NoSQL Databases Apache Cassandra, Couchbase, HBase, and MongoDB Originally Published: April 13, 2015 Revised: May 27, 2015 http://www.endpoint.com/ Table of Contents Executive Summary...
Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software
WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications
NoSQL Database Options
NoSQL Database Options Introduction For this report, I chose to look at MongoDB, Cassandra, and Riak. I chose MongoDB because it is quite commonly used in the industry. I chose Cassandra because it has
Study and Comparison of Elastic Cloud Databases : Myth or Reality?
Université Catholique de Louvain Ecole Polytechnique de Louvain Computer Engineering Department Study and Comparison of Elastic Cloud Databases : Myth or Reality? Promoters: Peter Van Roy Sabri Skhiri
Big Data Solutions. Portal Development with MongoDB and Liferay. Solutions
Big Data Solutions Portal Development with MongoDB and Liferay Solutions Introduction Companies have made huge investments in Business Intelligence and analytics to better understand their clients and
Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world
Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3
ADAM 5.5. System Requirements
ADAM 5.5 System Requirements 1 1. Overview The schema below shows an overview of the ADAM components that will be installed and set up. ADAM Server: hosts the ADAM core components. You must install the
Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY MANNING ANN KELLY. Shelter Island
Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY ANN KELLY II MANNING Shelter Island contents foreword preface xvii xix acknowledgments xxi about this book xxii Part 1 Introduction
HO5604 Deploying MongoDB. A Scalable, Distributed Database with SUSE Cloud. Alejandro Bonilla. Sales Engineer [email protected]
HO5604 Deploying MongoDB A Scalable, Distributed Database with SUSE Cloud Alejandro Bonilla Sales Engineer [email protected] Agenda SUSE Cloud Overview What is MongoDB? 2 Getting familiar with the Cloud
PARALLELS CLOUD STORAGE
PARALLELS CLOUD STORAGE Performance Benchmark Results 1 Table of Contents Executive Summary... Error! Bookmark not defined. Architecture Overview... 3 Key Features... 5 No Special Hardware Requirements...
Big Data Analytics. Rasoul Karimi
Big Data Analytics Rasoul Karimi Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Big Data Analytics Big Data Analytics 1 / 1 Introduction
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems Rekha Singhal and Gabriele Pacciucci * Other names and brands may be claimed as the property of others. Lustre File
Cloud Storage. Parallels. Performance Benchmark Results. White Paper. www.parallels.com
Parallels Cloud Storage White Paper Performance Benchmark Results www.parallels.com Table of Contents Executive Summary... 3 Architecture Overview... 3 Key Features... 4 No Special Hardware Requirements...
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Understanding NoSQL on Microsoft Azure
David Chappell Understanding NoSQL on Microsoft Azure Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Data on Azure: The Big Picture... 3 Relational Technology: A Quick
Understanding NoSQL Technologies on Windows Azure
David Chappell Understanding NoSQL Technologies on Windows Azure Sponsored by Microsoft Corporation Copyright 2013 Chappell & Associates Contents Data on Windows Azure: The Big Picture... 3 Windows Azure
BIG DATA TOOLS. Top 10 open source technologies for Big Data
BIG DATA TOOLS Top 10 open source technologies for Big Data We are in an ever expanding marketplace!!! With shorter product lifecycles, evolving customer behavior and an economy that travels at the speed
Log management with Logstash and Elasticsearch. Matteo Dessalvi
Log management with Logstash and Elasticsearch Matteo Dessalvi HEPiX 2013 Outline Centralized logging. Logstash: what you can do with it. Logstash + Redis + Elasticsearch. Grok filtering. Elasticsearch
Hacettepe University Department Of Computer Engineering BBM 471 Database Management Systems Experiment
Hacettepe University Department Of Computer Engineering BBM 471 Database Management Systems Experiment Subject NoSQL Databases - MongoDB Submission Date 20.11.2013 Due Date 26.12.2013 Programming Environment
.NET User Group Bern
.NET User Group Bern Roger Rudin bbv Software Services AG [email protected] Agenda What is NoSQL Understanding the Motivation behind NoSQL MongoDB: A Document Oriented Database NoSQL Use Cases What is
X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
General announcements In-Memory is available next month http://www.oracle.com/us/corporate/events/dbim/index.html X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra [email protected] Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
Practical Cassandra. Vitalii Tymchyshyn [email protected] @tivv00
Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn
NoSQL. Thomas Neumann 1 / 22
NoSQL Thomas Neumann 1 / 22 What are NoSQL databases? hard to say more a theme than a well defined thing Usually some or all of the following: no SQL interface no relational model / no schema no joins,
MongoDB. Or how I learned to stop worrying and love the database. Mathias Stearn. N*SQL Berlin October 22th, 2009. 10gen
What is? Or how I learned to stop worrying and love the database 10gen N*SQL Berlin October 22th, 2009 What is? 1 What is? Document Oriented JavaScript Enabled Fast, Scalable, Available, and Reliable 2
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics platform. PENTAHO PERFORMANCE ENGINEERING
NoSQL in der Cloud Why? Andreas Hartmann
NoSQL in der Cloud Why? Andreas Hartmann 17.04.2013 17.04.2013 2 NoSQL in der Cloud Why? Quelle: http://res.sys-con.com/story/mar12/2188748/cloudbigdata_0_0.jpg Why Cloud??? 17.04.2013 3 NoSQL in der Cloud
Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia
Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop
Big Data Technology ดร.ช ชาต หฤไชยะศ กด. Choochart Haruechaiyasak, Ph.D.
Big Data Technology ดร.ช ชาต หฤไชยะศ กด Choochart Haruechaiyasak, Ph.D. Speech and Audio Technology Laboratory (SPT) National Electronics and Computer Technology Center (NECTEC) National Science and Technology
MySQL. Leveraging. Features for Availability & Scalability ABSTRACT: By Srinivasa Krishna Mamillapalli
Leveraging MySQL Features for Availability & Scalability ABSTRACT: By Srinivasa Krishna Mamillapalli MySQL is a popular, open-source Relational Database Management System (RDBMS) designed to run on almost
