CFD Simulation of a 3-Bladed Horizontal Axis Tidal Stream Turbine using RANS and LES
|
|
|
- Jeffry Hugo Richardson
- 10 years ago
- Views:
Transcription
1 CFD Simulation of a 3-Bladed Horizontal Axis Tidal Stream Turbine using RANS and LES J. McNaughton, I. Afgan, D.D. Apsley, S. Rolfo, T. Stallard and P.K. Stansby Modelling and Simulation Centre, School of MACE, The University of Manchester Oxford Tidal Energy Workshop Oxford, UK March 2012
2 Overview Intro Method Results Comp Con References 1 Introduction 2 Methodology 3 RANS Results 4 RANS and LES comparison 5 Conclusions & Further work
3 Introduction Intro Method Results Comp Con References ReDAPT (Reliable Data Acquisition Platform for Tidal): Project designed to accelerate the tidal energy industry. Aim to inspire market confidence in tidal stream turbines (TST). Deployment of a full scale 1MW turbine at EMEC in the Orkneys. This work: Using Code Saturne to accurately predict loading on tidal turbines. Assess the influence of turbulence and waves on TSTs. Current results compare Reynolds Averaged Navier Stokes (RANS) model and Large Eddy Simulation (LES) against those for a laboratory scale turbine.
4 Introduction Case overview CFD modelling of experimental study of Bahaj et al. (2005). 0.4 m radius, R, turbine pulled through a towing tank. Parametric study of force coefficients against tip-speed-ratio (TSR). Photo reproduced from Bahaj et al. (2005).
5 Methodology CFD Solver EDF s open-source CFD code, Code Saturne (Archambeau et al., 2004), is used to simulate turbulent flow past a TST. A sliding mesh method is developed in Code Saturne to allow for the TST rotation. Second order in space (central differencing). First-order in time with t 1.5 of rotation per time-step. The k ω SST RANS turbulence model is used to simulate the flow. Results are also compared against an LES that is also been performed as part of this project.
6 Methodology Sliding-mesh method Start in cell centre, I, with face-centre, F. I is projected through F to give a halo point, H. Search for, J, the nearest cell-centre to the halo-point. The face-centre value is given a Dirichlet condition with the value: φ F = 1 2 (φ I + φ H ), Interface I H F J Where: φ H = φ J + φ x (JH). J
7 Methodology Meshing strategy Geometry built in two parts, inner turbine and outer domain. Block-structured approach with hanging nodes to control cell-count. 2 million cells with 15 < y + < 200 at the walls. LES mesh is wall refined with 7.7 million cells.
8 RANS Results Flow-field Pressure iso-surfaces coloured by velocity are shown for the instantaneous flow-field for TSR = 6. Tip effects are clearly visible in the near wake whilst the mast creates main structures further down-stream.
9 RANS Results Flow-field Instantaneous velocity on centre-plane shows tip-effects and influence of mast on flow.
10 RANS Results Force coefficients Effect of blades passing the mast is clear from instantaneous force coefficients. Power Spectral Density (PSD) analysis of the C P shows peaks at 3 and 6 times the blade rotation frequency (f) Force coefficients over one full rotation for TSR= C T C P Time (s)
11 RANS Results Force coefficients k ω SST predicts force curve against TSR although under predicted by approximately 10%. LES shows gain in precision matching experiments within 3% except for the lower values of TSR Bahaj et al 2005 k-ω - Present work k-ω - McSherry et al 2011 LES C T 0.8 C P TSR TSR
12 RANS and LES comparison Flow structures Iso-Q 0.5 (Ω ij Ω ij S ij S ij ) surfaces coloured by vorticity are shown for RANS and LES. LES maintains the tip vortices and captures structures in the wake better than RANS. k ω SST LES
13 RANS and LES comparison Pressure coefficients on the blades Mean pressure coefficients are shown on the blades at quarter length locations. Both RANS and LES predict similar behaviour although LES captures larger forces on pressure and suction surfaces. 2 r/r = 0.25 r/r = 0.50 r/r = r/r = 0.25 r/r = 0.50 r/r = C P 0 -C P x / c k ω SST x / c LES
14 Conclusions & Further work Conclusions: Sliding-mesh method successfully implemented in Code Saturne to simulate a rotating TST. Flow features are captured well by RANS and LES. RANS under predicts the force coefficients whilst LES is far more accurate. Difference in calculations is near wall modelling and higher order time-scheme used by Code Saturne for LES. Further work: Wall refined RANS simulation to compare with experiments. Assess influence of waves on full scale MCT comparing with data from EMEC.
15 Acknowledgements This research was performed as part of the Reliable Data Acquisition Platform for Tidal (ReDAPT) project commissioned and funded by the Energy Technologies Institute (ETI). The authors are highly grateful to EDF for additional funding and access to its High Performance Computing (HPC) facilities.
16 References Intro Method Results Comp Con References Archambeau, F., Mechitoua, N., and Sakiz, M. (2004). Code Saturne: a finite volume code for the computation of turbulent incompressible flows-industrial applications. International Journal on Finite Volumes, 1(1):1 62. Bahaj, A. S., Batten, W. M. J., Molland, A. F., and Chaplin, J. R. (2005). Experimental investigation into the effect of rotor blade sweep on the performance of the Marine Current Turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215(5): Mcsherry, R., Grimwade, J., Jones, I., Mathias, S., Wells, A., Mateus, A., and House, E. F. (2011). 3D CFD modelling of tidal turbine performance with validation against laboratory experiments.
17 Sliding-mesh method Implementation: Code Saturne Subroutines Black - Unchanged. Red - Modified. Blue - New. findha - Search for closest cell-centre to halo-point. upcoef - Updates Dirichlet values on interface. caltri inivar usiniv tridim usclim findha navsto preduv resolp upcoef codits upcoef upcoef
18 Sliding-mesh method Implementation: Pressure-Velocity Loop Code Saturne s existing pressure-velocity loop is enabled by setting NTERUP > 1. Loop used to ensure continuity over the interface. Modification to include the RANS subroutines. tridim phyvar usclim navsto turb** P-V Loop phyvar
19 RANS and LES comparison Comparison of numerical set-up RANS (k ω SST) LES Time-scheme 1st order 2nd order Rotation per time-step Space discretization Centred Centred Wall modelling Wall-functions Wall refined Mesh size 2.2 million 7.6 million
Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface
Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface Thomas P. Lloyd, Stephen R. Turnock and Victor F. Humphrey Fluid-Structure Interactions Research Group; Institute
Application of CFD in connection with ship design
DANSIS meeting Lyngby, 13 May 2009 Application of CFD in connection with ship design www.force.dk Background Method Examples Summary Claus Daniel Simonsen FORCE Technology Background When a ship, which
CFD Simulation of the NREL Phase VI Rotor
CFD Simulation of the NREL Phase VI Rotor Y. Song* and J. B. Perot # *Theoretical & Computational Fluid Dynamics Laboratory, Department of Mechanical & Industrial Engineering, University of Massachusetts
CFD Simulation of Twin Vertical Axis Tidal Turbines System
Research Journal of Applied Sciences, Engineering and Technology 5(1): 233-238, 213 ISSN: 24-7459; e-issn: 24-7467 Maxwell Scientific Organization, 213 Submitted: May 3, 212 Accepted: June 29, 212 Published:
Comparison between OpenFOAM CFD & BEM theory for variable speed variable pitch HAWT
ITM Web of Conferences 2, 05001 (2014) DOI: 10.1051/itmconf/20140205001 C Owned by the authors, published by EDP Sciences, 2014 Comparison between OpenFOAM CFD & BEM theory for variable speed variable
Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT
Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx
CFD modelling of floating body response to regular waves
CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table
OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes
OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes ABSTRACT Blaž Mikuž Reactor Engineering Division, Jozef Stefan Institute, Jamova cesta 39 SI-1000 Ljubljana, Slovenia [email protected]
Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes
Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Taimoor Asim 1, Rakesh Mishra 1, Sree Nirjhor Kaysthagir 1, Ghada Aboufares
Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.
CALCULATION OF FLOW CHARACTERISTICS IN HEAT TURBOMACHINERY TURBINE STAGE WITH DIFFERENT THREE DIMENSIONAL SHAPE OF THE STATOR BLADE WITH ANSYS CFX SOFTWARE A. Yangyozov *, R. Willinger ** * Department
Marine CFD applications using OpenFOAM
Marine CFD applications using OpenFOAM Andrea Penza, CINECA 27/03/2014 Contents Background at CINECA: LRC experience CFD skills Automatic workflow Reliability workflow OpenFOAM solvers for marine CFD analysis
Computational Modeling of Wind Turbines in OpenFOAM
Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi [email protected] ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir
Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics
European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd
Simulation of Fluid-Structure Interactions in Aeronautical Applications
Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing [email protected] December 2003 3 rd FENET Annual Industry
Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller
J. Marine Sci. Appl. (2013) 12: 13-20 DOI: 10.1007/s11804-013-1166-9 Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller Ying Xiong 1, Zhanzhi Wang 1* and Wanjiang
PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION
TASK QUARTERLY 14 No 3, 297 305 PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION PIOTR DOERFFER AND OSKAR SZULC Institute of Fluid-Flow Machinery, Polish Academy
The calculation of train slipstreams using Large-Eddy Simulation techniques
The calculation of train slipstreams using Large-Eddy Simulation techniques Abstract Hassan Hemida, Chris Baker Birmingham Centre for Railway Research and Education, School of Civil Engineering, University
System-Level Simulation of Floating Platform and Wind Turbine Using High-Fidelity and Engineering Models
Image copyright Mercator Media 2015 System-Level Simulation of Floating Platform and Wind Turbine Using High-Fidelity and Engineering Models Di Zhang and Eric Paterson Aerospace and Ocean Engineering Virginia
AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL
14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski
2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013
2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France [email protected]
CFD Lab Department of Engineering The University of Liverpool
Development of a CFD Method for Aerodynamic Analysis of Large Diameter Horizontal Axis wind turbines S. Gomez-Iradi, G.N. Barakos and X. Munduate 2007 joint meeting of IEA Annex 11 and Annex 20 Risø National
AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE
AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE HITENDRA KURMI Research scholar, School of Energy and Environmental Managment,UTD, RGPV Bhopal,MP,INDIA [email protected]
Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412
, July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections
Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines
Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines SIMPACK User Meeting 2014 Augsburg, Germany October 9 th, 2014 Dipl.-Ing.
CFD simulations for investigating the wake states of a new class of tidal turbine
European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 12) Santiago de Compostela
Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine
HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK
NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION
Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,
Pushing the limits. Turbine simulation for next-generation turbochargers
Pushing the limits Turbine simulation for next-generation turbochargers KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for
Multiphase Flow - Appendices
Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
University Turbine Systems Research 2012 Fellowship Program Final Report. Prepared for: General Electric Company
University Turbine Systems Research 2012 Fellowship Program Final Report Prepared for: General Electric Company Gas Turbine Aerodynamics Marion Building 300 Garlington Rd Greenville, SC 29615, USA Prepared
FINE TM /Marine. CFD Suite for Marine Applications. Advanced Development for Better Products. www.numeca.com
FINE TM /Marine CFD Suite for Marine Applications Advanced Development for Better Products www.numeca.com FINE TM /Marine FINE /Marine is a unique integrated CFD software environment for the simulation
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
2 nd Oxford Tidal Energy Workshop
Proceedings of the 2 nd Oxford Tidal Energy Workshop 18-19 March 2013, Oxford, UK Proceedings of the 2nd Oxford Tidal Energy Workshop (OTE 2013) 18-19 March 2013, Oxford, UK Monday 18 th March Session
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms P. E. Vincent! Department of Aeronautics Imperial College London! 25 th March 2014 Overview Motivation Flux Reconstruction Many-Core
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
CFD Analysis of Swept and Leaned Transonic Compressor Rotor
CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India
CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise)
CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise) Arne Stuermer & Jianping Yin Institute of Aerodynamics & Flow Technology DLR Braunschweig Germany 14th CEAS-ASC Workshop October
The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model
The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model Vangelis Skaperdas, Aristotelis Iordanidis, Grigoris Fotiadis BETA CAE Systems S.A. 2 nd Northern Germany OpenFOAM User
Validations Of Openfoam Steady State Compressible Solver Rhosimplefoam
Validations Of Openfoam Steady State Compressible Solver Rhosimplefoam Umran Abdul Rahman, and Faizal Mustapha Abstract OpenFOAM steady state solver rhosimplefoam was tested. Reynolds Average Navier Stokes
External bluff-body flow-cfd simulation using ANSYS Fluent
External bluff-body flow-cfd simulation using ANSYS Fluent External flow over a bluff body is complex, three-dimensional, and vortical. It is massively separated and it exhibits vortex shedding. Thus,
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National
Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code
Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code D.C. Maniaci Pennsylvania State University Y. Li National
Application of Wray-Agarwal Model to Turbulent Flow in a 2D Lid-Driven Cavity and a 3D Lid- Driven Box
Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Summer 8-14-2015 Application of Wray-Agarwal
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE
Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 4, October, 2014 2014 IJMERR. All Rights Reserved COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE Shivakumar
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
TIME-ACCURATE SIMULATION OF THE FLOW AROUND THE COMPLETE BO105 WIND TUNNEL MODEL
TIME-ACCURATE SIMULATION OF THE FLOW AROUND THE COMPLETE BO105 WIND TUNNEL MODEL Walid Khier, Thorsten Schwarz, Jochen Raddatz presented by Andreas Schütte DLR, Institute of Aerodynamics and Flow Technology
HydrOcean, your numerical hydrodynamic partner
HydrOcean, your numerical hydrodynamic partner Contact: Luke Berry, Account Manager [email protected] Tel: +33 (0)2 40 20 60 94 Who We Are Overview Founded in 2007 by E. Jacquin Spinoff from Ecole
Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
Steady Flow: Laminar and Turbulent in an S-Bend
STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and
NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE WIND FORCES ACTING ON LNG CARRIER
V European Conference on Computational Fluid Dynamics ECCOMAS CFD 1 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal, 14 17 June 1 NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE WIND FORCES ACTING ON
CFD Code Validation Against Stratified Air-Water Flow Experimental Data
CFD Code Validation Against Stratified Air-Water Flow F. Terzuoli, M.C. Galassi, D. Mazzini, F. D Auria University of Pisa Department of Mechanics, Nuclear and Production Engineering Via Diotisalvi 2,
XFlow CFD results for the 1st AIAA High Lift Prediction Workshop
XFlow CFD results for the 1st AIAA High Lift Prediction Workshop David M. Holman, Dr. Monica Mier-Torrecilla, Ruddy Brionnaud Next Limit Technologies, Spain THEME Computational Fluid Dynamics KEYWORDS
Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations
Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations SAFIR2010 Seminar, 10.-11.3.2011, Espoo Juho Peltola, Timo Pättikangas (VTT) Tomas Brockmann, Timo Siikonen
COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY
COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY FEBRUARY 2012 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury
CSE Case Study: Optimising the CFD code DG-DES
CSE Case Study: Optimising the CFD code DG-DES CSE Team NAG Ltd., [email protected] Naveed Durrani University of Sheffield June 2008 Introduction One of the activities of the NAG CSE (Computational
FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1
COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT
A Swirl Generator Case Study for OpenFOAM
A Swirl Generator Case Study for OpenFOAM Olivier Petit Alin I. Bosioc Sebastian Muntean Håkan Nilsson Romeo F. Susan-Resiga Chalmers University Politehnica University of Timisoara Aim of the Timisoara
CCTech TM. ICEM-CFD & FLUENT Software Training. Course Brochure. Simulation is The Future
. CCTech TM Simulation is The Future ICEM-CFD & FLUENT Software Training Course Brochure About. CCTech Established in 2006 by alumni of IIT Bombay. Our motive is to establish a knowledge centric organization
Harvesting-Combine-Flow Simulation Technique
Page 1/14 Madhur Bhaiya, Prof. Dr.-Ing. Andreas Jahr, B.Eng. Holger Happel FH Düsseldorf 1 ABSTRACT CFX 11.0 is a Computational Fluid Dynamics (CFD) program for simulating the behavior of systems involving
OpenFOAM in Wind Energy: Wind Turbines as a source term. Paolo Schito, Luca Bernini, Alberto Zasso
OpenFOAM in Wind Energy: Wind Turbines as a source term Paolo Schito, Luca Bernini, Alberto Zasso Analysis of Wind Turbine 2 Wind turbine aerodynamics simulation is an important task for develop future
GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS
ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli
RESEARCH IN MARINE ENERGY IN CHILE Fondef Tidal Energy
RESEARCH IN MARINE ENERGY IN CHILE Fondef Tidal Energy Dr. Rodrigo Cienfuegos ([email protected]) Director Fondef 09I1052 Pontificia Universidad Católica de Chile ROAD MAP FOR MARINE ENERGY EXTRACTION
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around Marine Propellers
First International Symposium on Marine Propulsors smp 09, Trondheim, Norway, June 2009 Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around
CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid
KNS 2013 Spring CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid Seong Gu Kim Jeong Ik Lee Yoonhan Ahn Jekyoung Lee Jae Eun Cha Yacine Addad Dept. Nuclear & Quantum
Modelling and Computation of Compressible Liquid Flows with Phase Transition
JASS 2009 - Joint Advanced Student School, Saint Petersburg, 29. 03. - 07. 04. 2009 Modelling and Simulation in Multidisciplinary Engineering Modelling and Computation of Compressible Liquid Flows with
CFD: What is it good for?
CFD: What is it good for? Tom O Mahoney TNO Fluid Dynamics Introduction to CFD CFD - Computational Fluid Dynamics Computational the using of computers to simulate the physics of fluids Fluid Either gas
Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics
Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in
Part IV. Conclusions
Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
Hydrodynamic Loads on Two-Dimensional Sheets of Netting within the Range of Small Angels of Attack
Hydrodynamic Loads on Two-Dimensional Sheets of Netting within the Range of Small Angels of Attack by Mathias Paschen & Karsten Breddermann 10 th International Workshop Methods for the Development and
Computational Simulation of Flow Over a High-Lift Trapezoidal Wing
Computational Simulation of Flow Over a High-Lift Trapezoidal Wing Abhishek Khare a,1, Raashid Baig a, Rajesh Ranjan a, Stimit Shah a, S Pavithran a, Kishor Nikam a,1, Anutosh Moitra b a Computational
FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2)
FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2) Overview Power requirements for mixing Newtonian and non-newtonian liquids Ungassed and gassed systems Scale-up issues, scale-down approach Adapting bioreactor
GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS
2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,
The INSEAN E779a Propeller Test Case: a Database For CFD Validation
The INSEAN E779a Propeller Test Case: a Database For CFD Validation G.Calcagno,F. Di Felice, M. Felli,S. Franchi, F.Pereira, F.Salvatore INSEAN (Italian Ship Model Basin), via di Vallerano 139, 00128 Rome,
How To Model A Horseshoe Vortex
Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering
Laminar Flow in a Baffled Stirred Mixer
Laminar Flow in a Baffled Stirred Mixer Introduction This exercise exemplifies the use of the rotating machinery feature in the CFD Module. The Rotating Machinery interface allows you to model moving rotating
Micropower from Tidal Turbines
Micropower from Tidal Turbines Brian Polagye 1, Rob Cavagnaro 1, and Adam Niblick 2 1 Northwest National Marine Renewable Energy Center, University of Washington 2 Creare, Inc. 13th International Symposium
Abaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
HPC enabling of OpenFOAM for CFD Applications 25 th 27 th March 2015 CINECA Casalecchio di Reno, Bologna
VIRTUAL TEST RIG FOR PERFORMANCE EVALUATION OF A ROTATING HEAT EXCHANGER A. Corsini G. Delibra M. Martini G. Di Meo A. Santoriello FMGroup @ DIMA-URLS www.dima.uniroma1.it Enel Ingegneria e Ricerca S.p.A.
Investigation of the influence of turbine-to-turbine interaction on their performance using OpenFOAM
Investigation of the influence of turbine-to-turbine interaction on their performance using OpenFOAM Dr Gavin Tabor, Mulualem Gebreslassie, Prof Mike Belmont CEMPS, University of Exeter Background: Lift/Drag
AN INVESTIGATION ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL AXIS WIND TURBINE ETESH VAISHNAV
AN INVESTIGATION ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL AXIS WIND TURBINE By ETESH VAISHNAV Bachelor of Science in Mechanical Engineering Bhilai Institute of Technology Durg, India 2007 Submitted
C3.8 CRM wing/body Case
C3.8 CRM wing/body Case 1. Code description XFlow is a high-order discontinuous Galerkin (DG) finite element solver written in ANSI C, intended to be run on Linux-type platforms. Relevant supported equation
Computational Fluid Dynamics Research Projects at Cenaero (2011)
Computational Fluid Dynamics Research Projects at Cenaero (2011) Cenaero (www.cenaero.be) is an applied research center focused on the development of advanced simulation technologies for aeronautics. Located
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
Current Status and Challenges in CFD at the DLR Institute of Aerodynamics and Flow Technology
Current Status and Challenges in CFD at the DLR Institute of Aerodynamics and Flow Technology N. Kroll, C.-C. Rossow DLR, Institute of Aerodynamics and Flow Technology DLR Institute of Aerodynamics and
CHAPTER 4 CFD ANALYSIS OF THE MIXER
98 CHAPTER 4 CFD ANALYSIS OF THE MIXER This section presents CFD results for the venturi-jet mixer and compares the predicted mixing pattern with the present experimental results and correlation results
Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD
Universal Journal of Mechanical Engineering 1(4): 122-127, 2013 DOI: 10.13189/ujme.2013.010403 http://www.hrpub.org Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Vibhor Baghel
ANSYS FLUENT. Using Moving Reference Frames and Sliding Meshes WS5-1. Customer Training Material
Workshop 5 Using Moving Reference Frames and Sliding Meshes Introduction to ANSYS FLUENT WS5-1 Introduction [1] Several solution strategies exist when there are moving parts in the domain. This workshop
Overset Grids Technology in STAR-CCM+: Methodology and Applications
Overset Grids Technology in STAR-CCM+: Methodology and Applications Eberhard Schreck, Milovan Perić and Deryl Snyder [email protected] [email protected] [email protected]
How To Run A Steady Case On A Creeper
Crash Course Introduction to OpenFOAM Artur Lidtke University of Southampton [email protected] November 4, 2014 Artur Lidtke Crash Course Introduction to OpenFOAM 1 / 32 What is OpenFOAM? Using OpenFOAM
Application of CFD modelling to the Design of Modern Data Centres
Application of CFD modelling to the Design of Modern Data Centres White Paper March 2012 By Sam Wicks BEng CFD Applications Engineer Sudlows March 14, 2012 Application of CFD modelling to the Design of
TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations
TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations 05.06.2014 Dipl.-Ing. Jan Hesse, Dr. Andreas Spille-Kohoff CFX Berlin Software GmbH Karl-Marx-Allee 90 A 10243
How To Run A Cdef Simulation
Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation
