5s Solubility & Conductivity
|
|
|
- Phebe Taylor
- 10 years ago
- Views:
Transcription
1 5s Solubility & Conductivity OBJECTIVES To explore the relationship between the structures of common household substances and the kinds of solvents in which they dissolve. To demonstrate the ionic nature of aqueous solutions of strong and weak electrolytes. To use symbolic expressions (chemical equations) to represent dissolution processes. INTRODUCTION The vast majority of the substances we encounter in our daily lives are mixtures, and many are solutions. A solution is a homogeneous mixture of two or more elements or compounds present in a single phase. It is usual to think of the component present in the largest amount as the solvent and the other component(s) as the solute(s). Solutions such as coffee, soda, and household cleaners usually involve water as the solvent and are called aqueous solutions. Consumer products such as gasoline, paint thinner, and butter are solutions in which the solvent is a liquid other than water. Common household aqueous solutions Common household nonaqueous solutions Figure 5.1 Intermolecular Forces and Solubility What makes one substance dissolve in another? Why is it that oil and water don't mix? To answer these questions, we need to examine the concept of a solution on the atomic (sub-microscopic) scale. Molecules and ions exert forces (called intermolecular forces) on their neighbors. For the most part, these forces are attractive in nature, and they always become weaker as the distance between the interacting pairs
2 increases. Because gas molecules are far apart (on average), intermolecular forces have little effect on their behavior, and solutions form rapidly when gases are mixed. The air we breather is a gaseous solution. Intermolecular forces play a significant role in the behavior of condensed phases (solids and liquids) since the molecules or ions are very close together in these phases. If a solute is to dissolve in a solvent, the intermolecular attractive forces within the pure solute and within the pure solvent must be overcome. In other words, as depicted in Figure 5.2, solvent particles must be pulled away from one another (step 1) and solute molecules must also be pried apart (step 2) to allow the solute and solvent species to intermingle. Both of these processes require the input of energy. When separated solute and solvent particles are combined to form a solution, energy is released as these particles interact (step 3). 1 2 E 2 solvent 3 solute 2 3 E 1 E 3 1 solution E 0 Figure If, as in the case depicted above, the energy released by these intermolecular solute/solvent attractions (step 3) is less than the energy required to separate the pure solute and solvent molecules in the first place (steps 1 & 2), energy will be (supplied by or released to ) the surrounding solution, (raising or lowering) the solution's temperature. Mixing substances with weak intermolecular attractions for one another may result in the formation of two phases rather than a homogenous solution. Sub-microscopic Properties and Solubility When the electron density around a molecule is not distributed uniformly, the molecule is said to be polar. The polarity of a molecule depends on the polarity of the bonds it contains as well as its overall geometry. Water is a polar molecule because the bonds between the oxygen and the two hydrogen atoms are polar (with higher electron density around the oxygen than the hydrogens) and the molecule itself is bent.
3 Water Molecular Model Water Structural Formula/Dipole symbol Figure 5.3 Gasoline, by contrast, consists mostly of hydrocarbons such as octane that contain only carbon and hydrogen, and because of their geometries and the fact that the bond between hydrogen and carbon is not (very) polar, these molecules are nonpolar. Octane Molecular Model Figure 5.4 Octane Structural Formula A polar substance will generally have strong intermolecular forces that involve the electrical attractions of the partially positive end of one molecule with the partially negative end of another. A polar solvent such as water can dissolve many polar or ionic solutes because its molecules have the same type of strong forces acting among them as do the potential solutes. Although inserting solute species between the water molecules requires that both the water molecules and solute particles separate from each other, the interactions between the solute and the water that occur when water molecules surround a polar substance can compensate for the loss of the intermolecular interactions between the now separated pure water and pure solute molecules. On the other and, water will not dissolve a substance like gasoline that is not polar. The interaction between the inserted solute and solvent water molecules cannot replace the attractive interactions between water molecules and the materials don't mix. Non-polar solvents such as octane dissolve other non-polar substances because the molecules of both solute and solvent are held together by similar forces. These observations have been generalized in the rule of thumb like dissolves like. In the first part of this experiment, we will investigate the solubility of different household chemicals in both polar and nonpolar solvents and speculate on the nature of the intermolecular forces. Electrolytes When ionic compounds dissolve in water they separate (dissociate) into their free ions, each surrounded by water (hydrated). Consider the salt potassium chloride, composed of the alkali metal cation K + and the halide anion Cl -. We would represent the dissolution process for this compound as
4 Since ionic compounds are made up of ions, they interact well with polar solvents such as water, but show little affinity for nonpolar materials. Covalent compounds such as acetic acid (CH 3 CO 2 H) and hydrochloric acid (HCl) may also ionize, partially or extensively, upon dissolving. Solutions that contain electrolytes conduct an electric current, indicating the presence of mobile ions. You are probably more familiar with electrolytes in the context of minerals in cells to maintain water balance, and indeed the aqueous environment of cells is an excellent example of an electrolyte solution. A substance that dissociates completely in water (e.g. KCl or HCl) is said to be a strong electrolyte and will generally be a good electrical conductor whereas a substance that dissociates only to a small extent (e.g. CH 3 CO 2 H, which is only 1% to 5% dissociated in water) is called a weak electrolyte, and conducts to a much more limited extent. The double arrow that accompanies the acetic acid equation above is meant to indicate that most of the acetic acid in in the undissociated form. Covalent compounds that maintain their neutral molecular form when they dissolve in water are said to be non-electrolytes, because they do not conduct an electric current. Figure 5.5 demonstrates how effectively solutions with different conductivities light the bulb. Strong Electrolyte Weak Electrolyte Nonelectrolyte Figure 5.5 In this experiment you will look at the solubility of different household items in three solvents: water, rubbing alcohol (70% isopropyl alcohol in water), and vegetable oil. Next you will build a conductivity tester to determine whether any of the resulting solutions contain electrolytes and, if they do, whether they are strong or weak electrolytes.
5 EXPERIMENTAL Solvents: o Distilled Water (from Grocery store) o Rubbing alcohol (70% isopropanol) o Vegetable oil (Canola, Corn, Peanut, etc.) Solutes: o Table salt o Baking Soda o Vinegar o Sugar 8 oz clear plastic cups Measuring cup Measuring spoons Materials for conductivity tester Conductivity Tester 1 - LED (Light Emitting Diode) 1 - Resistor(330 ohm, 1/4 watt) 1-9 volt Transistor Radio Battery 1 - Battery Clip to fit Battery) 1-8 inch piece Red wire 1-8 inch piece Black wire 1-4 inch piece Black wire tape Procedure 1. Construct the conductivity tester by following the instructions in the appendix. 2. Test the conductivity of each of the solvents by dipping the bared ends of the two wires into 1/8 cup of each solvent. In the data sheet, indicate the result as hc (high conductivity), lc (low conductivity) or nc (no conductivity). 3. Observe the solubility of the solvents in one another by mixing 1/8 of a cup of each with 1/8 of a cup of the other two. Fill in the matrix with either VS (very soluble), SS (slightly soluble) or IS (insoluble). 4. Observe the solubility of each of the solutes in every solvent by mixing 1/8 teaspoon of the solute in 1/4 cup of solvent. Stir the solution for approximately 1 minute, then observe. Fill in the data sheet matrix with either VS (very soluble), SS (slightly soluble) or IS (insoluble). Test the conductivity of the resulting solution using the conductivity tester, indicating the result as hc (high conductivity), lc (low conductivity) or nc (no conductivity).
6 RESULTS & DISCUSSION Based on the data you collected, write a laboratory report in word that addresses the following questions: 1. Recalling that water is polar and based on your solubility results, indicate whether rubbing alcohol is polar or nonpolar. Explain. 2. Recalling that water is polar and based on your solubility results, indicate whether cooking oil is polar or nonpolar. Explain 3. Classify each solution that formed as containing a strong electrolyte, a weak electrolyte, or a nonelectrolyte. 4. For all solutions of strong or weak electrolytes, write the equation that describes the dissolution process (see equations in the Introduction to this laboratory as examples). 5. Be sure to return the Data Sheet with your observations along with this written report.
7 DATA SHEET Indicate if the combination is VS (very soluble), SS (slightly soluble) or IS (insoluble) water rubbing alcohol oil water X rubbing alcohol X oil X Indicate whether the solvent has HC (Highly Conductivity), LC (Low Conductivity) or NC (no conductivity) water rubbing alcohol oil conductivity Indicate if the combination is VS (very soluble), SS (slightly soluble) or IS (insoluble) and displays HC (Highly Conductivity), LC (Low Conductivity) or NC (no conductivity) water rubbing alcohol oil table salt baking soda sugar vinegar
8 APPENDIX Instructions for making conducitivity tester Start by removing about 1/2 inch of the insulation from each end of the 3 wires. Assemble the components as shown in the diagram below. The wires may be connected by twisting them together tightly and wrapping the bare portion with tape. 1. Connect the 2, 8 inch wires to the battery clip (red to red and black to black). 2. Connect either end of the resistor to the other end of the 8 inch black wire. 3. Connect the opposite end of the resistor to the Cathode of the LED. 4. Connect the 4 inch black wire to the remaining lead on the LED (Anode). 5. If you wish, you can tape the completed tester to a large tongue depressor to prevent flexing and breaking the wires where they are connected together. Allow the "probe" wires to extend about an inch past the end of the tongue depressor. Black wire Resistor LED Black wire + - Battery clip Red wire Bear leads
Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.
TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present
Chapter 13 - LIQUIDS AND SOLIDS
Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,
Chapter 6. Solution, Acids and Bases
Chapter 6 Solution, Acids and Bases Mixtures Two or more substances Heterogeneous- different from place to place Types of heterogeneous mixtures Suspensions- Large particles that eventually settle out
Chapter 5 Student Reading
Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.
Chemistry B11 Chapter 6 Solutions and Colloids
Chemistry B11 Chapter 6 Solutions and Colloids Solutions: solutions have some properties: 1. The distribution of particles in a solution is uniform. Every part of the solution has exactly the same composition
Chapter 13 - Solutions
Chapter 13 - Solutions 13-1 Types of Mixtures I. Solutions A. Soluble 1. Capable of being dissolved B. Solution 1. A homogeneous mixture of two or more substances in a single phase C. Solvent 1. The dissolving
- electrolytes: substances that dissolve in water to form charge-carrying solutions
111 Electrolytes and Ionic Theory - electrolytes: substances that dissolve in water to form charge-carrying solutions * Electrolytes form ions in solution - (ions that are mobile are able to carry charge!).
Reading Preview. Key Terms covalent bond molecule double bond triple bond molecular compound polar bond nonpolar bond
Section 4 4 bjectives After this lesson, students will be able to L.1.4.1 State what holds covalently bonded s together. L.1.4.2 Identify the properties of molecular compounds. L.1.4.3 Explain how unequal
Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties.
Name!!!! date Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties. STATION 1: Oil and water do not mix. We all know that.
Type of Chemical Bonds
Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared
List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.
Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals
Chemical Reactions in Water Ron Robertson
Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds
Chapter 5, Lesson 3 Why Does Water Dissolve Salt?
Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Key Concepts The polarity of water molecules enables water to dissolve many ionically bonded substances. Salt (sodium chloride) is made from positive sodium
INTERMOLECULAR FORCES
INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule
Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible
Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon
SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB
SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,
Chapter 4 Chemical Reactions
Chapter 4 Chemical Reactions I) Ions in Aqueous Solution many reactions take place in water form ions in solution aq solution = solute + solvent solute: substance being dissolved and present in lesser
Chapter 4: Structure and Properties of Ionic and Covalent Compounds
Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence
FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/CHEMISTRY
FOR TEACHERS ONLY PS CH The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/CHEMISTRY Wednesday, January 29, 2003 9:15 a.m. to 12:15 p.m., only SCORING KEY AND RATING
Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases
Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties
CHEMISTRY BONDING REVIEW
Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.
4.5 Physical Properties: Solubility
4.5 Physical Properties: Solubility When a solid, liquid or gaseous solute is placed in a solvent and it seems to disappear, mix or become part of the solvent, we say that it dissolved. The solute is said
Lab: Properties of Polar and Nonpolar Substances
Lab: Properties of Polar and Nonpolar Substances Purpose: To explain the interactions of matter in relation to polarity. Stations 1 and 2 - il and water do not mix As a metaphor, oil and water are often
Chapter 4, Lesson 4: Energy Levels, Electrons, and Covalent Bonding
Chapter 4, Lesson 4: Energy Levels, Electrons, and Covalent Bonding Key Concepts The electrons on the outermost energy level of the atom are called valence electrons. The valence electrons are involved
Science 20. Unit A: Chemical Change. Assignment Booklet A1
Science 20 Unit A: Chemical Change Assignment Booklet A FOR TEACHER S USE ONLY Summary Teacher s Comments Chapter Assignment Total Possible Marks 79 Your Mark Science 20 Unit A: Chemical Change Assignment
CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.
CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy
Question Bank Electrolysis
Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution
stoichiometry = the numerical relationships between chemical amounts in a reaction.
1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse
Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)
BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour
Chem101: General Chemistry Lecture 9 Acids and Bases
: General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water
EXPERIMENT # 3 ELECTROLYTES AND NON-ELECTROLYTES
EXPERIMENT # 3 ELECTROLYTES AND NON-ELECTROLYTES Purpose: 1. To investigate the phenomenon of solution conductance. 2. To distinguish between compounds that form conducting solutions and compounds that
In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.
Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.
Chapter 2: The Chemical Context of Life
Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you
Properties and Classifications of Matter
PS-3.1 Distinguish chemical properties of matter (including reactivity) from physical properties of matter (including boiling point, freezing/melting point, density [with density calculations], solubility,
BOND TYPES: THE CLASSIFICATION OF SUBSTANCES
BOND TYPES: THE CLASSIFICATION OF SUBSTANCES Every (pure) substance has a unique set of intrinsic properties which distinguishes it from all other substances. What inferences, if any can be made from a
6 Reactions in Aqueous Solutions
6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface
Chapter 5 Classification of Organic Compounds by Solubility
Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and
Experiment 8 - Double Displacement Reactions
Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are
Chapter 6: Mixtures. Overall Objectives 46. 6.1 Introduction 46. Time Required: 6.2 Types of mixtures 46
Chapter 6: Mixtures Overall Objectives 46 6.1 Introduction 46 6.2 Types of mixtures 46 6.3 Like dissolved like 46 6.4 Soap 47 6.5 Summary 47 Experiment 6: Mix it Up! 48 Review 52 Notes 52 Time Required:
CHAPTER 6 Chemical Bonding
CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain
A. Types of Mixtures:
I. MIXTURES: SOLUTIONS 1) mixture = a blend of two or more kinds of matter, each of which retains its own identity and properties a) homogeneous mixture = a mixture that is uniform in composition throughout
Molecular Models in Biology
Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,
Classification of Chemical Substances
Classification of Chemical Substances INTRODUCTION: Depending on the kind of bonding present in a chemical substance, the substance may be called ionic, molecular or metallic. In a solid ionic compound
Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.
Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The
(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion
GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and
Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.
Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration
Chemistry Diagnostic Questions
Chemistry Diagnostic Questions Answer these 40 multiple choice questions and then check your answers, located at the end of this document. If you correctly answered less than 25 questions, you need to
Acids, Bases, and ph
CHAPTER 9 1 SECTION Acids, Bases, and Salts Acids, Bases, and ph KEY IDEAS As you read this section, keep these questions in mind: What properties do acids have? What properties do bases have? How can
ATOMS. Multiple Choice Questions
Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)
20.2 Chemical Equations
All of the chemical changes you observed in the last Investigation were the result of chemical reactions. A chemical reaction involves a rearrangement of atoms in one or more reactants to form one or more
Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.
Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is
Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change
Chemical Reactions Chemical Equations Chemical reactions describe processes involving chemical change The chemical change involves rearranging matter Converting one or more pure substances into new pure
Chemistry 52. Reacts with active metals to produce hydrogen gas. Have a slippery, soapy feeling. React with carbonates to produce CO 2
ACID AND BASE STRENGTH Experiment #2 PURPOSE: 1. To distinguish between acids, bases and neutral substances, by observing their effect on some common indicators. 2. To distinguish between strong and weak
ph: Measurement and Uses
ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic
Prentice Hall. Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition. High School. High School
Prentice Hall Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition High School C O R R E L A T E D T O High School C-1.1 Apply established rules for significant digits,
CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING
CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,
Return to Lab Menu. Acids and Bases in Your House
Return to Lab Menu Acids and Bases in Your House OBJECTIVES Isolate a natural acid-base indicator. Determine the acid-base properties of common household solutions. INTRODUCTION Acids and bases are among
a. pure substance b. composed of combinations of atoms c. held together by chemical bonds d. substance that cannot be broken down into simpler units
Chemical Bonds 1. Which of the following is NOT a true compound? a. pure substance b. composed of combinations of atoms c. held together by chemical bonds d. substance that cannot be broken down into simpler
EXAMPLE EXERCISE 4.1 Change of Physical State
EXAMPLE EXERCISE 4.1 Change of Physical State State the term that applies to each of the following changes of physical state: (a) Snow changes from a solid to a liquid. (b) Gasoline changes from a liquid
Coimisiún na Scrúduithe Stáit State Examinations Commission
Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2007 CHEMISTRY - ORDINARY LEVEL TUESDAY, 19 JUNE AFTERNOON 2.00 TO 5.00 400 MARKS Answer eight questions in
Chapter 14 Solutions
Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute
Physical Changes and Chemical Reactions
Physical Changes and Chemical Reactions Gezahegn Chaka, Ph.D., and Sudha Madhugiri, Ph.D., Collin College Department of Chemistry Objectives Introduction To observe physical and chemical changes. To identify
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed
4.4 Calculations Involving the Mole Concept
44 Section 43 Questions 1 Define Avogadro s constant, and explain its significance in quantitative analysis 2 Distinguish between the terms atomic mass and molar mass 3 Calculate the mass of a molecule
Sketch the model representation of the first step in the dissociation of water. H 2. O (l) H + (aq) + OH- (aq) + H 2. OH - (aq) + H 3 O+ (aq)
Lesson Objectives Students will: Create a physical representation of the autoionization of water using the water kit. Describe and produce a physical representation of the dissociation of a strong acid
Sugar or Salt? Ionic and Covalent Bonds
Lab 11 Sugar or Salt? Ionic and Covalent Bonds TN Standard 2.1: The student will investigate chemical bonding. Have you ever accidentally used salt instead of sugar? D rinking tea that has been sweetened
Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.
Acids and Bases Know the definition of Arrhenius, Bronsted-Lowry, and Lewis acid and base. Autoionization of Water Since we will be dealing with aqueous acid and base solution, first we must examine the
Chapter 13: Properties of Solutions
Chapter 13: Properties of Solutions Problems: 9-10, 13-17, 21-42, 44, 49-60, 71-72, 73 (a,c), 77-79, 84(a-c), 91 solution: homogeneous mixture of a solute dissolved in a solvent solute: solvent: component(s)
EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY
EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY Purpose: 1. To distinguish between different types of chemical bonds. 2. To predict the polarity of some common molecules from a knowledge of bond
H 2 + O 2 H 2 O. - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation.
CEMICAL REACTIONS 1 ydrogen + Oxygen Water 2 + O 2 2 O reactants product(s) reactant substance before chemical change product substance after chemical change Conservation of Mass During a chemical reaction,
Brønsted-Lowry Acids and Bases
Brønsted-Lowry Acids and Bases 1 According to Brønsted and Lowry, an acid-base reaction is defined in terms of a proton transfer. By this definition, the reaction of Cl in water is: Cl(aq) + Cl (aq) +
Chapter 2 Polar Covalent Bonds: Acids and Bases
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical
5. Structure, Geometry, and Polarity of Molecules
5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those
Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.
The Nature of Molecules Chapter 2 Energy and Metabolism Chapter 6 Chemical Bonds Molecules are groups of atoms held together in a stable association. Compounds are molecules containing more than one type
Chemical Bonds and Groups - Part 1
hemical Bonds and Groups - Part 1 ARB SKELETS arbon has a unique role in the cell because of its ability to form strong covalent bonds with other carbon atoms. Thus carbon atoms can join to form chains.
3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP
Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments
Molarity of Ions in Solution
APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.
Experiment 16-Acids, Bases and ph
Definitions acid-an ionic compound that releases or reacts with water to form hydrogen ion (H + ) in aqueous solution. They taste sour and turn litmus red. Acids react with certain metals such as zinc,
Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.
Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular
Experiment 1 Chemical Reactions and Net Ionic Equations
Experiment 1 Chemical Reactions and Net Ionic Equations I. Objective: To predict the products of some displacement reactions and write net ionic equations. II. Chemical Principles: A. Reaction Types. Chemical
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:
ION EXCHANGE FOR DUMMIES. An introduction
ION EXCHANGE FOR DUMMIES An introduction Water Water is a liquid. Water is made of water molecules (formula H 2 O). All natural waters contain some foreign substances, usually in small amounts. The water
MOLARITY = (moles solute) / (vol.solution in liter units)
CHEM 101/105 Stoichiometry, as applied to Aqueous Solutions containing Ionic Solutes Lect-05 MOLES - a quantity of substance. Quantities of substances can be expressed as masses, as numbers, or as moles.
Alkanes. Chapter 1.1
Alkanes Chapter 1.1 Organic Chemistry The study of carbon-containing compounds and their properties What s so special about carbon? Carbon has 4 bonding electrons. Thus, it can form 4 strong covalent bonds
Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008
Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid
ACIDS AND BASES SAFETY PRECAUTIONS
ACIDS AND BASES Mild acids and bases are used in cooking (their reaction makes biscuits and bread rise). Acids such as those in our stomachs eat away at food or digest it. Strong acids and bases are used
POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):
POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an
KINETIC MOLECULAR THEORY OF MATTER
KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,
Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79
Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1 Text: Petrucci, Harwood, Herring 8 th Edition Suggest text problems Review questions: 1, 5!11, 13!17, 19!23 Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57,
Properties of Acids and Bases
Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? What
Bonding Practice Problems
NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which
NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:
NET IONIC EQUATIONS A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NaCl + AgNO 3 AgCl + NaNO 3 In this case, the simple formulas of the various reactants
Bonding in Elements and Compounds. Covalent
Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,
Acids & Bases: Using Purple Cabbage as a ph indicator. Grade 9 Activity Plan
Acids & Bases: Using Purple Cabbage as a ph indicator Grade 9 Activity Plan 1 Acids, Bases & Purple Cabbage Objectives: 1. To demonstrate the basic physical and chemical properties of acids and bases.
Return to Lab Menu. Stoichiometry Exploring the Reaction between Baking Soda and Vinegar
Return to Lab Menu Stoichiometry Exploring the Reaction between Baking Soda and Vinegar Objectives -to observe and measure mass loss in a gas forming reaction -to calculate CO 2 loss and correlate to a
Survival Organic Chemistry Part I: Molecular Models
Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,
5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C
1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )
CHAPTER 13: SOLUTIONS
CHAPTER 13: SOLUTIONS Problems: 1-8, 11-15, 20-30, 37-88, 107-110, 131-132 13.2 SOLUTIONS: HOMOGENEOUS MIXTURES solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute:
