Accidents in platoons of vehicles
|
|
|
- Brook Carr
- 10 years ago
- Views:
Transcription
1 Accidents in platoons of vehicles Cécile Appert-Rolland 1 and Ludger Santen 2 1 Université de Paris-Sud, Laboratoire de Physique Théorique, Bâtiment 210, F Orsay Cedex, France - [email protected] 2 Universität des Saarlandes, Fachrichtung Theoretische Physik, D Saarbrücken, Germany - [email protected] Abstract. In dense vehicular traffic cars often drive at close distances, they form clusters or platoons. Within these platoons, time headways are observed, which are often even shorter than the reaction time of the drivers - a situation which is potentially dangerous. Here we propose a simple dynamical model for a platoon undergoing emergency braking, which takes into account the individual variations of the reaction time and braking capacities. We apply the model to real platoons, i.e. platoons which have been identified in large sets of single-vehicle traffic data. We use our results in order to compare the impact of different possible regulations (speed limit, minimum headway). 1 Introduction One of the remarkable empirical features of highway traffic is the fact that vehicles frequently undergo the security distance. Although the recommended security distance amounts to 1.8 sec in Germany and the observed time headway distribution has in general a maximum around 1. sec, one frequently observes time headways far below one second [1]. These extremely short time headways have important consequences concerning the structure, performance and security of vehicular traffic. In this work we focus on the security aspects of dense highway traffic. The search for causes of accidents in vehicular traffic has attracted broad scientific interest. Studies on this subject include the identification of dangerous situations in model generated configurations. Although many interesting results have been obtained using this model-based approach it is not obvious how these results depend on the particular model. Therefore we try to minimize the modeling part throughout our analysis by taking empirical data of highway traffic in combination with a simple braking model. The usage of empirical data implies that we consider properly all relevant correlations between time-headways and velocities. This procedure should lead to more significant results than obtained in previous studies. As we are interested in the risk related to the structure of traffic flows we analyze a typical situation where a chain reaction of brakings leads to an accident. This will happen in platoons, i.e. clusters of vehicles driving at short distances. Let us consider a platoon including N vehicles (i = 0...N 1). Each vehicle has a velocity v i, a reaction time τ i and a braking capacity a i. The time-headway t h i is defined here as the temporal distance between the rear end of the preceeding vehicle i 1 and the front end of vehicle i. Now we assume that one car in this
2 2 C. Appert-Rolland and L. Santen platoon is braking with deceleration a 0. If time headways are small enough, the following cars have to brake as well in order to avoid collision. More precisely, if t h i < τ i, vehicle i has to brake harder than vehicle i 1. If this is true for several vehicles in a row it finally may happen that the required deceleration exceeds the braking capacity of the car. In this case a collision occurs. Apart from this mechanism it is possible that a driver didn t even start to brake before colliding with the preceeding car if his reaction time is too long (or the time headway too short). As a result, the accident probability is increasing with the position in the platoon. This well-known effect has already been studied in ideal platoons e.g. having constant initial time headways, in particular to study the impact of various cruise control devices [2]. In order to improve the realism of the approach some authors have introduced probability distributions for the reaction times or braking capacities [3]. Although this approach recognizes the variability of time headways, speeds and reaction times it disregards the fact that e.g. velocity-velocity or velocity-time headway correlations are non-negligible in dense vehicular traffic. Correlations can be included by directly identifying the platoons in the empirical data sets (see section 3 for details). In the scenario that we consider, cars undergo emergency braking. We thus have to introduce a dynamical model for such emergency braking, which we keep as simple as possible: Braking of car i triggers the braking of the following car i + 1, which starts to brake after a reaction time τ i+1. Then the car slows down with the weakest constant deceleration sufficient to avoid accidents, until it stops. This choice of a constant deceleration law is consistent with deceleration records for emergency braking on tracks (see e.g. [4]), although other empirical studies indicate that unexpected braking on real roads with non professional drivers is rather described by a two step process [5]. However, so far there exists only a small number of empirical studies on this subject, such that it is difficult to single out one of the two possibilities. Therefore we have chosen the constant deceleration law for simplicity. The event that triggers the chain of emergency brakings is the sudden braking of an initiating car with a constant deceleration a 0. We chose a modest value for a 0 (between 3 to 5m/s 2 ), well below the average maximum braking capacity. The choice of the model implies that we have to assign two parameters to each vehicle, which are not included in the data set: the reaction time of the drivers and the maximum braking capacities. These are taken from probability distributions, which rely on the outcome of e.g. car-following experiments. There is a consensus to take a log-normal distribution for the reaction times. The parameters of this distribution differ depending whether the driver expects the considered event or not. In a platoon, drivers expect to have to adjust their velocity to the preceeding cars very often, and thus they react quite rapidly if a weak acceleration is required. However, they do not expect an emergency braking, and it is a well known fact that, due to their fear of rear-end collision with the following car, drivers hesitate to brake too hard. Therefore we used a distribution of reaction times which corresponds to unexpected events. The log-normal distribution for the reaction times has to be cut off beyond a certain
3 Accidents in platoons of vehicles 3 value, that we took equal to 2s following [4]. Still, some authors [6] claim that some much longer reaction times may be observed in real traffic, and the effect of these will be considered in future work. It is however reasonable to assume that in platoons, where people expect to have to adapt their speed all the time, very long reaction times would be exceptional. In this paper, we took for the braking capacity distribution a Gaussian centered around 7m/s 2, and truncated below 6 and above 8m/s 2, except when stated otherwise. We stress the fact that the braking capacity and reaction time distribution are the only model parameters that can not be directly taken from the single vehicle data. Contrary the structure of the platoons is directly accessible and does not depend on model parameters of any kind. In order to obtain representative values of the accident probabilities by means of numerical simulations we have considered 500 to 1000 realizations of the probability distributions. 2 Criterium for accidents A first estimate for the number of accidents in a platoon can be obtained simply by comparing the final positions of the cars after braking. Obviously an accident must have occurred if the order of cars is exchanged compared to the initial positions. The corresponding criterium on deceleration requirements reads 1 a i ( v 0 i 1 v 0 i ) 2 1 a i 1 + 2(th i τ i) v 0 i. (1) However, some of the accidents may not be identified by means of the final positions. Figure 1 shows such an example, where the trajectories of two cars intersect, although the final positions do not indicate the occurrence of an accident. In order to consider such kinds of accidents as well, one has to introduce an alternative criterium in a certain range of parameters [7] 1 a i 2(v0 i 1 v0 i )τ i + 2v 0 i th i a i 1τ 2 i 2a i 1 v 0 i th i + (v0 i 1 v0 i )2. (2) In our study on, which relies on a large set of real data, we found that about 15% of the collisions, i.e. a non-negligible fraction, are identified by means of (2). 3 Description of the data set The data have been collected between March, 30, 2000 and May, 16, 2000 on the German highway A3 between the junction Duisburg-Wedau and the highwayintersection Kreuz-Breitscheid. The traffic stream characteristics at this location have been established by magnetic loops, one for each lane. The chosen location is well apart from on- and off-ramps or intersections, such that the data set should represent the bulk properties of real vehicular traffic. It also important to note
4 4 C. Appert-Rolland and L. Santen 8 6 time t position x Fig. 1. Trajectories of two successive cars. The circle indicates the end of the reaction time for the 2nd driver. When two cars are very close, but the second car has a deceleration capacity much stronger than the first car, it is possible to have an intersection between the trajectories that would not be detected if one looked only on the final positions. that there is no speed limit applied at this section of the highway. The whole data set comprises measurements of about cars. By means of the detection devices it is possible to measure the passing time (up to a precision of 1/100 sec), the speed of a vehicle, and the occupation rate of the loop. These direct measurements can be used in order to calculate the length of a vehicle, spatial and temporal distances between two cars and various other quantities of interest. The lower bound for the velocity measurement is 10 km/h, i.e., velocities of slower vehicles are not measured. The relation between direct measurements, and the spatial quantities as e.g.the distance headways are based on the assumption that the vehicles pass the detector at a constant and representative speed. This assumption is not valid for cars in a jam, where the detected speeds are much higher than the average speeds.
5 Accidents in platoons of vehicles 5 As mentioned above the single-vehicle data allow for the determination of the time-headway t h and the distance-headway gap of the n-th vehicle via and t h (n) = t n t n 1 l n 1 v n 1 (3) gap(n) = v n (t n t n 1 ) l n 1 (4) where we assume that v n and v n 1 are constant. t n denotes the time the n-th vehicle passes the detector, l n and v n its length and velocity. 3.1 t h as a function of the velocity It is an obvious fact that the accident probability of a car largely depends on its distance to the vehicle in front. While the spatial headway strongly depends on the speed of the cars, it has been argued that the temporal headways are rather insensitive to the speed of the cars. Here we want to evaluate the velocity dependence of the time headway distribution. We have plotted the distribution for the t h of all vehicles having a velocity between V and V + V where V = 30 km/h. Now, we take the value of t h for which the distribution is maximum (t h max), and plot it as a function of V. We choose the maximum t h max instead of the average value, because the average value is strongly influenced by the long tail for large t h s - which is not of interest, as it reflects only the average flux. We rather expect the velocity to have an impact on the distribution at short headways. Our observation is that t h max is almost constant for all velocities greater than 80 km/h. Below this value, t h max increases as the velocity V decreases. Drivers are impressed by driving too close (regarding spatial distance) to the preceeding car, while they are less sensitive to temporal distances. 3.2 Identification of the platoons We define a platoon as a set of cars within which all time headways are less than a certain threshold T max, while the time headways in front and behind the platoon are larger than T max. This crude definition does not aim at characterizing a precise dynamical structure - some more specialized definitions of platoons have been given, which take into account for example the speeds of the cars, etc. Here, the extraction of the platoons from the data could rather be viewed as a pre-filtering of the data, on which the results should not depend. 4 Impact of various security measures As the probability that a car brakes suddenly is not known, the absolute number of accidents we identify does not have any meaning. The relevant quantity is the relative number of accidents, when one compares two situations. Here, we use the result for the original data as a reference state. Then, we modify the data in
6 6 C. Appert-Rolland and L. Santen 2 t h max (s) velocity (km/h) Fig.2. t h max as a function of the velocity. order to mimic various security measures. We compute the ratio of the number of accidents with a given security measure to the number of accidents in the reference state (see figure 3). In a previous work [7], we have shown that our results depend only weakly on the choice for T max. Thus we present here only the results for T max = 3 and 7s. Now we study the dependence of the results with respect to the amplitude of the stimulus, i.e. the amplitude a 0 of the first braking car. The effects of the security measures (which are described below) are quite similar when the amplitude a 0 takes the values 3, 4, or 5m/s 2. The first possible security measure is the application of a speed limit, which we introduced in the following way: if the average velocity of a platoon v is above the speed limit v max, all the velocities within the platoon are rescaled by the factor v max / v. In this way the relative speed dispersion is kept within the
7 Accidents in platoons of vehicles 7 platoon. We also keep the time-headways between cars when applying the speed limit. This is justified by fig. 2, though it is possible that real speed limitations would have an impact on time-headways. But it is not obvious a priori in which direction the effect would be: one the one hand, more cars would drive at about the same speed, and thus there may be more competition between them. On the other hand, less drivers attempt to overtake as they have to respect the speed limit. Therefore the number of aggressive drivers should be reduced. A study by [1] shows that the fraction of drivers exceeding the speed limit (130km/h) is the same if you consider the subsets of vehicles with a time headway less than 0.5s or 1.0s. This is in favor of a constant time headway for all velocities, at least for velocities above a certain threshold (around 80km/h in our case). Fig. 3 shows that, counterintuitively, a speed limit increases the number of accidents. This is a consequence of the non-linearity of the braking trajectories, as explained in [7]. Of course, for most other accident scenarii, an increase of the speed would be a serious drawback. The next points in figure 3 refer to a modification of the braking capacity distribution. As expected, an increase (decrease) of the width of the distribution increases (decreases) the number of accidents. The first significant improvement on the number of accidents is obtained when the average of the braking capacity distribution is increased from 7 to 9m/s 2. The effect is however limited, and in practice, it would be rather impossible to improve the braking capacities of all cars without increasing the width of the distribution. The suppression of short time headways is by far the most efficient measure. If all time headways smaller than 1.8s are replaced by time headways equal to 1.8, almost all collisions are suppressed. Interestingly, even the suppression of time headways below 1s only reduces the number of accidents drastically - more than half of the accidents are avoided. 5 Perspectives A further improvement of the model should address the possibility that a vehicle reacts not only to the vehicle just in front, but also to other preceeding vehicles. This was already addressed in [8,9] and recent work by S. Hoogendoorn [10] indicates such an influence of more than one preceeding car. When a car-following model is considered, it is easy to give a different weight - or sensibility - to the interaction depending on which pair of vehicles is considered. The results by S. Hoogendoorn indicate that if α 0 is the sensibility for nearest neighbors, then a sensibility of the order of α 0 /2 should typically be taken for next nearest neighbors. In our case, which considers emergency braking, such a ponderation is not possible. Either one brakes or one does not brake. Our proposal would be that, though the action of braking would still follow the signal of the immediately preceeding car, preceeding cars could have an influence on the reaction time
8 8 C. Appert-Rolland and L. Santen 150 relative nb of accidents (%) index of the security measure Fig. 3. Ratio of the number of accidents for various security measures. The x -axis refers to these measures with the following correspondence: (1) is the reference state - by definition it is 100%. (2) Speed limitation v max = 130km/h. (3) v max = 110km/h. (4) Braking capacities a [6.8, 7.2](m/s 2 ). (5) a [5,9](m/s 2 ). (6) a [8, 10](m/s 2 ). (7) Time headway minimum t h 0.5. (8) t h 1.0. (9) t h 1.8. Symbols circles, squares, x correspond respectively to an amplitude a 0 = 3, 4, and 5m/s 2. Solid (dashed) lines indicate that T max = 3s (7s). distribution. I.e. if the driver observes that the 2nd car in front is braking, he prepares himself to react more rapidly. One could also take advantage of the fact that in our data, the type of the vehicles is known (cars, trucks...). One could thus incorporate the fact that for example, a car behind a truck can only react on the vehicle directly in front, while other configurations allow for a larger visibility.
9 Accidents in platoons of vehicles 9 6 Conclusion We have shown that if something unexpected occurs on the road, as many drivers drive with a short headway, it is likely that they won t be able to avoid a collision. This suggests three possible levels of action to minimize the number of accidents: Decrease the number of unexpected events: this could be obtained for example by regularizing the flow, inciting the drivers to have more homogeneous velocities, etc. Suppress short time-headways: the equipment of cars with automatic distance control could be helpful. Improve reaction times: cars could be equipped with alert devices, etc. Acknowledgments: LS acknowledges support by the Deutsche Forschungsgemeinschaft under Grant No. SA864/2-2. The authors are grateful to the Landesbetrieb Straßenbau NRW for providing the empirical data. References 1. M. Aron, M.-B. Biecheler, and J.-F. Peytavin. Sécurité routière - temps intervéhiculaires et vitesse. quels enjeux de sécurité sur l autoroute? Recherche Transports Sécurité, 64:3 17, M. Brackstone, M. McDonald, and B. Sultan. A collision model for the assessment of the safety benefits of avcss. Proc. of the 6th ITS World Congress, Toronto, Canada., Nov., J. Carbaugh, D.N. Godbole, and R. Sengupta. Safety and capacity analysis of automated and manual highway systems. Transportation Research Part C, 6:69 99, Rodger J. Koppa. Human factors. In Traffic Flow Theory, pages 3 1, Des progrès pour la sécurité - l automobile citoyenne. Les dossiers du CCFA. 6. R.J. Kiefer, M.T. Cassar, C.A. Flanagan, C.J. Jerome, and M.D. Palmer. Surprise braking trials, time-to-collision judgments and first look maneuvers under realistic rear-end crash scenarios. In DC Contract DTFH61-01-X-00014, Washington, editor, Performed by Crash Avoidance Metrics Partnership (CAMP), August C. Appert and L. Santen. Accidents in dense vehicular traffic. preprint, H. Lenz, C.K. Wagner, and R. Sollacher. Multi-anticipative car-following model. The European Physical Journal B - Condensed Matter, 7: , M. Treiber, A. Kesting, and D. Helbing. Delays, inaccuracies and anticipation in microscopic traffic models. Physica A, 360:71 88, S.P. Hoogendoorn, S. Ossen, and M. Schreuder. Multi-anticipative car-following behavior: and empirical analysis. preprint, 2005.
Author: Hamid A.E. Al-Jameel (Research Institute: Engineering Research Centre)
SPARC 2010 Evaluation of Car-following Models Using Field Data Author: Hamid A.E. Al-Jameel (Research Institute: Engineering Research Centre) Abstract Traffic congestion problems have been recognised as
Analysis of Accidents by Older Drivers in Japan
Analysis of Accidents by Older Drivers in Japan Kazumoto Morita 1, Michiaki Sekine 1 1 National Traffic Safety and Environment Laboratory, Japan Abstract Since Japan is a rapidly aging society, ensuring
BENEFIT OF DYNAMIC USE CASES TO EARLY DESIGN A DRIVING ASSISTANCE SYSTEM FOR PEDESTRIAN/TRUCK COLLISION AVOIDANCE
BENEFIT OF DYNAMIC USE CASES TO EARLY DESIGN A DRIVING ASSISTANCE SYSTEM FOR PEDESTRIAN/TRUCK COLLISION AVOIDANCE Hélène Tattegrain, Arnaud Bonnard, Benoit Mathern, LESCOT, INRETS France Paper Number 09-0489
Assessing The Safety Benefit of Automatic Collision Avoidance Systems (During Emergency Braking Situations)
Assessing The Safety Benefit of Automatic Collision Avoidance Systems (During Emergency Braking Situations) Dr. Beshr Sultan * and Prof. Mike McDonald # Transportation Research Group (TRG), Dept. of Civil
ACCIDENTS AND NEAR-MISSES ANALYSIS BY USING VIDEO DRIVE-RECORDERS IN A FLEET TEST
ACCIDENTS AND NEAR-MISSES ANALYSIS BY USING VIDEO DRIVE-RECORDERS IN A FLEET TEST Yuji Arai Tetsuya Nishimoto apan Automobile Research Institute apan Yukihiro Ezaka Ministry of Land, Infrastructure and
Statistical Forecasting of High-Way Traffic Jam at a Bottleneck
Metodološki zvezki, Vol. 9, No. 1, 2012, 81-93 Statistical Forecasting of High-Way Traffic Jam at a Bottleneck Igor Grabec and Franc Švegl 1 Abstract Maintenance works on high-ways usually require installation
ArneKesting. Publication List. Journal Articles as First Author { A. Kesting, M. Treiber, D. Helbing: Enhanced Intelligent Driver Model to Access the
ArneKesting Publication List Journal Articles as First Author { A. Kesting, M. Treiber, D. Helbing: Enhanced Intelligent Driver Model to Access the Impact of Driving Strategies on Traffic Capacity Philosophical
THE COLLISION PHENOMENON BETWEEN CARS
THE COLLISION PHENOMENON BETWEEN CARS What is the role of the mass in a head-on collision between two vehicles? What is the role of speed? What is the force produced by each of the two vehicles? Here are
BABSIM - An object-oriented software framework for microscopic simulation of freeway traffic
BABSIM - An object-oriented software framework for microscopic simulation of freeway traffic Kai Erlemann, Ruhr-University, 44780 Bochum, Germany ([email protected]) Summary A wide variety of behavioural
Safety-conscious Drivers Prevent Crashes. Defensive Driving: Managing Visibility, Time and Space. Improve Your Defensive Driving Skills
Defensive Driving: Managing Visibility, Time and Space Motor vehicle travel is the primary means of travel in the United States. With all the benefits that come along with mobility, there are thousands
THE BENEFITS OF SIGNAL GROUP ORIENTED CONTROL
THE BENEFITS OF SIGNAL GROUP ORIENTED CONTROL Authors: Robbin Blokpoel 1 and Siebe Turksma 2 1: Traffic Engineering Researcher at Peek Traffic, [email protected] 2: Product manager research
In addition to looking for applications that can be profitably examined algebraically,
The mathematics of stopping your car Eric Wood National Institute of Education, Singapore In addition to looking for applications that can be profitably examined algebraically, numerically
ACCELERATION CHARACTERISTICS OF VEHICLES IN RURAL PENNSYLVANIA
www.arpapress.com/volumes/vol12issue3/ijrras_12_3_14.pdf ACCELERATION CHARACTERISTICS OF VEHICLES IN RURAL PENNSYLVANIA Robert M. Brooks Associate Professor, Department of Civil and Environmental Engineering,
Microscopic Modeling of Human and Automated Driving: Towards Traffic-Adaptive Cruise Control
Doctoral Thesis Microscopic Modeling of Human and Automated Driving: Towards Traffic-Adaptive Cruise Control Dipl.-Phys. Arne Kesting Faculty of Traffic Sciences Friedrich List Technische Universität Dresden
JEREMY SALINGER Innovation Program Manager Electrical & Control Systems Research Lab GM Global Research & Development
JEREMY SALINGER Innovation Program Manager Electrical & Control Systems Research Lab GM Global Research & Development ROADMAP TO AUTOMATED DRIVING Autonomous Driving (Chauffeured Driving) Increasing Capability
Driving Safety Support Systems Utilizing ITS Radio System
FEATURED TOPIC Driving Safety Support Systems Utilizing ITS Radio System Yuichi TANIGUCHI*, Toshifumi OOTA, Masafumi KOBAYASHI, Hirofumi URAYAMA and Yoshiteru KOREEDA We are striving to develop the Driving
Analysis of intersection accidents - An accident causation and prevention perspective
Analysis of intersection accidents - An accident causation and prevention perspective Julia Werneke 1 & Mark Vollrath 2 1 Chalmers University of Technology, Goteborg, Sweden 2 TU Braunschweig, Braunschweig,
The Telematics Application Innovation Based On the Big Data. China Telecom Transportation ICT Application Base(Shanghai)
The Telematics Application Innovation Based On the Big Data China Telecom Transportation ICT Application Base(Shanghai) Big Data be the basis for Telematics Innovation Providing service s based on the
Balancing Active and Passive Safety
Balancing Active and Passive Safety Dnr: 2011-01146 Cecilia Sunnevång Ulrich Sander, Ola Boström September 17 th, 2015 Driven for Life. Background US legal & rating Automated Driving NHTSA Oblique (potential)
HEAVY VEHICLE ACCIDENT FACTORS
HEAVY VEHICLE ACCIDENT FACTORS Michel Gothié Laboratoire Régional de Lyon, CETE de Lyon, 25, Av. F.Mitterrand case n 1 69674 BRON cedex France [email protected] Abstract A general study
Pedestrian/Car Accident
Pedestrian/Car Accident by Frank Owen, Alpha Omega Engineering, Inc. (www.aoengr.com), all rights reserved August 2012 This example is taken from the book Technische Analyse von Verkehrsunfällen anhand
Protect your people and profits through driver safety
SPIREON FLEET & ASSET INTELLIGENCE Protect your people and profits through driver safety Accidents happen. This is especially true for companies operating fleets and employing mobile workforces. In 2013,
Realistic Cellular Automaton Model for Synchronized Two-Lane Traffic
Realistic Cellular Automaton Model for Synchronized Two-Lane Traffic Simulation, Validation, and Applications Vom Fachbereich Physik der Universität Duisburg-Essen zur Erlangung des akademischen Grades
Capacity and Level of Service
CHAPTER 10 Capacity and Level of Service Determination of the capacities of transportation systems and facilities is a major issue in the analysis of transportation flow. The capacity of a transportation
Advanced Forward-Looking Safety Systems Working Group. Advanced Forward-Looking Safety Systems Working Group
Advanced Forward-Looking Safety Systems Working Group INFO STAND 1: Accident Analysis Advanced Forward-Looking Safety Systems Working Group Results of Accident Analysis vfss Workshop Walter Niewöhner (DEKRA)
IN THE HIGH COURT OF AUSTRALIA -T-UL-L-Y-
n IN THE HIGH COURT OF AUSTRALIA -T-UL-L-Y- V. b e a c h...a n d. o t h e r s REASONS FOR JUDGMENT t u l l y v. BEACH AND OTHERS - JUDGMENT (o r a l ). JUDGMENT OF THE COURT DELIVERED BY DIXON C.J. COMM:
Head on collisions between passenger cars and heavy goods vehicles: Injury risk functions and benefits of Autonomous Emergency Braking.
Head on collisions between passenger cars and heavy goods vehicles: Injury risk functions and benefits of Autonomous Emergency Braking. Johan Strandroth, Matteo Rizzi, Anders Kullgren, Claes Tingvall Abstract
Platoon illustration Source: VOLVO
SARTRE: SAfe Road TRains for the Environment Arturo Dávila Mario Nombela IDIADA Automotive Technology SA 1. Introduction The SARTRE project aims at encouraging an evolutional change in the use of personal
Traffic Monitoring Systems. Technology and sensors
Traffic Monitoring Systems Technology and sensors Technology Inductive loops Cameras Lidar/Ladar and laser Radar GPS etc Inductive loops Inductive loops signals Inductive loop sensor The inductance signal
DESIGN AND EVALUTION OF A NEW-GENERATION FUEL-EFFICIENCY SUPPORT TOOL. Mascha van der Voort and Martin van Maarseveen
DESIGN AND EVALUTION OF A NEW-GENERATION FUEL-EFFICIENCY SUPPORT TOOL Mascha van der Voort and Martin van Maarseveen Department of Civil Engineering & Management University of Twente P.O. Box 217, 7500
FURBOT : un nouveau système de transport de marchandises en ville. Evangeline Pollard INRIA-RITS
FURBOT : un nouveau système de transport de marchandises en ville Evangeline Pollard INRIA-RITS IMARA Informatique, Mathématiques, Automatique, pour la Route Automatisée became RITS Robotics & Intelligent
A Road Crash Reconstruction Technique
A Road Crash Reconstruction Technique Mukherjee S, non-member Chawla A 1, member Lalaram Patel, non-member Abstract The purpose of reconstruction is to identify the critical factors involved in a road
Lane Changes and Close Following: Troublesome Tollbooth Traffic
Lane Changes and Close Following 251 Lane Changes and Close Following: Troublesome Tollbooth Traffic Andrew Spann Daniel Kane Dan Gulotta Massachusetts Institute of Technology Cambridge, MA Advisor: Martin
ITARDAInstitute for Traffic Accident
ITARDAInstitute for Traffic Accident Research and Data Analysis ( 財 ) 交 通 事 故 総 合 分 析 センター ITARDA INFORMATION No. 2011 88APRIL Fatality rate (%) 0 2 4 6 Head-on 0.70% Rear-end 4.7% Rear-end 0.70% Crossing
FLEXSYS Motion-based Traffic Analysis and Incident Detection
FLEXSYS Motion-based Traffic Analysis and Incident Detection Authors: Lixin Yang and Hichem Sahli, IBBT/VUB-ETRO Contents.1 Introduction......................................... 1.2 Traffic flow modelling
Virtual CRASH 3.0 Staging a Car Crash
Virtual CRASH 3.0 Staging a Car Crash Virtual CRASH Virtual CRASH 3.0 Staging a Car Crash Changes are periodically made to the information herein; these changes will be incorporated in new editions of
Estimation of Travel Demand and Network Simulators to Evaluate Traffic Management Schemes in Disaster
Estimation of Travel Demand and Network Simulators to Evaluate Traffic Management Schemes in Disaster Shinji Tanaka, Masao Kuwahara, Toshio Yoshii, Ryota Horiguchi and Hirokazu Akahane* Institute of Industrial
By: M.Habibullah Pagarkar Kaushal Parekh Jogen Shah Jignasa Desai Prarthna Advani Siddhesh Sarvankar Nikhil Ghate
AUTOMATED VEHICLE CONTROL SYSTEM By: M.Habibullah Pagarkar Kaushal Parekh Jogen Shah Jignasa Desai Prarthna Advani Siddhesh Sarvankar Nikhil Ghate Third Year Information Technology Engineering V.E.S.I.T.
M1. (a) (i) 4.5 allow 1 mark for correct substitution i.e. 9 2 2
M. (a) (i) 4.5 allow mark for correct substitution i.e. 9 (ii) m/s accept answer given in (a)(i) if not contradicted here (iii) (iv) speed straight line from the origin passing through (s, 9m/s) allow
Online vehicle routing and scheduling with continuous vehicle tracking
Online vehicle routing and scheduling with continuous vehicle tracking Jean Respen, Nicolas Zufferey, Jean-Yves Potvin To cite this version: Jean Respen, Nicolas Zufferey, Jean-Yves Potvin. Online vehicle
Accidents with Pedestrians and Cyclists in Germany Findings and Measures
Accidents with Pedestrians and Cyclists in Germany Findings and Measures Siegfried Brockmann Unfallforschung der Versicherer (UDV) May 7th, Geneva 2 Content 2 Accident situation in Germany based on National
Improve Rating Accuracy and Segmentation for Commercial Lines auto policies
Noble Wilson Carver Improve Rating Accuracy and Segmentation for Commercial Lines auto policies Let s start with what we should know Does UBI improve the way we segment, rate & price? Segmentation: Automated
USING THE MOBILE PHONE WHILE DRIVING. Using a mobile phone while driving can significantly impair a driver s:
USING THE MOBILE PHONE WHILE DRIVING Is it dangerous to use the phone while driving? Driving is a complex task, requiring drivers to use and coordinate a number of skills. Any lapse in concentration increases
Two-Way Street Networks: More Efficient than Previously Thought?
Two-Way Street Networks: More Efficient than Previously Thought? V I K A S H V. G A Y A H N E - WAY S T R E E T S I N D W N T W N A R E A S A R E R E C E I V I N G A critical look. City officials and urban
Operating Concept and System Design of a Transrapid Maglev Line and a High-Speed Railway in the pan-european Corridor IV
Operating Concept and System Design of a Transrapid Maglev Line and a High-Speed Railway in the pan-european Corridor IV A. Stephan & E. Fritz IFB Institut für Bahntechnik GmbH, Niederlassung, Germany
A Scientific Study "ETAC" European Truck Accident Causation
A Scientific Study "ETAC" European Truck Accident Causation Executive Summary and Recommendations 1 Introduction 1.1 The project and its objectives Currently, only limited statistics are available regarding
DEFENSIVE DRIVING. It s an Attitude
DEFENSIVE DRIVING It s an Attitude RLI Design Professionals Design Professionals Learning Event DPLE 155 July 15, 2015 RLI Design Professionals RLI Design Professionals is a Registered Provider with The
Two Car Collision at City Intersection
Two Car Collision at City Intersection by Frank Owen, Alpha Omega Engineering, Inc. (www.aoengr.com), all rights reserved August 2012 This example is taken from the book Technische Analyse von Verkehrsunfällen
California Crossing Guard Training: Online Course Part 2
California Crossing Guard Training: Online Course Part 2 Prepared by the Safe Routes to School Technical Assistance Resource Center The Safe Routes to School Technical Assistance Resource Center is a program
LED Stop Lamps Help Reduce the Number and Severity of Automobile Accidents. Application Note 1155-3
LED Stop Lamps Help Reduce the Number and Severity of Automobile Accidents Application Note 1155-3 NOTE: Light Emitting Diodes (LEDs) illuminate 200 milliseconds faster than incandescent bulbs For an automobile
Influence of Various Restrictions on Speed-Flow Models
International Symposium on Fundamental Diagram - Greenshields 75 Influence of Various Restrictions on Speed-Flow Models Marian TRACZ, Stanisław GACA Krakow University of Technology, Poland [email protected]
LYDIA MAPHOKA LEKHEHLE
IN THE HIGH COURT OF SOUTH AFRICA (ORANGE FREE STATE PROVINCIAL DIVISION) Case No. : 6765/08 In the appeal between:- LYDIA MAPHOKA LEKHEHLE Appellant and ROAD ACCIDENT FUND Respondent HEARD ON: 10 MAY
Motorcycle Speeds at Urban Intersections
Motorcycle Speeds at Urban Intersections Walton, D 1,2 and Buchanan, J 3 1 University of Canterbury 2 Health Sponsorship Council of New Zealand 3 Accident Compensation Corporation of New Zealand Darren
A STUDY ON WARNING TIMING FOR LANE CHANGE DECISION AID SYSTEMS BASED ON DRIVER S LANE CHANGE MANEUVER
A STUDY ON WARNING TIMING FOR LANE CHANGE DECISION AID SYSTEMS BASED ON DRIVER S LANE CHANGE MANEUVER Takashi Wakasugi Japan Automobile Research Institute Japan Paper Number 5-29 ABSTRACT The purpose of
CAR FOLLOWING MODELS BY RICHARD W. ROTHERY 6. Senior Lecturer, Civil Engineering Department, The University of Texas, ECJ Building 6.
CAR FOLLOWING MODELS BY RICHARD W. ROTHERY 6 78712 6 Senior Lecturer, Civil Engineering Department, The University of Texas, ECJ Building 6.204, Austin, TX CHAPTER 4 - Frequently used Symbols = Numerical
Driver - Vehicle Environment simulation. Mauro Marchitto Kite Solutions
Driver - Vehicle Environment simulation Mauro Marchitto Kite Solutions Summary From the DVE to the SSDrive tool Overview of SSDrive model Matlab Simulink SSDrive model SSDrive model validation: VTI driving
A Study of Classification for Driver Conditions using Driving Behaviors
A Study of Classification for Driver Conditions using Driving Behaviors Takashi IMAMURA, Hagito YAMASHITA, Zhong ZHANG, MD Rizal bin OTHMAN and Tetsuo MIYAKE Department of Production Systems Engineering
Code of Conduct for Commercial Drivers
Code of Conduct for Commercial Drivers RoadDriver 2011 Safe Use of Vehicles Watch your Speed Drive within the speed limit at all times. You should drive at speeds that are safe for the conditions, recognising
Department of Aeronauatics & Astronautics 33-303 MIT Cambridge, MA 02139 617-253-2271 [email protected]
Experimental Studies of Driver Cognitive Distraction Caused by Cell Margarita Marinova, Jaime Devereaux, R. John Hansman Prepared for: Transportation Research Part F Corresponding Author: Professor R.
Title: Integrating Management of Truck and Rail Systems in LA. INTERIM REPORT August 2015
Title: Integrating Management of Truck and Rail Systems in LA Project Number: 3.1a Year: 2013-2017 INTERIM REPORT August 2015 Principal Investigator Maged Dessouky Researcher Lunce Fu MetroFreight Center
6: LANE POSITIONS, TURNING, & PASSING
6: LANE POSITIONS, TURNING, & PASSING BASIC LANE POSITIONS Traffic law says that slower vehicles should stay to the right. But where exactly should bicycles ride? Here are some basics. Never Ride Against
The application of root cause analysis for definition of scenarios in automotive domain
The application of root cause analysis for definition of scenarios in automotive domain M. Alonso (2) ; L. Macchi (1) ; M. Marchitto (3) ; J. Plaza (2) (1)European Commission Joint Research Centre, IPSC
Towards Safe and Efficient Driving through Vehicle Automation: The Dutch Automated Vehicle Initiative
Towards Safe and Efficient Driving through Vehicle Automation: The Dutch Automated Vehicle Initiative Raymond Hoogendoorn, Bart van Arem, Riender Happee, Manuel Mazo Espinoza and Dimitrios Kotiadis 30
always in a rush Are you Rushing to work Rushing home Rushing off on vacation?
Are you always in a rush? Rushing to work Rushing home Rushing off on vacation? Do you find yourself increasingly picking up the pace, racing against time? 75 100 50 125 25 150 HUILE 60 40 80 100 120 140
Tips and Technology For Bosch Partners
Tips and Technology For Bosch Partners Current information for the successful workshop No. 04/2015 Electrics / Elektronics Driver Assistance Systems In this issue, we are continuing our series on automated
Adaptive Cruise Control
IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 01 June 2016 ISSN (online): 2349-6010 Adaptive Cruise Control Prof. D. S. Vidhya Assistant Professor Miss Cecilia
Dominic Taylor CEng MIET MIMechE MIRSE MCMI, Invensys Rail
MAXIMIZING THE RETURN ON INVESTMENT FROM ETCS OVERLAY Dominic Taylor CEng MIET MIMechE MIRSE MCMI, Invensys Rail SUMMARY ETCS Level 2 offers many benefits to rail from reduced infrastructure costs, through
Chapter Forty-seven. RURAL TWO-LANE/MULTILANE STATE HIGHWAYS (New Construction/Reconstruction) BUREAU OF DESIGN AND ENVIRONMENT MANUAL
Chapter Forty-seven RURAL TWO-LANE/MULTILANE STATE HIGHWAYS (New Construction/Reconstruction) BUREAU OF DESIGN AND ENVIRONMENT MANUAL Illinois RURAL TWO-LANE/MULTILANE STATE HIGHWAYS December 2009 2 Illinois
of traffic accidents from the GIDAS database until 5 seconds before the first collision. This includes parameters to describe the environment data,
STANDARDIZED PRE-CRASH-SCENARIOS SCENARIOS IN DIGITAL FORMAT ON THE BASIS OF THE VUFO SIMULATION Dipl.-Math. A. Schubert*, Dipl.-Ing. (FH), M. Eng. C. Erbsmehl*, Dr.-Ing. L. Hannawald* *Verkehrsunfallforschung
CYCLIST-CAR ACCIDENTS THEIR CONSEQUENCES FOR CYCLISTS AND TYPICAL ACCIDENT SCENARIOS
CYCLIST-CAR ACCIDENTS THEIR CONSEQUENCES FOR CYCLISTS AND TYPICAL ACCIDENT SCENARIOS Matthias Kuehn Thomas Hummel Antje Lang German Insurers Accident Research Germany Paper Number 15-0243 ABSTRACT The
WATCH THIS ICON: View this short clip from the Insurance Institute for Highway Safety DVD called Understanding Car Crashes It s basic physics.
Lesson 3: Energy, Momentum, and Understanding Car Crashes Many of us have lost students to violent motor vehicle crashes. In the United States, motor vehicle crashes are the number one cause of death among
SIGHT DISTANCE. Presented by Nazir Lalani P.E. Traffex Engineers Inc. [email protected] WHY IS SIGHT DISTANCE SO IMPORTANT?
SIGHT DISTANCE Presented by Nazir Lalani P.E. Traffex Engineers Inc. [email protected] WHY IS SIGHT DISTANCE SO IMPORTANT? Drivers must be able to: Stop for objects in the roadway Stop for stationary
FATAL DISTRACTION? A COMPARISON OF THE CELL-PHONE DRIVER AND THE DRUNK DRIVER
FATAL DISTRACTION? A COMPARISON OF THE CELL-PHONE DRIVER AND THE DRUNK DRIVER David L. Strayer, Frank A. Drews, & Dennis J. Crouch Department of Psychology 380 S. 1530 E. Rm 502 University of Utah Salt
SIMULATION AND EVALUATION OF THE ORLANDO- ORANGE COUNTY EXPRESSWAY AUTHORITY (OOCEA) ELECTRONIC TOLL COLLECTION PLAZAS USING TPSIM, PHASE II
Final Report SIMULATION AND EVALUATION OF THE ORLANDO- ORANGE COUNTY EXPRESSWAY AUTHORITY (OOCEA) ELECTRONIC TOLL COLLECTION PLAZAS USING TPSIM, PHASE II University of Central Florida Account No.: 494-16-21-722
Testimony of Ann Wilson House Energy & Commerce Committee Subcommittee on Commerce, Manufacturing and Trade, October 21, 2015
House Energy & Commerce Committee Subcommittee on Commerce, Manufacturing and Trade, October 21, 2015 Introduction Chairman Burgess, Ranking Member Schakowsky, members of the subcommittee: Thank you for
Traffic flow theory and modelling
7 Traffic flow theory and modelling Serge Hoogendoorn and Victor Knoop 7.1 Introduction When do traffic jams emerge? Can we predict, given certain demand levels, when queuing will occur, how long the queues
Estimating Driver Mandatory Lane Change Behavior on a Multi-lane Freeway
Estimating Driver Mandatory Lane Change Behavior on a Multi-lane Freeway Ghulam H. Bham, Ph.D. (corresponding author) Civil, Architecture and Environmental Engineering Missouri University of Science and
ROBUST VEHICLE TRACKING IN VIDEO IMAGES BEING TAKEN FROM A HELICOPTER
ROBUST VEHICLE TRACKING IN VIDEO IMAGES BEING TAKEN FROM A HELICOPTER Fatemeh Karimi Nejadasl, Ben G.H. Gorte, and Serge P. Hoogendoorn Institute of Earth Observation and Space System, Delft University
SARTRE: SAfe Road TRains for the Environment
SARTRE: SAfe Road TRains for the Environment Arturo Dávila Mario Nombela IDIADA Automotive Technology SA London Heathrow, September 21, 2010. The research leading to these results has received funding
Ride Safe. How you can avoid the 5 most common motorcycle accidents. Produced with the support of The Department for Transport
Ride Safe How you can avoid the 5 most common motorcycle accidents Produced with the support of The Department for Transport Ride Safe How you can avoid th Riding a motorbike safely requires both skill
COMPARISON OF BIORID INJURY CRITERIA BETWEEN DYNAMIC SLED TESTS AND VEHICLE CRASH TESTS
COMPARISON OF BIORID INJURY CRITERIA BETWEEN DYNAMIC SLED TESTS AND VEHICLE CRASH TESTS David A. Aylor David S. Zuby Insurance Institute for Highway Safety United States Paper No. 11-235 ABSTRACT The Insurance
TRAFFIC ENGINEERING.
Mechanical Engineering Department Carlos III University of Madrid. TRANSPORTATION INTRODUCTION Transport: change of geographical position of people or goods Traffic: transport related exclusively to vehicle
CAPACITY AND LEVEL-OF-SERVICE CONCEPTS
CHAPTER 2 CAPACITY AND LEVEL-OF-SERVICE CONCEPTS CONTENTS I. INTRODUCTION...2-1 II. CAPACITY...2-2 III. DEMAND...2-2 IV. QUALITY AND LEVELS OF SERVICE...2-2 Service Flow Rates...2-3 Performance Measures...2-3
Texas Virtual Driver Education Course Syllabus
Texas Virtual Driver Education Course Syllabus By Amarillo Independent School District INTRODUCTION: 46:04 Welcome/Tutorial 5 minutes Virtual Drive Notice 1 minute Audio/Computer Requirements 3 minutes
Investigation of bicycle accidents involving collisions with the opening door of parking vehicles and demands for a suitable driver assistance system.
Investigation of bicycle accidents involving collisions with the opening door of parking vehicles and demands for a suitable driver assistance system. M. Jänsch, D. Otte, H. Johannsen Abstract Vulnerable
15-Passenger Van Safety Awareness Program. Environmental Health & Safety Department 570-662-4906
15-Passenger Van Safety Awareness Program Environmental Health & Safety Department 570-662-4906 Course Objective The objective of this presentation is to increase the safety awareness of passenger van
Supplement to Call Centers with Delay Information: Models and Insights
Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290
PROGRAMMABLE DECELERATION DEVICES FOR AUTOMOTIVE TESTING
PROGRAMMABLE DECELERATON DEVCES FOR AUTOMOTVE TESTNG Hansjoerg Schinke, MESSRNG Automotive Service GmbH Robert Weber, Urich Fuehrer MESSRNG Systembau MSG GmbH Germany Paper Number: 98-S3-P-13 ABSTRACT
Seagull Intersection Layout. Island Point Road - A Case Study. Authors: John Harper, Wal Smart, Michael de Roos
Seagull Intersection Layout. Island Point Road - A Case Study Authors: John Harper, Wal Smart, Michael de Roos Presented by Mr John Harper, Road Safety and Traffic Services Manager Phone: 4221 2456 Mobile:
CASE NO. 1D09-2525. Robert B. George and Christian P. George of Liles, Gavin, Costantino, George & Dearing, P. A., Jacksonville, for Appellees.
IN THE DISTRICT COURT OF APPEAL FIRST DISTRICT, STATE OF FLORIDA CINDY L. SOREL, n/k/a CINDY L. EBNER, CASE NO. 1D09-2525 Appellant, v. TROY CHARLES KOONCE and COMCAST OF GREATER FLORIDA/GEORGIA, INC.,
