THE COLLISION PHENOMENON BETWEEN CARS

Size: px
Start display at page:

Download "THE COLLISION PHENOMENON BETWEEN CARS"

Transcription

1 THE COLLISION PHENOMENON BETWEEN CARS What is the role of the mass in a head-on collision between two vehicles? What is the role of speed? What is the force produced by each of the two vehicles? Here are some answers to better understand how the collisions take place. Preamble: vehicle collisions student from linear momentum. This specific physical quantity is the product of mass and speed, it is expressed in kilogrammeters per second (kg.m.s -1 symbol). Linear momentums take refuge in case of frontal impact, they add in the event of front-rear shock. The linear momentums are used to calculate the residual speed, that is the speed just after the collision. This speed is identical for the both vehicles when one considers that they have melted into one another so as form a single mass (*). The comparison between the residual speed and the initial speed is then used to calculate the rate of change to clean each of the two vehicles. The rate of change combined with the length of the collision is used to calculate the deceleration of both vehicles in the event of a frontal impact, or acceleration of the vehicle hit from behind by impact front-rear. This quantity tells the violence of the collision and helps to assess the consequences for passengers. The length of the collision is defined as the time during which the car bodies are deformed, this duration being obviously the same for each of the vehicles involved. The length of the collision depends on many parameters such as the structure of the vehicle, its speed or the nature of the obstacle. Grandeur of course impossible to measure directly, it can be estimated from data collected during crash tests. Here, the value used for calculations is 0.1 second. Finally, by combining the mass and the deceleration, it is possible to calculate the force that is exerted on the vehicle during the collision. Note: This force is always of equal intensity for each of the two vehicles involved, this is a concrete verification of the principle of action-reaction of Isaac Newton (**). Take this opportunity to recall that, whatever the circumstances, the weight and mass of vehicles, passengers and luggage in a collision remain constant and unchanging quantities.

2 To estimate the possible consequences of these collisions on passengers, remember these generally accepted values (***) : - Up to 100 m.s -2, the deceleration is bearable for young passengers, healthy and belted. - From 150 m.s -2, risk of injury to the face and limbs, high risk of internal bleeding. - Above 200 m.s -2, no chance of survival. Last precision: the collision mechanism is independent of the considered repository. In other words, all other conditions being equal, a collision on the moon would proceed in the same manner and produce the same effects on the Earth. We point out here that the results calculated based on six assumptions. Readers interested in the different modes of calculations and detailed explanations should refer to Chapter 21 of the 'GUIDE DES LOIS PHYSIQUES DE L AUTOMOBILE'. 1st hypothesis: a head-on collision between two identical cars of mass 2,850 lb (1 300 kg) traveling at 30 mph (14 m.s -1 ). a) residual speed: 0 b) speed variation: 30 mph c) deceleration: This value is identical for each of the both cars: 139 ms -2 d) force: N Appraisal: Contrary to popular belief, the initial velocities do not add up. The degree of deceleration is a function of the initial velocity. 2nd hypothesis: a head-on collision between a 2,850 lb (1 300 kg) mass car and a 5,700 lb (2 600 kg) mass 4x4, the both cars traveling at 30 mph (14 m.s -1 ).

3 a) residual speed: 10.6 mph in the flow direction of the 4x4. speed of 4x4 from +30 to mph, speed of the car from +30 to 10.6 mph c) deceleration: 4x4: 93 m.s -2 car: 185 m.s -2 d) force: N Appraisal: The mass difference determines the intensity of the deceleration at the expense of the lightest car. 3rd hypothesis: a head-on collision between two identical cars of mass 2,850 lb (1 300 kg), one traveling at 30 mph (14 m.s -1 ), the other traveling at 45 mph (20 m.s -1 ). a) residual speed: 6.25 mph in the direction of movement of the fastest car. speed of the first car from +30 to 6.25 mph, that of the second car from +45 to mph c) deceleration: this value is identical for each of the two cars: 167 m.s -2 d) force: N

4 Appraisal: Two vehicles of the same mass always undergo the same deceleration, their initial velocities are equal or not, which demonstrates that the difference in weight is an inequality factor. The degree of deceleration is a function of the higher initial speed (in this example, probable injury in both cars). 4th hypothesis: a head-on collision between a 2,850 lb (1 300 kg) mass car traveling at 30 mph (14 m.s -1 ) and a 5,700 lb (2 600 kg) 4x4 mass traveling at 45 mph (20 m.s -1 ). a) residual speed: 18 mph in the flow direction of the 4x4. speed 4x4 from +45 to +18 mph, that of the car from +30 to 18 mph c) deceleration: 4x4 111 m.s -2 car: 222 m.s -2 d) force: N Appraisal: The mass difference determines the intensity of the deceleration at the expense of the lightest car. The speed difference does not change the ratio of deceleration. 5th hypothesis: a head-on collision between a 3,300 lb (1 500 kg) mass car traveling at 55 mph (25 m.s -1 ) and a 88,000 lb ( kg) truck traveling at 37.5 mph (16.7 m.s -1 ). a) residual speed: 34 mph in the direction of movement of the truck.

5 The car speed from +55 to 34mph, the truck one from to +34 mph c) deceleration: car: 400 m.s -2 truck: 15 m.s -2 d) force: N 6th hypothesis: a rear-front collision between a 88,000 lb ( kg) mass truck travelling at 37.5 mph (16.7 m.s -1 ) and a 3,300 lb (1 500 kg) mass car traveling at 55 mph (25 m.s -1 ). a) residual speed: 38 mph the speed of the truck from to +38 mph, that of the car from +56 mph to +38 mph c) acceleration or deceleration: truck: acceleration 3 m.s -2 car: deceleration 80 m.s -2 d) force: N Appraisal: The shock is front or not, the mass difference determines the intensity of the deceleration to the detriment of the lightest vehicle. Conclusion During a collision, the deceleration intensity is still a function of the initial speed or, in the case of two vehicles having different initial velocities of the higher

6 initial speed. In other words, the speed is still an aggravating factor. Moreover, whatever the parameters and configuration of the collision, the ratio of deceleration experienced by both vehicles is always exactly equal to the ratio of their masses. In other words, the heavy vehicle still dictates its law to lighter. (*) A collision of this type, sometimes referred to as soft or inelastic, is characterized by a deformation of the sheets and the structure, in other words by a work which corresponds to the variation of kinetic energy of the car. In the absence of deformation, a collision is called hard or elastic, it is characterized by a rebound and obeys other laws. (**) Third Newton's principle or principle of action-reaction: any force acting on a body causes an intensity equal and opposite reaction. See other applications of this principle in ADILCA the folders devoted to different forces. (***) The values shown here are average decelerations but not maximum ones. Moreover, in case of collision, the belted occupants of a car undergo a deceleration lower than that of the car, provided to benefit from the deformation of the structure (sheet metal engine compartment or trunk). ASSOCIATION ADILCA * * *

7 SOME RELATIONSHIPS BETWEEN QUANTITIES... Linear Momentum: Q = M. V Q: linear momentum, expressed in kg.m.s -1 M: mass, expressed in kg V: speed, expressed in m.s -1 consistency of units: Q = kg. m.s -1 = kg.m.s -1 Example: calculate the linear momentum of a kg (3,300 lb) mass traveling at a speed of 20 m.s -1 (45 mph): Q = x 20 = kg.m.s -1 Residual speed after a head-on collision: V = (Q1 - Q2) / (M1 + M2) V: residual velocity, expressed in m.s -1 Q1: 1 st vehicle linear momentum, expressed in kg.m.s -1 Q2: 2 nd vehicle linear momentum, expressed in kg.m.s -1 M1: 1 st vehicle mass, expressed in kg M2: 2 nd vehicle mass, expressed in kg consistency of units V = kg.m.s -1. kg -1 = m.s -1 Example: calculate the residual velocity after a head-on collision between two cars, one is a kg (3,300 lb) mass car traveling at 20 m.s -1 (45 mph), the other is a kg (2,200 lb) mass car traveling at 15 m.s -1 (30 mph): V = ( ) / ( ) = / = 6 m.s -1

8 Residual velocity after a collision of two vehicles traveling in the same direction: V = (Q1 + Q2) / (M1 + M2) V: residual velocity, expressed in m.s -1 Q1: amount of movement of the vehicle 1, expressed in kg.m.s -1 Q2: amount of movement of the vehicle 2, expressed in kg.m.s -1 M1: 1 st vehicle mass, expressed in kg M2: 2 nd vehicle mass, expressed in kg consistency of units V = kg.m.s -1. kg -1 = m.s -1 Example: calculate the residual velocity after a collision between two cars traveling in the same direction, one is a kg (2,200 lb) mass traveling at 15 ms -1 (30 mph), the other is a kg (3,300 lb) mass traveling at 20 m.s -1 (45 mph): V = ( ) / ( ) = / = 18 m.s -1 Deceleration: Υ = ΔV / T Υ: deceleration, expressed in m.s -2 ΔV: rate of change, expressed in m.s -1 T: length of the collision, expressed in s consistency of units: Υ = m.s -1. s -1 = m.s -2 Example: calculate the deceleration of a car having undergone a speed variation of 15 m.s -1 during 0.1 s: Υ = 15 / 0.1 = 150 m.s -2

9 Force: F = M. Υ F: force, expressed in N M: mass, expressed in kg Υ: deceleration, expressed in m.s -2 consistency of units: F = kg. m.s -2 = N Example: calculate the force that is exerted on a kg (2,200 lb) mass car undergoing a deceleration of 150 m.s -2 : Υ = x 150 = N ASSOCIATION ADILCA * * *

WATCH THIS ICON: View this short clip from the Insurance Institute for Highway Safety DVD called Understanding Car Crashes It s basic physics.

WATCH THIS ICON: View this short clip from the Insurance Institute for Highway Safety DVD called Understanding Car Crashes It s basic physics. Lesson 3: Energy, Momentum, and Understanding Car Crashes Many of us have lost students to violent motor vehicle crashes. In the United States, motor vehicle crashes are the number one cause of death among

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

Momentum Crash Course

Momentum Crash Course Objective: To study momentum and its role in car crashes. Grade Level: 5-8 Subject(s): Science, Mathematics Prep Time: < 10 minutes Duration: One class period Materials Category: Household National Education

More information

Lesson 1: Momentum & Impulse

Lesson 1: Momentum & Impulse Lesson 1: Momentum & Impulse How does a karate expert chop through cement blocks with a bare hand? Why does a fall onto a trampoline hurt less than onto a cement floor? Why do people in larger vehicles

More information

Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces. When an object is pushed or pulled, we say that a force is exerted on it. Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

More information

Chapter #7 Giancoli 6th edition Problem Solutions

Chapter #7 Giancoli 6th edition Problem Solutions Chapter #7 Giancoli 6th edition Problem Solutions ü Problem #8 QUESTION: A 9300 kg boxcar traveling at 5.0 m/s strikes a second boxcar at rest. The two stick together and move off with a speed of 6.0 m/s.

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

More information

A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed?

A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed? A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed? 1 2 PHYS 1021: Chap. 9, Pg 2 Page 1 1 A uranium nucleus

More information

9. Momentum and Collisions in One Dimension*

9. Momentum and Collisions in One Dimension* 9. Momentum and Collisions in One Dimension* The motion of objects in collision is difficult to analyze with force concepts or conservation of energy alone. When two objects collide, Newton s third law

More information

Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

More information

Car Crash Design Lab

Car Crash Design Lab Car Crash Design Lab This activity is designed to utilize your prior knowledge of physics and physical systems in order select critical safety features of a car. In this lab you are asked to select components

More information

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same. 1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall

More information

The momentum of a moving object has a magnitude, in kg m/s, and a... (1)

The momentum of a moving object has a magnitude, in kg m/s, and a... (1) Q. (a) Complete the following sentence. The momentum of a moving object has a magnitude, in kg m/s, and a.... () (b) A car being driven at 9.0 m/s collides with the back of a stationary lorry. The car

More information

Name per due date mail box

Name per due date mail box Name per due date mail box Rolling Momentum Lab (1 pt for complete header) Today in lab, we will be experimenting with momentum and measuring the actual force of impact due to momentum of several rolling

More information

Explore 3: Crash Test Dummies

Explore 3: Crash Test Dummies Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first

More information

Physical Science Chapter 2. Forces

Physical Science Chapter 2. Forces Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

More information

LAB 4: MOMENTUM AND COLLISIONS

LAB 4: MOMENTUM AND COLLISIONS 1 Name Date Day/Time of Lab Partner(s) Lab TA LAB 4: MOMENTUM AND COLLISIONS NEWTON S THIRD LAW OBJECTIVES To examine action-reaction force pairs To examine collisions and relate the law of conservation

More information

European New Car Assessment Program (EuroNCAP) and Crash Test Ratings of New Vehicles

European New Car Assessment Program (EuroNCAP) and Crash Test Ratings of New Vehicles European New Car Assessment Program (EuroNCAP) and Crash Test Ratings of New Vehicles Car safety is now an important issue that many people consider when buying a new car. There are crash test standards

More information

Proof of the conservation of momentum and kinetic energy

Proof of the conservation of momentum and kinetic energy Experiment 04 Proof of the conservation of momentum and kinetic energy By Christian Redeker 27.10.2007 Contents 1.) Hypothesis...3 2.) Diagram...7 3.) Method...7 3.1) Apparatus...7 3.2) Procedure...7 4.)

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

Experiment 7 ~ Conservation of Linear Momentum

Experiment 7 ~ Conservation of Linear Momentum Experiment 7 ~ Conservation of Linear Momentum Purpose: The purpose of this experiment is to reproduce a simple experiment demonstrating the Conservation of Linear Momentum. Theory: The momentum p of an

More information

4 Impulse and Impact. Table of contents:

4 Impulse and Impact. Table of contents: 4 Impulse and Impact At the end of this section you should be able to: a. define momentum and impulse b. state principles of conseration of linear momentum c. sole problems inoling change and conseration

More information

The Relationship between Speed and Car Driver Injury Severity

The Relationship between Speed and Car Driver Injury Severity Road Safety Web Publication 9 The Relationship between Speed and Car Driver Injury Severity D. Richards and R. Cuerden Transport Research Laboratory April 2009 Department for Transport: London Although

More information

UPDATED REVIEW OF POTENTIAL TEST PROCEDURES FOR FMVSS NO. 208

UPDATED REVIEW OF POTENTIAL TEST PROCEDURES FOR FMVSS NO. 208 UPDATED REVIEW OF POTENTIAL TEST PROCEDURES FOR FMVSS NO. 208 Prepared By The OFFICE OF VEHICLE SAFETY RESEARCH WILLIAM T. HOLLOWELL HAMPTON C. GABLER SHELDON L. STUCKI STEPHEN SUMMERS JAMES R. HACKNEY,

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

review/assessment questions

review/assessment questions Student Activity Sheet 6 Page 1 Name physics, technology and engineering in automobile racing review/assessment questions 1. Draw a free-body diagram for a block being pushed across the floor. 2. Use all

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Does the Federal government require them? No, the Federal government does not require manufacturers to install EDRs.

Does the Federal government require them? No, the Federal government does not require manufacturers to install EDRs. EDR Q&As THE BASICS What is an EDR? What is its purpose? An Event Data Recorder (EDR) is a function or device installed in a motor vehicle to record technical vehicle and occupant information for a brief

More information

Statement before Massachusetts Legislature s Joint Committee on Insurance. Institute Research on Cosmetic Crash Parts. Stephen L. Oesch.

Statement before Massachusetts Legislature s Joint Committee on Insurance. Institute Research on Cosmetic Crash Parts. Stephen L. Oesch. Statement before Massachusetts Legislature s Joint Committee on Insurance Institute Research on Cosmetic Crash Parts Stephen L. Oesch INSURANCE INSTITUTE FOR HIGHWAY SAFETY 1005 N. GLEBE RD. ARLINGTON,

More information

Rick Galdos, Forensic Engineering 1

Rick Galdos, Forensic Engineering 1 Impact and Damage Analyses of Motor Vehicle Accidents Commonly Asked Questions P.O. Box 10635 Tampa, Florida 33679 rgaldos@tampabay.rr.com General Overview Basic Terms in accident reconstruction and injury

More information

A LIGHTWEIGHT REAR BUMPER WITH CRASH WORTHY COMPARTMENT

A LIGHTWEIGHT REAR BUMPER WITH CRASH WORTHY COMPARTMENT 1 A LIGHTWEIGHT REAR BUMPER WITH CRASH WORTHY COMPARTMENT Background of the Invention Field of the Invention This invention relates to a lightweight rear bumper with crash worthy compartment, and more

More information

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Notes on Elastic and Inelastic Collisions

Notes on Elastic and Inelastic Collisions Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

Newton s Laws Quiz Review

Newton s Laws Quiz Review Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

More information

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3 Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed. Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.

More information

Verifying the Law of Conservation of Momentum. Jeremy Vosen Lili Lackner. Mrs. Rudstrom

Verifying the Law of Conservation of Momentum. Jeremy Vosen Lili Lackner. Mrs. Rudstrom Verifying the Law of Conservation of Momentum Jeremy Vosen Lili Lackner Mrs. Rudstrom January 26, 2012 Introduction The Law of Conservation of Momentum lab was performed using an air track that minimized

More information

Determination of the Influence of Vehicles Weight Ratio on the Initial Velocity Using the Accident Reconstruction Engineering Principles

Determination of the Influence of Vehicles Weight Ratio on the Initial Velocity Using the Accident Reconstruction Engineering Principles Determination of the Influence of Vehicles Ratio on the Velocity Using the Accident Reconstruction Engineering Principles Robert M. Brooks 1, Mehmet Cetin 2 1,2 College of Engineering, Temple University,

More information

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental

More information

The Development of Virtual Testing Model for Korea High Speed Train

The Development of Virtual Testing Model for Korea High Speed Train The Development of Virtual Testing Model for Korea High Speed Train 1 S.R. Kim, 2 J.S. Koo, 3 T.S. Kwon, 4 H.S. Han Korea University of Science and Technology, Daejeon, Korea 1 ; Seoul National University

More information

A) N > W B) N = W C) N < W. speed v. Answer: N = W

A) N > W B) N = W C) N < W. speed v. Answer: N = W CTN-12. Consider a person standing in an elevator that is moving upward at constant speed. The magnitude of the upward normal force, N, exerted by the elevator floor on the person's feet is (larger than/same

More information

PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION

PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Newton s 3rd Law and Momentum Conservation, p./ PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Read over the lab and then answer the following questions about the procedures:. Write down the definition

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Laws of Collision / demonstration track

Laws of Collision / demonstration track Related topics Conservation of momentum, conservation of energy, linear motion, velocity, elastic loss, elastic collision, inelastic collision. Principle The velocities of two carts, moving on a, are measured

More information

Explore 2: Gathering Momentum

Explore 2: Gathering Momentum Explore : Gathering Momentum Type of Lesson: Learning Goal & Instructional Objectives: Content with Process: Focus on constructing knowledge through active learning. In this investigation, students calculate

More information

Physics 211 Lecture 4

Physics 211 Lecture 4 Physics 211 Lecture 4 Today's Concepts: Newton s Laws a) Acceleration is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference frames Mechanics Lecture 4, Slide 1

More information

SPEED, VELOCITY, AND ACCELERATION

SPEED, VELOCITY, AND ACCELERATION reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Influence of Crash Box on Automotive Crashworthiness

Influence of Crash Box on Automotive Crashworthiness Influence of Crash Box on Automotive Crashworthiness MIHAIL DANIEL IOZSA, DAN ALEXANDRU MICU, GHEORGHE FRĂȚILĂ, FLORIN- CRISTIAN ANTONACHE University POLITEHNICA of Bucharest 313 Splaiul Independentei

More information

Minor Vehicle Collision and Injury Analysis. André M. Loyd, Ph.D. Biomechanical Engineer

Minor Vehicle Collision and Injury Analysis. André M. Loyd, Ph.D. Biomechanical Engineer Minor Vehicle Collision and Injury Analysis André M. Loyd, Ph.D. Biomechanical Engineer Personal Bio Education Post-Doctoral Fellowship at the Mayo Clinic - Helmets and Neck Guards in Hockey Ph.D. and

More information

FORENSIC COLLISION INVESTIGATION REPORT

FORENSIC COLLISION INVESTIGATION REPORT FORENSIC COLLISION INVESTIGATION REPORT Prepared by: Martin Lowe Prepared For: Solicitors for the XXXXXXXXXX Table of Contents 1. Brief.....1 Instructing Solicitors Instructions Location of the collision

More information

Crash Analysis of Car Cross Member Bumper Beam

Crash Analysis of Car Cross Member Bumper Beam Crash Analysis of Car Cross Member Bumper Beam G.Yedukondalu Asst. Professor K L University Guntur Dt.-522502, India yedukondalu@kluniversity.in Dr. A. Srinath UGC Research Awardee Professor Mechanical

More information

Digges 1 INJURIES TO RESTRAINED OCCUPANTS IN FAR-SIDE CRASHES. Kennerly Digges The Automotive Safety Research Institute Charlottesville, Virginia, USA

Digges 1 INJURIES TO RESTRAINED OCCUPANTS IN FAR-SIDE CRASHES. Kennerly Digges The Automotive Safety Research Institute Charlottesville, Virginia, USA INJURIES TO RESTRAINED OCCUPANTS IN FAR-SIDE CRASHES Kennerly Digges The Automotive Safety Research Institute Charlottesville, Virginia, USA Dainius Dalmotas Transport Canada Ottawa, Canada Paper Number

More information

Correlating crash severity with injury risk, injury severity, and long-term symptoms in low velocity motor vehicle collisions

Correlating crash severity with injury risk, injury severity, and long-term symptoms in low velocity motor vehicle collisions Correlating crash severity with injury risk, injury severity, and long-term symptoms in low velocity motor vehicle collisions Medical Science Monitor, October 2005; 11(10): RA316-321 FROM ABSTRACT: Arthur

More information

Virtual CRASH 3.0 Staging a Car Crash

Virtual CRASH 3.0 Staging a Car Crash Virtual CRASH 3.0 Staging a Car Crash Virtual CRASH Virtual CRASH 3.0 Staging a Car Crash Changes are periodically made to the information herein; these changes will be incorporated in new editions of

More information

Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

More information

STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

The Relative Safety of Large and Small Passenger Vehicles

The Relative Safety of Large and Small Passenger Vehicles The Relative Safety of Large and Small Passenger Vehicles NHTSA Mass-Size Safety Symposium Washington, DC February 25, 2011 Adrian Lund, Ph.D. Overview What is the history of motor vehicle crash safety

More information

general, accidents caused by misjudging

general, accidents caused by misjudging Unit 3: The Effect of Natural Forces on your Vehicle Page 1 of 11 Purpose: Acquaint the student with some of the natural forces acting on a vehicle while stopping, maneuvering, and during a crash. Explain

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

More information

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013 PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object

More information

association adilca www.adilca.com THE ENGINE TORQUE

association adilca www.adilca.com THE ENGINE TORQUE THE ENGINE TORQUE What are the essential characteristics of a motor vehicle? Marketing departments know that it is the power and maximum speed which, at first, focused public attention because it is the

More information

How Rockets Work Newton s Laws of Motion

How Rockets Work Newton s Laws of Motion How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

More information

INSURANCE INSTITUTE FOR HIGHWAY SAFETY 1005 NORTH GLEBE ROAD ARLINGTON, VA 22201 PHONE 703/247-1500 FAX 703/247-1678 http://www.highwaysafety.

INSURANCE INSTITUTE FOR HIGHWAY SAFETY 1005 NORTH GLEBE ROAD ARLINGTON, VA 22201 PHONE 703/247-1500 FAX 703/247-1678 http://www.highwaysafety. Statement before the Committee on Energy and Commerce U.S. House of Representatives Approaches to achieving vehicle safety improvements Brian O Neill INSURANCE INSTITUTE FOR HIGHWAY SAFETY 1005 NORTH GLEBE

More information

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER 1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7 Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

More information

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v = Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx

More information

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Physics Momentum and Impulse Car Safety Engineering (egg drop) Conservation of Momentum

Physics Momentum and Impulse Car Safety Engineering (egg drop) Conservation of Momentum Physics Momentum and Impulse Car Safety Engineering (egg drop) Intro to Momentum Conservation of Momentum Impulse Student Experience Students brainstorm the meaning of momentum. Students use different

More information

Speeding. Probability of death at different impact speeds

Speeding. Probability of death at different impact speeds Speeding CRASH FACTSHEET 2012 CRASH STATISTICS FOR THE YEAR ENDED 31 DECEMBER 2011 Prepared by the Ministry of Transport In this fact sheet speeding is defined as driving too fast for the conditions. The

More information

AP physics C Web Review Ch 6 Momentum

AP physics C Web Review Ch 6 Momentum Name: Class: _ Date: _ AP physics C Web Review Ch 6 Momentum Please do not write on my tests Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The dimensional

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

Alternative lower rail design to lower injury level of occupant caused by frontal crash

Alternative lower rail design to lower injury level of occupant caused by frontal crash Alternative lower rail design to lower injury level of occupant caused by frontal crash W. Beek (0557959) MT06.20 Internal traineeship Supervisor: Dr. ir. W.J. Witteman Eindhoven University of Technology

More information

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force

More information

Chapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum

Chapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum Chapter 8 Conservation of Linear Momentum Physics 201 October 22, 2009 Conservation of Linear Momentum Definition of linear momentum, p p = m v Linear momentum is a vector. Units of linear momentum are

More information

Newton s Law of Motion

Newton s Law of Motion chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

More information

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

More information

BRAKE SYSTEMS 101. Energy Conversion Management. Presented by Paul S. Gritt

BRAKE SYSTEMS 101. Energy Conversion Management. Presented by Paul S. Gritt Energy Conversion Management Presented by Paul S. Gritt Topics To Be Presented The Basic Concepts Hydraulic layouts Component functions Brake Balance Stopping Distance and Fade Formula SAE vs. Mini Baja

More information

Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.

Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy. Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors

More information

Educational Innovations

Educational Innovations Educational Innovations Background Forces and Motion MAR-600 Wall Coaster Motion is caused by forces. Motion can be described. Motion follows rules. There are many forces and principles involved with motion.

More information

Experiment: Static and Kinetic Friction

Experiment: Static and Kinetic Friction PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

More information

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

More information

Momentum, Impulse and Momentum Change

Momentum, Impulse and Momentum Change Name: Momentum, Impulse and Momentum Change Read from Lesson 1 of the Momentum and Collisions chapter at The Physics Classroom: http://www.physicsclassroom.com/class/momentum/u4l1a.html http://www.physicsclassroom.com/class/momentum/u4l1b.html

More information

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

Volvo Trucks view on Truck Rollover Accidents

Volvo Trucks view on Truck Rollover Accidents Volvo Trucks view on Truck Rollover Accidents Mario Ligovic, Volvo Truck Corporation, Göteborg, Sweden INTRODUCTION Rollover is the most common heavy truck accident type. Experiencing a rollover is like

More information

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM Force measurement Forces VECTORIAL ISSUES In classical mechanics, a force is defined as "an action capable of modifying the quantity of movement of a material point". Therefore, a force has the attributes

More information

ANCIS. The Australian National Crash In-depth Study. David Logan (MUARC)

ANCIS. The Australian National Crash In-depth Study. David Logan (MUARC) ANCIS The Australian National Crash In-depth Study David Logan (MUARC) What is ANCIS? Study of modern vehicle real world crash performance and occupant injuries Criteria: Occupants of crashed vehicles

More information