Mining Association Rules on Grid Platforms
|
|
|
- Joshua Adams
- 10 years ago
- Views:
Transcription
1 UNIVERSITY OF TUNIS EL MANAR FACULTY OF SCIENCES OF TUNISIA Mining Association Rules on Grid Platforms Raja Tlili Yahya Slimani CoreGrid 11
2 Plan Introduction Association rules The need of parallel computing Workload balancing: Problem description Workload balancing in association rule mining algorithms Workload balancing in Grid computing The proposed load balancing model The dynamic load balancing strategy Experimental results 2
3 Introduction (1) Data vs Knowledge Databases Data : involved Knowledge : hidden Knowledge Knowledge is most important than data Decision making To increase revenues and reduce costs Data Mining 3
4 Introduction (2) What is data mining Extracting knowledge from a large volume of data Non trivial Implicit Previously unkown Potentially useful 4
5 Association rules (1) Association rules (1) The use of knowledge catalog design advertizing strategies 5
6 Association rules (2) Finding the rule A B with support >= minsup and a confidence >= minconf support, s, probability that a transaction contain {A, B} confidence, c, conditional probability that a transaction containing A will also contains B Confiance=support(A,B)/support(B) Clients buying both Transaction T 1 Items Clients buying milk A B C D E F G H I T T T Clients buying sugar Transactionnal database 6
7 Extracting association rules : how? The support and confidence thresehlods are fixed by the user MinSup MinConf Objectif : Finding all association rules respecting that MinSup and this MinConf Problem decomposition 1. Finding all frequent itemsets (support MinSup) 2. Generating association rules (confidence MinConf) 7
8 The need of parallel computing Databases to be mined are often very large ( in GB and TB ) Transactional database have to be scanned repeatedly (iteratively) Databases to be mined are often very large The need of fast algorithms for discovering association rules Cost of disk access 8
9 Main challenges facing parallelism Workload balancing Workload Synchronisation & Communication minimization Balancing Finding good data layout & data decomposition Disk I/O minimization 9
10 Load balancing: Problem description Work load balancing is the assignment of work to processors in a way that maximizes application performance Minimizing processor idle time inter-processor communication 10
11 Causes of load imbalance Homogeneous environment Even if we equally partition the DB, the imbalance would occur due to the differences in data correlation. Heterogeneous platforms Have different processor capacities and network speed. (Example : heterogeneous clusters, grid platforms) 11
12 Related work The majority of current approaches use static load balancing based on finding some intelligent way for partitionning the database before execution [Marteen Altorf 2007]. 12
13 Proposed Load Balancing Approach: Characteristics Taxonomy of load balancing policies Static Dynamic Reassignment Centralized Distributed One-time Dynamic Local Global Adaptive Non-Adaptive Cooperative Non-Cooperative 13
14 Proposed Load Balancing Approach: Goals Improving the efficiency and the scalability of ARM algorithms under Grid platforms : Exploiting prallelism at various levels ; considering the particular features of the target platform Focusing on adaptiveness: Dynamic policies for load balancing and partitioning. 14
15 Proposed load balancing model Let G = (S 1, S 2,, S T ) S i = (M i, Coord(S i ), Mem i, Stor i, Band i ) M i : total number of clusters in S i BD1 Coord (cl ij ): Cluster coordinator Cl ij : Cluster j of S i BD3 Network Coord(S i ) : coordinator node of the site S i Mem i : memory size Stor i : capacity of the storage subsystem BD1 BD3.. BD3 Band i : bandwidth size of the network NN i Mem = i Mem j = 1 i, j nd ijk : node k of cl ij Coord (S i ) : Site coordinator NN i Stor i = Stor j = 1 i, j BD2 BD2 S i : Site i 15
16 Load balancing strategy : (1) Before execution DB Partition 1 DB Partition 2. DB Partition n S 1 S 2 S n Processing Processing Processing Network Network 16
17 Load balancing strategy : (1) Before execution Steps : Step I : K=1 S 1 D Coord(S i ) P 0 P 1 P 2 P 3 S 1 S 2 S 3 Partitioning the database D between sites according to their capacities. Every processor has its local database Merging local results by the end of each iteration 17
18 Load balancing strategy : (2) During execution ❶ From the intra-site level State Vector State Vector Network the coordinator updates its global workload vector by acquiring workload information from each local node. 18
19 Load balancing strategy : (2) During execution ❶ From the Grid level Global State Information Global State Information Network Global State Information the coordinators of different sites periodically exchange their global state information. 19
20 Load balancing strategy : (2) During execution ❷ Intra Site Candidates Migration {A,B,C,..} Network EET i,j > Coefinter * ( CCN i,j,k + EET i,k ) 20
21 Load balancing strategy : (2) During execution ❷ Inter Site Transactions Migration T : A,B,C,I,J T: D,E,F,H,I,K T:D,F,H,I,H,J.. T: C,F,J,L,M Network EET i,j > Coefintra * ( CCS i,p + EET p,q ) 21
22 Load balancing strategy : (2) During execution ❸ The coordinator sends migration plan to all processing nodes and instructs them to reallocate the work load. The previously mentioned process is periodically invoked. Coordinators check the work load imbalance condition every fixed period of time. 22
23 Experimental results Grille Experimentation under a Grid computing environment: Grid 5000 constituted of 5000 CPU distributed over 9 sites : Lille, Rennes, Orsay, Nancy, Lyon, Bordeaux, Grenoble, Toulouse, Sophia. 23
24 Experimental results Database size Transactions number Items number Average transaction size DB100T13M 100 MB Sites 2500 (b) DB100T13M Time seq Each site contains 2 Clusters 2000 // without loadbalancing // with loadbalancing 16 computational Nodes : 3 nodes/cluster 1, 2 nodes/cluster 2, 4 nodes/cluster 3 7 nodes/cluster 4 Run time (sec) % 1% 1.5% 2% 2.5% 3% min support (%) 24
25 Experimental results There is not a fixed optimal number of processors that could be used for execution. The number of processors used should be proportional to the size of data sets to be mined. The easiest way to determine that optimal number is via experiments. 25
26 Conclusion and future works Association rule mining algo. have a simple statement, but they are computationally and I/O intensive (performance problem). Parallel & distributed computing is essential for providing scalable mining solutions, and can play an important role in ameliorating performances. The dynamic nature of association rule mining algorithms causes load-imbalance between the processing nodes during execution, and dynamic load balancing strategies are needed to solve this problem. 26
27 Conclusion and future works We developed a distributed dynamic load balancing strategy, under a Grid Computing environment. Experimentations showed that our strategy succeeded in reducing the execution time of iterative association rule mining algorithms (good distribution of workload among the processors of the Grid). Work migration is known since a long time in «task scheduling» Adapting it to ARM algorithms. Executing ARM algorithms under Grid platforms and obtaining good results, even with the various phases of synchronizations. Parameters of the strategy are fixed according to the characteristics and the specificities of this technique. 27
28 UNIVERSITY OF TUNIS EL MANAR FACULTY OF SCIENCES OF TUNIS Raja Tlili Yahya Slimani
MINING THE DATA FROM DISTRIBUTED DATABASE USING AN IMPROVED MINING ALGORITHM
MINING THE DATA FROM DISTRIBUTED DATABASE USING AN IMPROVED MINING ALGORITHM J. Arokia Renjit Asst. Professor/ CSE Department, Jeppiaar Engineering College, Chennai, TamilNadu,India 600119. Dr.K.L.Shunmuganathan
Enabling Large-Scale Testing of IaaS Cloud Platforms on the Grid 5000 Testbed
Enabling Large-Scale Testing of IaaS Cloud Platforms on the Grid 5000 Testbed Sébastien Badia, Alexandra Carpen-Amarie, Adrien Lèbre, Lucas Nussbaum Grid 5000 S. Badia, A. Carpen-Amarie, A. Lèbre, L. Nussbaum
Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved.
Preview of Oracle Database 12c In-Memory Option 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any
Various Schemes of Load Balancing in Distributed Systems- A Review
741 Various Schemes of Load Balancing in Distributed Systems- A Review Monika Kushwaha Pranveer Singh Institute of Technology Kanpur, U.P. (208020) U.P.T.U., Lucknow Saurabh Gupta Pranveer Singh Institute
Performance Improvement of Association Rule Mining Algorithms through Load Balancing in Distributed Computing Platform
www..org 52 Performance Improvement of Association Rule Mining Algorithms through Load Balancing in Distributed Computing Platform Vidushi Singh 1 and Anil Rajput 2 1 Department of IT, Institute of Technology
MAXIMAL FREQUENT ITEMSET GENERATION USING SEGMENTATION APPROACH
MAXIMAL FREQUENT ITEMSET GENERATION USING SEGMENTATION APPROACH M.Rajalakshmi 1, Dr.T.Purusothaman 2, Dr.R.Nedunchezhian 3 1 Assistant Professor (SG), Coimbatore Institute of Technology, India, [email protected]
How To Balance In Cloud Computing
A Review on Load Balancing Algorithms in Cloud Hareesh M J Dept. of CSE, RSET, Kochi hareeshmjoseph@ gmail.com John P Martin Dept. of CSE, RSET, Kochi [email protected] Yedhu Sastri Dept. of IT, RSET,
A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture
A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture Yangsuk Kee Department of Computer Engineering Seoul National University Seoul, 151-742, Korea Soonhoi
Big Data Mining Services and Knowledge Discovery Applications on Clouds
Big Data Mining Services and Knowledge Discovery Applications on Clouds Domenico Talia DIMES, Università della Calabria & DtoK Lab Italy [email protected] Data Availability or Data Deluge? Some decades
Index Terms : Load rebalance, distributed file systems, clouds, movement cost, load imbalance, chunk.
Load Rebalancing for Distributed File Systems in Clouds. Smita Salunkhe, S. S. Sannakki Department of Computer Science and Engineering KLS Gogte Institute of Technology, Belgaum, Karnataka, India Affiliated
Group Based Load Balancing Algorithm in Cloud Computing Virtualization
Group Based Load Balancing Algorithm in Cloud Computing Virtualization Rishi Bhardwaj, 2 Sangeeta Mittal, Student, 2 Assistant Professor, Department of Computer Science, Jaypee Institute of Information
A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment
A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment Panagiotis D. Michailidis and Konstantinos G. Margaritis Parallel and Distributed
Efficient Load Balancing using VM Migration by QEMU-KVM
International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 49 ISSN 2047-3338 Efficient Load Balancing using VM Migration by QEMU-KVM Sharang Telkikar 1, Shreyas Talele
Figure 1. The cloud scales: Amazon EC2 growth [2].
- Chung-Cheng Li and Kuochen Wang Department of Computer Science National Chiao Tung University Hsinchu, Taiwan 300 [email protected], [email protected] Abstract One of the most important issues
Dynamic Load Balancing in a Network of Workstations
Dynamic Load Balancing in a Network of Workstations 95.515F Research Report By: Shahzad Malik (219762) November 29, 2000 Table of Contents 1 Introduction 3 2 Load Balancing 4 2.1 Static Load Balancing
Elastic Load Balancing in Cloud Storage
Elastic Load Balancing in Cloud Storage Surabhi Jain, Deepak Sharma (Lecturer, Department of Computer Science, Lovely Professional University, Phagwara-144402) (Assistant Professor, Department of Computer
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing Sven Groot 1, Kazuo Goda 1, and Masaru Kitsuregawa 1 University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Abstract.
Load Distribution in Large Scale Network Monitoring Infrastructures
Load Distribution in Large Scale Network Monitoring Infrastructures Josep Sanjuàs-Cuxart, Pere Barlet-Ros, Gianluca Iannaccone, and Josep Solé-Pareta Universitat Politècnica de Catalunya (UPC) {jsanjuas,pbarlet,pareta}@ac.upc.edu
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.
Mining Large Datasets: Case of Mining Graph Data in the Cloud
Mining Large Datasets: Case of Mining Graph Data in the Cloud Sabeur Aridhi PhD in Computer Science with Laurent d Orazio, Mondher Maddouri and Engelbert Mephu Nguifo 16/05/2014 Sabeur Aridhi Mining Large
Virtual Network Provisioning and Fault-Management across Multiple Domains
Virtual Network Provisioning and Fault-Management across Multiple Domains Distinguished Speaker Series Democritus University of Thrace, Greece Panagiotis Papadimitriou November 2010 Introduction The Internet
Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database
WHITE PAPER Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents Executive
Improved Hybrid Dynamic Load Balancing Algorithm for Distributed Environment
International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 2013 1 Improved Hybrid Dynamic Load Balancing Algorithm for Distributed Environment UrjashreePatil*, RajashreeShedge**
In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller
In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
WITH A FUSION POWERED SQL SERVER 2014 IN-MEMORY OLTP DATABASE
WITH A FUSION POWERED SQL SERVER 2014 IN-MEMORY OLTP DATABASE 1 W W W. F U S I ON I O.COM Table of Contents Table of Contents... 2 Executive Summary... 3 Introduction: In-Memory Meets iomemory... 4 What
A Survey on Load Balancing Technique for Resource Scheduling In Cloud
A Survey on Load Balancing Technique for Resource Scheduling In Cloud Heena Kalariya, Jignesh Vania Dept of Computer Science & Engineering, L.J. Institute of Engineering & Technology, Ahmedabad, India
<Insert Picture Here> Best Practices for Extreme Performance with Data Warehousing on Oracle Database
1 Best Practices for Extreme Performance with Data Warehousing on Oracle Database Rekha Balwada Principal Product Manager Agenda Parallel Execution Workload Management on Data Warehouse
Cray: Enabling Real-Time Discovery in Big Data
Cray: Enabling Real-Time Discovery in Big Data Discovery is the process of gaining valuable insights into the world around us by recognizing previously unknown relationships between occurrences, objects
Dynamic Load Balancing in Charm++ Abhinav S Bhatele Parallel Programming Lab, UIUC
Dynamic Load Balancing in Charm++ Abhinav S Bhatele Parallel Programming Lab, UIUC Outline Dynamic Load Balancing framework in Charm++ Measurement Based Load Balancing Examples: Hybrid Load Balancers Topology-aware
An Empirical Study and Analysis of the Dynamic Load Balancing Techniques Used in Parallel Computing Systems
An Empirical Study and Analysis of the Dynamic Load Balancing Techniques Used in Parallel Computing Systems Ardhendu Mandal and Subhas Chandra Pal Department of Computer Science and Application, University
G22.3250-001. Porcupine. Robert Grimm New York University
G22.3250-001 Porcupine Robert Grimm New York University Altogether Now: The Three Questions! What is the problem?! What is new or different?! What are the contributions and limitations? Porcupine from
Journal of Theoretical and Applied Information Technology 20 th July 2015. Vol.77. No.2 2005-2015 JATIT & LLS. All rights reserved.
EFFICIENT LOAD BALANCING USING ANT COLONY OPTIMIZATION MOHAMMAD H. NADIMI-SHAHRAKI, ELNAZ SHAFIGH FARD, FARAMARZ SAFI Department of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad,
Data Mining: Partially from: Introduction to Data Mining by Tan, Steinbach, Kumar
Data Mining: Association Analysis Partially from: Introduction to Data Mining by Tan, Steinbach, Kumar Association Rule Mining Given a set of transactions, find rules that will predict the occurrence of
Ground up Introduction to In-Memory Data (Grids)
Ground up Introduction to In-Memory Data (Grids) QCON 2015 NEW YORK, NY 2014 Hazelcast Inc. Why you here? 2014 Hazelcast Inc. Java Developer on a quest for scalability frameworks Architect on low-latency
A Review of Customized Dynamic Load Balancing for a Network of Workstations
A Review of Customized Dynamic Load Balancing for a Network of Workstations Taken from work done by: Mohammed Javeed Zaki, Wei Li, Srinivasan Parthasarathy Computer Science Department, University of Rochester
Load Balancing of Web Server System Using Service Queue Length
Load Balancing of Web Server System Using Service Queue Length Brajendra Kumar 1, Dr. Vineet Richhariya 2 1 M.tech Scholar (CSE) LNCT, Bhopal 2 HOD (CSE), LNCT, Bhopal Abstract- In this paper, we describe
Keywords Load balancing, Dispatcher, Distributed Cluster Server, Static Load balancing, Dynamic Load balancing.
Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Hybrid Algorithm
Mesh Partitioning and Load Balancing
and Load Balancing Contents: Introduction / Motivation Goals of Load Balancing Structures Tools Slide Flow Chart of a Parallel (Dynamic) Application Partitioning of the initial mesh Computation Iteration
Symmetric Multiprocessing
Multicore Computing A multi-core processor is a processing system composed of two or more independent cores. One can describe it as an integrated circuit to which two or more individual processors (called
Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques
Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques Subhashree K 1, Prakash P S 2 1 Student, Kongu Engineering College, Perundurai, Erode 2 Assistant Professor,
Dynamic Load Balancing of Virtual Machines using QEMU-KVM
Dynamic Load Balancing of Virtual Machines using QEMU-KVM Akshay Chandak Krishnakant Jaju Technology, College of Engineering, Pune. Maharashtra, India. Akshay Kanfade Pushkar Lohiya Technology, College
The PHI solution. Fujitsu Industry Ready Intel XEON-PHI based solution. SC2013 - Denver
1 The PHI solution Fujitsu Industry Ready Intel XEON-PHI based solution SC2013 - Denver Industrial Application Challenges Most of existing scientific and technical applications Are written for legacy execution
Game Theory Based Load Balanced Job Allocation in Distributed Systems
in Distributed Systems Anthony T. Chronopoulos Department of Computer Science University of Texas at San Antonio San Antonio, TX, USA [email protected] Load balancing: problem formulation Load balancing
MOSIX: High performance Linux farm
MOSIX: High performance Linux farm Paolo Mastroserio [[email protected]] Francesco Maria Taurino [[email protected]] Gennaro Tortone [[email protected]] Napoli Index overview on Linux farm farm
The Benefits of Virtualizing
T E C H N I C A L B R I E F The Benefits of Virtualizing Aciduisismodo Microsoft SQL Dolore Server Eolore in Dionseq Hitachi Storage Uatummy Environments Odolorem Vel Leveraging Microsoft Hyper-V By Heidi
Mining for Web Engineering
Mining for Engineering A. Venkata Krishna Prasad 1, Prof. S.Ramakrishna 2 1 Associate Professor, Department of Computer Science, MIPGS, Hyderabad 2 Professor, Department of Computer Science, Sri Venkateswara
Energy Efficient MapReduce
Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing
NextGen Infrastructure for Big DATA Analytics.
NextGen Infrastructure for Big DATA Analytics. So What is Big Data? Data that exceeds the processing capacity of conven4onal database systems. The data is too big, moves too fast, or doesn t fit the structures
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
SAP HANA In-Memory Database Sizing Guideline
SAP HANA In-Memory Database Sizing Guideline Version 1.4 August 2013 2 DISCLAIMER Sizing recommendations apply for certified hardware only. Please contact hardware vendor for suitable hardware configuration.
Protect Data... in the Cloud
QUASICOM Private Cloud Backups with ExaGrid Deduplication Disk Arrays Martin Lui Senior Solution Consultant Quasicom Systems Limited Protect Data...... in the Cloud 1 Mobile Computing Users work with their
Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011
Scalable Data Analysis in R Lee E. Edlefsen Chief Scientist UserR! 2011 1 Introduction Our ability to collect and store data has rapidly been outpacing our ability to analyze it We need scalable data analysis
Chapter 2 Parallel Architecture, Software And Performance
Chapter 2 Parallel Architecture, Software And Performance UCSB CS140, T. Yang, 2014 Modified from texbook slides Roadmap Parallel hardware Parallel software Input and output Performance Parallel program
Lecture 2 Parallel Programming Platforms
Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple
How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time
SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first
A Novel Switch Mechanism for Load Balancing in Public Cloud
International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) A Novel Switch Mechanism for Load Balancing in Public Cloud Kalathoti Rambabu 1, M. Chandra Sekhar 2 1 M. Tech (CSE), MVR College
Oracle Database In-Memory The Next Big Thing
Oracle Database In-Memory The Next Big Thing Maria Colgan Master Product Manager #DBIM12c Why is Oracle do this Oracle Database In-Memory Goals Real Time Analytics Accelerate Mixed Workload OLTP No Changes
Maximizing Hadoop Performance with Hardware Compression
Maximizing Hadoop Performance with Hardware Compression Robert Reiner Director of Marketing Compression and Security Exar Corporation November 2012 1 What is Big? sets whose size is beyond the ability
Fair Scheduling Algorithm with Dynamic Load Balancing Using In Grid Computing
Research Inventy: International Journal Of Engineering And Science Vol.2, Issue 10 (April 2013), Pp 53-57 Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com Fair Scheduling Algorithm with Dynamic
Part 2: Community Detection
Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -
Hadoop on a Low-Budget General Purpose HPC Cluster in Academia
Hadoop on a Low-Budget General Purpose HPC Cluster in Academia Paolo Garza, Paolo Margara, Nicolò Nepote, Luigi Grimaudo, and Elio Piccolo Dipartimento di Automatica e Informatica, Politecnico di Torino,
Grid e-services for Multi-Layer SOM Neural Network Simulation
Grid e-services for Multi-Layer SOM Neural Network Simulation,, Rui Silva Faculdade de Engenharia 4760-108 V. N. Famalicão, Portugal {rml,rsilva}@fam.ulusiada.pt 2007 Outline Overview Multi-Layer SOM Background
Distributed RAID Architectures for Cluster I/O Computing. Kai Hwang
Distributed RAID Architectures for Cluster I/O Computing Kai Hwang Internet and Cluster Computing Lab. University of Southern California 1 Presentation Outline : Scalable Cluster I/O The RAID-x Architecture
Characterizing the Performance of Dynamic Distribution and Load-Balancing Techniques for Adaptive Grid Hierarchies
Proceedings of the IASTED International Conference Parallel and Distributed Computing and Systems November 3-6, 1999 in Cambridge Massachusetts, USA Characterizing the Performance of Dynamic Distribution
Load Distribution on a Linux Cluster using Load Balancing
Load Distribution on a Linux Cluster using Load Balancing Aravind Elango M. Mohammed Safiq Undergraduate Students of Engg. Dept. of Computer Science and Engg. PSG College of Technology India Abstract:
Bigdata High Availability (HA) Architecture
Bigdata High Availability (HA) Architecture Introduction This whitepaper describes an HA architecture based on a shared nothing design. Each node uses commodity hardware and has its own local resources
Flash-Friendly File System (F2FS)
Flash-Friendly File System (F2FS) Feb 22, 2013 Joo-Young Hwang ([email protected]) S/W Dev. Team, Memory Business, Samsung Electronics Co., Ltd. Agenda Introduction FTL Device Characteristics
The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com
THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Efficient Parallel Processing on Public Cloud Servers using Load Balancing Manjunath K. C. M.Tech IV Sem, Department of CSE, SEA College of Engineering
Static Data Mining Algorithm with Progressive Approach for Mining Knowledge
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 85-93 Research India Publications http://www.ripublication.com Static Data Mining Algorithm with Progressive
OpenMosix Presented by Dr. Moshe Bar and MAASK [01]
OpenMosix Presented by Dr. Moshe Bar and MAASK [01] openmosix is a kernel extension for single-system image clustering. openmosix [24] is a tool for a Unix-like kernel, such as Linux, consisting of adaptive
Maximizing SQL Server Virtualization Performance
Maximizing SQL Server Virtualization Performance Michael Otey Senior Technical Director Windows IT Pro SQL Server Pro 1 What this presentation covers Host configuration guidelines CPU, RAM, networking
Load balancing in SOAJA (Service Oriented Java Adaptive Applications)
Load balancing in SOAJA (Service Oriented Java Adaptive Applications) Richard Olejnik Université des Sciences et Technologies de Lille Laboratoire d Informatique Fondamentale de Lille (LIFL UMR CNRS 8022)
processed parallely over the cluster nodes. Mapreduce thus provides a distributed approach to solve complex and lengthy problems
Big Data Clustering Using Genetic Algorithm On Hadoop Mapreduce Nivranshu Hans, Sana Mahajan, SN Omkar Abstract: Cluster analysis is used to classify similar objects under same group. It is one of the
A Novel Load Balancing Algorithms in Grid Computing
A Novel Load Balancing Algorithms in Grid Computing Shikha Gautam M.Tech. Student Computer Science SITM LKO Abhay Tripathi Assistant Professor Computer Science SITM LKO Abstract: The Grid is emerging as
Data Mining for Data Cloud and Compute Cloud
Data Mining for Data Cloud and Compute Cloud Prof. Uzma Ali 1, Prof. Punam Khandar 2 Assistant Professor, Dept. Of Computer Application, SRCOEM, Nagpur, India 1 Assistant Professor, Dept. Of Computer Application,
EFFICIENT GEAR-SHIFTING FOR A POWER-PROPORTIONAL DISTRIBUTED DATA-PLACEMENT METHOD
EFFICIENT GEAR-SHIFTING FOR A POWER-PROPORTIONAL DISTRIBUTED DATA-PLACEMENT METHOD 2014/1/27 Hieu Hanh Le, Satoshi Hikida and Haruo Yokota Tokyo Institute of Technology 1.1 Background 2 Commodity-based
<Insert Picture Here> Introducing Oracle VM: Oracle s Virtualization Product Strategy
Introducing Oracle VM: Oracle s Virtualization Product Strategy SAFE HARBOR STATEMENT The following is intended to outline our general product direction. It is intended for information
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data
Scaling in a Hypervisor Environment
Scaling in a Hypervisor Environment Richard McDougall Chief Performance Architect VMware VMware ESX Hypervisor Architecture Guest Monitor Guest TCP/IP Monitor (BT, HW, PV) File System CPU is controlled
Storage Systems Autumn 2009. Chapter 6: Distributed Hash Tables and their Applications André Brinkmann
Storage Systems Autumn 2009 Chapter 6: Distributed Hash Tables and their Applications André Brinkmann Scaling RAID architectures Using traditional RAID architecture does not scale Adding news disk implies
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray VMware
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray ware 2 Agenda The Hadoop Journey Why Virtualize Hadoop? Elasticity and Scalability Performance Tests Storage Reference
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems
Parallels Cloud Server 6.0
Parallels Cloud Server 6.0 Parallels Cloud Storage I/O Benchmarking Guide September 05, 2014 Copyright 1999-2014 Parallels IP Holdings GmbH and its affiliates. All rights reserved. Parallels IP Holdings
Network Infrastructure Services CS848 Project
Quality of Service Guarantees for Cloud Services CS848 Project presentation by Alexey Karyakin David R. Cheriton School of Computer Science University of Waterloo March 2010 Outline 1. Performance of cloud
LOAD BALANCING IN CLOUD COMPUTING
LOAD BALANCING IN CLOUD COMPUTING Neethu M.S 1 PG Student, Dept. of Computer Science and Engineering, LBSITW (India) ABSTRACT Cloud computing is emerging as a new paradigm for manipulating, configuring,
Survey on Load Rebalancing for Distributed File System in Cloud
Survey on Load Rebalancing for Distributed File System in Cloud Prof. Pranalini S. Ketkar Ankita Bhimrao Patkure IT Department, DCOER, PG Scholar, Computer Department DCOER, Pune University Pune university
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms
Dynamic Resource allocation in Cloud
Dynamic Resource allocation in Cloud ABSTRACT: Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from
