Mesh Partitioning and Load Balancing
|
|
|
- Julius McLaughlin
- 10 years ago
- Views:
Transcription
1 and Load Balancing Contents: Introduction / Motivation Goals of Load Balancing Structures Tools Slide Flow Chart of a Parallel (Dynamic) Application Partitioning of the initial mesh Computation Iteration step Data exchange + Meshrefinement and/or - movement Imbalance Loadredistribution Efficiency loss Slide and Load Balancing
2 Structure of a partitioned mesh Halo-Cells Global mesh Partitioned mesh Slide 3 Application Example from HPS-ICE Project Example: Model DBAG, 360 angle of crankshaft, mesh cells Slide and Load Balancing
3 Application Example from HPS-ICE Project At 540 angle of crankshaft: mesh cells Slide 5 Load Imbalance Between 360 and 540 : Increase of meshsize by a factor of 2 Without Loadbalancing: 2 Processors are sharing the additional load Significant loss of efficiency Slide and Load Balancing
4 Goals of Loadbalancing. Load Balance 2. Minimal communication costs - minimize the number of boundary cells, created by the mesh partitioner - minimize the number of processors, one has to communicate with 3. Minimal migration costs Slide 7 Steps of a Loadbalancing Procedure 2 steps of load distribution:. Decision: - how many and - which cells should be moved - where Load balancing algorithms ( Tools) 2. Migration: move the mesh cells to the selected processors has to be done by the application program Slide and Load Balancing
5 How Do Load Balancer Operate? How can I handle the problem, using [known] methods/algorithms? Mapping of the problem to known structures: Graphs Nodes of the graph computation costs Edges of the graph communication costs Slide 9 Mapping Mesh Õ Graph Mesh Graph Slide and Load Balancing
6 Graph Further information represented in a graph: Computation costs Weighting of nodes Communication costs Weighting of edges Example: Slide Goals of Graph Algorithms. Equal number of nodes within each partition (weighted: equal sum of node weights within each partition) Partition Partition load balance: 00 % (weight of cut edges: 4) Slide and Load Balancing
7 Goals of Graph Algorithms 2. Minimal number of cut edges (weighted: minimal sum of cut edges weight) Partition 2 Partition load balance: 00 % weight of cut edges: 3 Slide 3 Goals of Graph Algorithms 2a. minimal processor degree (node degree: number of neighbours) Max. processor degree: 3 Max. processor degree: 2 Slide and Load Balancing
8 Goals of Graph Algorithms Task for non weighted graphs: find a decomposition of the graph, with preferably the same number of nodes within each partition with a minimal number of cut edges between the partitions NP-complete problem (it cannot be solved in reasonable time in case of bigger problems) use of heuristics, which give a solution near the optimal one Slide 5 Tools Jostle: (Chris Walshaw, University of Greenwich) initial graph partitioning dynamic load distribution serial and parallel HLRS: services/tools/loadbalancer/jostle.html Metis: (George Karypis, University of Minnesota) multilevel partitioning algorithms initial partitioning serial (parmetis: parallel version) HLRS: services/tools/loadbalancer/metis.html Slide and Load Balancing
9 Jostle operates with an already partitioned and distributed mesh in the initial case: at first partitioning of the mesh using simple methods operates in general parallel no need of gathering the data on one processor partitioning effort is spread to the processors migrates boundary layers to the neighbouring processors minimization of cell migration Slide 7 Jostle available as stand-alone program (only serial version) and as procedure call (C und FORTRAN) different graph formats possible controlling the behaviour is possible by using parameters (e. g. load imbalance) Call (C): void pjostle(int *nnodes, int *offset, int *core, int *halo, int *index, int *degree, int *node_wt, int *partition, int *local_nedges, int *edges, int *edge_wt, int *network, int *processor_wt, int *output_level, int *dimension, double *coords); Slide and Load Balancing
10 Jostle (serial) Balance: 00 % Cut edges: Run time (SGI R4600): 58,9 sec 8 Partitions, Cells Slide 9 Jostle (parallel) Balance: 00 % Cut edges: Run time (SGI R4600):532,2 sec (in case of running 8 MPI-Processes) 8 Partitions, Cells Slide and Load Balancing
11 Metis serial graph partitioning available as standalone program and as procedure call (C und FORTRAN) fixed data format consecutive cell numbering required Call(C): METIS_PartGraphRecursive(int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag, int *numflag, int *nparts, int *options, int *edgecut, idxtype *part); Slide 2 ParMetis static & dynamic partitioning consecutive cell numbering required no settings possible Call for graph repartitioning (C): ParMETIS_RepartLDiffusion(idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag, int *numflag, int *options, int *edgecut, idxtype *part, MPI_Comm *comm); Slide and Load Balancing
12 Metis Balance: 00 % Cut edges: Run time (SGI R4600): 34,8 sec 8 Partitions, Cells Slide 23 Tools: Comparison Tool Jostle Ser. Par. Cut edges Run time (sec) + - serial & parallel arbitrary cell numbering various user settings ,9 532,2 Metis ,8 fast good results worse results serial Slide and Load Balancing
13 Summary Strategy:. At first: initial partitioning: a. choose appropriate serial partitioner (Jostle, Metis) b. distribute the cells to the processors 2. In case of an existing load imbalance: dynamic load balancing: a. cost-benefit-calculation b. in case of benefit: when migration tool available: parallel LB Jostle else: gather cell info on a particular processor proceed like in case of initial partitioning Slide 25 Overview Initial Partitioning Chaco Metis Jostle Submesh Submesh Submesh Processor Computation Load imbalance Processor 2 Computation Load imbalance Processor n Computation Load imbalance Cost - Benefit - Calculation Cost - Benefit - Calculation Cost - Benefit - Calculation >> >> >> >>.... >> >> Migration tool Migration tool Migration tool No No No Yes Yes Yes Collect cell information Jostle Cell exchange Collect cell information Jostle Cell exchange Collect cell information Jostle Cell exchange Central processor Slide and Load Balancing
Guide to Partitioning Unstructured Meshes for Parallel Computing
Guide to Partitioning Unstructured Meshes for Parallel Computing Phil Ridley Numerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR, UK, email: [email protected] April 17,
Mesh Generation and Load Balancing
Mesh Generation and Load Balancing Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee April 04, 2012 CS 594 04/04/2012 Slide 1 / 19 Outline Motivation Reliable
Distributed Dynamic Load Balancing for Iterative-Stencil Applications
Distributed Dynamic Load Balancing for Iterative-Stencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,
Partitioning and Dynamic Load Balancing for Petascale Applications
Partitioning and Dynamic Load Balancing for Petascale Applications Karen Devine, Sandia National Laboratories Erik Boman, Sandia National Laboratories Umit Çatalyürek, Ohio State University Lee Ann Riesen,
Scientific Computing Programming with Parallel Objects
Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore
Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations
Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdağ, Robert Heaphy, and Lee Ann Riesen Ohio State University Sandia
Fast Multipole Method for particle interactions: an open source parallel library component
Fast Multipole Method for particle interactions: an open source parallel library component F. A. Cruz 1,M.G.Knepley 2,andL.A.Barba 1 1 Department of Mathematics, University of Bristol, University Walk,
Characterizing the Performance of Dynamic Distribution and Load-Balancing Techniques for Adaptive Grid Hierarchies
Proceedings of the IASTED International Conference Parallel and Distributed Computing and Systems November 3-6, 1999 in Cambridge Massachusetts, USA Characterizing the Performance of Dynamic Distribution
CSE 4351/5351 Notes 7: Task Scheduling & Load Balancing
CSE / Notes : Task Scheduling & Load Balancing Task Scheduling A task is a (sequential) activity that uses a set of inputs to produce a set of outputs. A task (precedence) graph is an acyclic, directed
Optimizing Load Balance Using Parallel Migratable Objects
Optimizing Load Balance Using Parallel Migratable Objects Laxmikant V. Kalé, Eric Bohm Parallel Programming Laboratory University of Illinois Urbana-Champaign 2012/9/25 Laxmikant V. Kalé, Eric Bohm (UIUC)
New Challenges in Dynamic Load Balancing
New Challenges in Dynamic Load Balancing Karen D. Devine 1, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson Discrete Algorithms and Mathematics Department, Sandia National Laboratories, Albuquerque,
Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory
Graph Analytics in Big Data John Feo Pacific Northwest National Laboratory 1 A changing World The breadth of problems requiring graph analytics is growing rapidly Large Network Systems Social Networks
ParFUM: A Parallel Framework for Unstructured Meshes. Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008
ParFUM: A Parallel Framework for Unstructured Meshes Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008 What is ParFUM? A framework for writing parallel finite element
Mining Association Rules on Grid Platforms
UNIVERSITY OF TUNIS EL MANAR FACULTY OF SCIENCES OF TUNISIA Mining Association Rules on Grid Platforms Raja Tlili [email protected] Yahya Slimani [email protected] CoreGrid 11 Plan Introduction
FD4: A Framework for Highly Scalable Dynamic Load Balancing and Model Coupling
Center for Information Services and High Performance Computing (ZIH) FD4: A Framework for Highly Scalable Dynamic Load Balancing and Model Coupling Symposium on HPC and Data-Intensive Applications in Earth
Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing
/35 Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat 1 Karim Awara 1 Amani Alonazi 1 Hani Jamjoom 2 Dan Williams 2 Panos Kalnis 1 1 King Abdullah University of
Mesh Partitioning for Parallel Computational Fluid Dynamics Applications on a Grid
Mesh Partitioning for Parallel Computational Fluid Dynamics Applications on a Grid Youssef Mesri * Hugues Digonnet ** Hervé Guillard * * Smash project, Inria-Sophia Antipolis, BP 93, 06902 Sophia-Antipolis
Parallel Simplification of Large Meshes on PC Clusters
Parallel Simplification of Large Meshes on PC Clusters Hua Xiong, Xiaohong Jiang, Yaping Zhang, Jiaoying Shi State Key Lab of CAD&CG, College of Computer Science Zhejiang University Hangzhou, China April
A FAST AND HIGH QUALITY MULTILEVEL SCHEME FOR PARTITIONING IRREGULAR GRAPHS
SIAM J. SCI. COMPUT. Vol. 20, No., pp. 359 392 c 998 Society for Industrial and Applied Mathematics A FAST AND HIGH QUALITY MULTILEVEL SCHEME FOR PARTITIONING IRREGULAR GRAPHS GEORGE KARYPIS AND VIPIN
Load Balancing in Structured Peer to Peer Systems
Load Balancing in Structured Peer to Peer Systems DR.K.P.KALIYAMURTHIE 1, D.PARAMESWARI 2 Professor and Head, Dept. of IT, Bharath University, Chennai-600 073 1 Asst. Prof. (SG), Dept. of Computer Applications,
Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations
Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Roy D. Williams, 1990 Presented by Chris Eldred Outline Summary Finite Element Solver Load Balancing Results Types Conclusions
Load Balancing in Structured Peer to Peer Systems
Load Balancing in Structured Peer to Peer Systems Dr.K.P.Kaliyamurthie 1, D.Parameswari 2 1.Professor and Head, Dept. of IT, Bharath University, Chennai-600 073. 2.Asst. Prof.(SG), Dept. of Computer Applications,
Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations
Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations Richard Procassini, Matthew O'Brien and Janine Taylor Lawrence Livermore National Laboratory Joint Russian-American Five-Laboratory
Lecture 12: Partitioning and Load Balancing
Lecture 12: Partitioning and Load Balancing G63.2011.002/G22.2945.001 November 16, 2010 thanks to Schloegel,Karypis and Kumar survey paper and Zoltan website for many of today s slides and pictures Partitioning
LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2015. Hermann Härtig
LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2015 Hermann Härtig ISSUES starting points independent Unix processes and block synchronous execution who does it load migration mechanism
Dynamic Load Balancing for Cluster Computing Jaswinder Pal Singh, CSE @ Technische Universität München. e-mail: [email protected]
Dynamic Load Balancing for Cluster Computing Jaswinder Pal Singh, CSE @ Technische Universität München. e-mail: [email protected] Abstract: In parallel simulations, partitioning and load-balancing algorithms
Dynamic Load Balancing in Charm++ Abhinav S Bhatele Parallel Programming Lab, UIUC
Dynamic Load Balancing in Charm++ Abhinav S Bhatele Parallel Programming Lab, UIUC Outline Dynamic Load Balancing framework in Charm++ Measurement Based Load Balancing Examples: Hybrid Load Balancers Topology-aware
Tutorial: Partitioning, Load Balancing and the Zoltan Toolkit
Tutorial: Partitioning, Load Balancing and the Zoltan Toolkit Erik Boman and Karen Devine Discrete Algorithms and Math Dept. Sandia National Laboratories, NM CSCAPES Institute SciDAC Tutorial, MIT, June
Distributed communication-aware load balancing with TreeMatch in Charm++
Distributed communication-aware load balancing with TreeMatch in Charm++ The 9th Scheduling for Large Scale Systems Workshop, Lyon, France Emmanuel Jeannot Guillaume Mercier Francois Tessier In collaboration
Load balancing in a heterogeneous computer system by self-organizing Kohonen network
Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.
Load Balancing Strategies for Multi-Block Overset Grid Applications NAS-03-007
Load Balancing Strategies for Multi-Block Overset Grid Applications NAS-03-007 M. Jahed Djomehri Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035 Rupak Biswas NAS Division,
Load Balancing Techniques
Load Balancing Techniques 1 Lecture Outline Following Topics will be discussed Static Load Balancing Dynamic Load Balancing Mapping for load balancing Minimizing Interaction 2 1 Load Balancing Techniques
Dynamic Load Balancing of SAMR Applications on Distributed Systems y
Dynamic Load Balancing of SAMR Applications on Distributed Systems y Zhiling Lan, Valerie E. Taylor Department of Electrical and Computer Engineering Northwestern University, Evanston, IL 60208 fzlan,
Load Balancing. Load Balancing 1 / 24
Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Massively Parallel Multilevel Finite
Load Balancing Strategies for Parallel SAMR Algorithms
Proposal for a Summer Undergraduate Research Fellowship 2005 Computer science / Applied and Computational Mathematics Load Balancing Strategies for Parallel SAMR Algorithms Randolf Rotta Institut für Informatik,
It s Not A Disease: The Parallel Solver Packages MUMPS, PaStiX & SuperLU
It s Not A Disease: The Parallel Solver Packages MUMPS, PaStiX & SuperLU A. Windisch PhD Seminar: High Performance Computing II G. Haase March 29 th, 2012, Graz Outline 1 MUMPS 2 PaStiX 3 SuperLU 4 Summary
Parallelization: Binary Tree Traversal
By Aaron Weeden and Patrick Royal Shodor Education Foundation, Inc. August 2012 Introduction: According to Moore s law, the number of transistors on a computer chip doubles roughly every two years. First
Praktikum Wissenschaftliches Rechnen (Performance-optimized optimized Programming)
Praktikum Wissenschaftliches Rechnen (Performance-optimized optimized Programming) Dynamic Load Balancing Dr. Ralf-Peter Mundani Center for Simulation Technology in Engineering Technische Universität München
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
Load Balancing and Communication Optimization for Parallel Adaptive Finite Element Methods
Load Balancing and Communication Optimization for Parallel Adaptive Finite Element Methods J. E. Flaherty, R. M. Loy, P. C. Scully, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H. Ziantz Computer
Partitioning and Load Balancing for Emerging Parallel Applications and Architectures
Chapter Partitioning and Load Balancing for Emerging Parallel Applications and Architectures Karen D. Devine, Erik G. Boman, and George Karypis. Introduction An important component of parallel scientific
Load Balancing Of Parallel Monte Carlo Transport Calculations
Load Balancing Of Parallel Monte Carlo Transport Calculations R.J. Procassini, M. J. O Brien and J.M. Taylor Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 9551 The performance of
Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach
Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach S. M. Ashraful Kadir 1 and Tazrian Khan 2 1 Scientific Computing, Royal Institute of Technology (KTH), Stockholm, Sweden [email protected],
Tackling Big Data with MATLAB Adam Filion Application Engineer MathWorks, Inc.
Tackling Big Data with MATLAB Adam Filion Application Engineer MathWorks, Inc. 2015 The MathWorks, Inc. 1 Challenges of Big Data Any collection of data sets so large and complex that it becomes difficult
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications Harris Z. Zebrowitz Lockheed Martin Advanced Technology Laboratories 1 Federal Street Camden, NJ 08102
Evaluating partitioning of big graphs
Evaluating partitioning of big graphs Fredrik Hallberg, Joakim Candefors, Micke Soderqvist [email protected], [email protected], [email protected] Royal Institute of Technology, Stockholm, Sweden Abstract. Distributed
Introduction to DISC and Hadoop
Introduction to DISC and Hadoop Alice E. Fischer April 24, 2009 Alice E. Fischer DISC... 1/20 1 2 History Hadoop provides a three-layer paradigm Alice E. Fischer DISC... 2/20 Parallel Computing Past and
Load-Balancing Spatially Located Computations using Rectangular Partitions
Load-Balancing Spatially Located Computations using Rectangular Partitions Erik Saule a,, Erdeniz Ö. Başa,b, Ümit V. Çatalyüreka,c a Department of Biomedical Informatics. The Ohio State University b Department
Molecular simulation of fluid dynamics on the nanoscale
VI. International Conference on Computational Fluid Dynamics Molecular simulation of fluid dynamics on the nanoscale St. Petersburg, July 16, 2010 M. Horsch, Y.-Tz. Hsiang, Z. Liu, S. K. Miroshnichenko,
Designing Dashboards and Scorecards for End-User Needs. Jim Hadley
Designing Dashboards and Scorecards for End-User Needs Jim Hadley Topics Business Intelligence Definitions Past and Current BI Application Capabilities Business Intelligence Layers BI Application Development
1. Relational database accesses data in a sequential form. (Figures 7.1, 7.2)
Chapter 7 Data Structures for Computer Graphics (This chapter was written for programmers - option in lecture course) Any computer model of an Object must comprise three different types of entities: 1.
walberla: Towards an Adaptive, Dynamically Load-Balanced, Massively Parallel Lattice Boltzmann Fluid Simulation
walberla: Towards an Adaptive, Dynamically Load-Balanced, Massively Parallel Lattice Boltzmann Fluid Simulation SIAM Parallel Processing for Scientific Computing 2012 February 16, 2012 Florian Schornbaum,
Topological Properties
Advanced Computer Architecture Topological Properties Routing Distance: Number of links on route Node degree: Number of channels per node Network diameter: Longest minimum routing distance between any
Big Data Graph Algorithms
Christian Schulz CompSE seminar, RWTH Aachen, Karlsruhe 1 Christian Schulz: Institute for Theoretical www.kit.edu Informatics Algorithm Engineering design analyze Algorithms implement experiment 1 Christian
Dynamic Mapping and Load Balancing on Scalable Interconnection Networks Alan Heirich, California Institute of Technology Center for Advanced Computing Research The problems of mapping and load balancing
GPU Computing with CUDA Lecture 4 - Optimizations. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile
GPU Computing with CUDA Lecture 4 - Optimizations Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 3 Control flow Coalescing Latency hiding
Charm++, what s that?!
Charm++, what s that?! Les Mardis du dev François Tessier - Runtime team October 15, 2013 François Tessier Charm++ 1 / 25 Outline 1 Introduction 2 Charm++ 3 Basic examples 4 Load Balancing 5 Conclusion
Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4
Center for Information Services and High Performance Computing (ZIH) Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4 PARA 2010, June 9, Reykjavík, Iceland Matthias
DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS
DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS by Belal Ahmad Ibraheem Nwiran Dr. Ali Shatnawi Thesis submitted in partial fulfillment of
Load Balancing in Downlink LTE Self-Optimizing Networks
FP7 ICT-SOCRATES Load Balancing in Downlink LTE Self-Optimizing Networks Andreas Lobinger (NSN) Szymon Stefanski (NSN) Thomas Jansen (TUBS) Irina Balan (IBBT) VTC 2010 spring Taipei 19 May Content Introduction
Load Balancing on Massively Parallel Networks: A Cellular Automaton Approach
Load Balancing on Massively Parallel Networks: A Cellular Automaton Approach by Brian Dickens at the Thomas Jefferson High School for Science and Technology supervising instructor: Donald Hyatt originally
Hash-Storage Techniques for Adaptive Multilevel Solvers and Their Domain Decomposition Parallelization
Contemporary Mathematics Volume 218, 1998 B 0-8218-0988-1-03018-1 Hash-Storage Techniques for Adaptive Multilevel Solvers and Their Domain Decomposition Parallelization Michael Griebel and Gerhard Zumbusch
Hadoop WordCount Explained! IT332 Distributed Systems
Hadoop WordCount Explained! IT332 Distributed Systems Typical problem solved by MapReduce Read a lot of data Map: extract something you care about from each record Shuffle and Sort Reduce: aggregate, summarize,
PPD: Scheduling and Load Balancing 2
PPD: Scheduling and Load Balancing 2 Fernando Silva Computer Science Department Center for Research in Advanced Computing Systems (CRACS) University of Porto, FCUP http://www.dcc.fc.up.pt/~fds 2 (Some
A Novel Switch Mechanism for Load Balancing in Public Cloud
International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) A Novel Switch Mechanism for Load Balancing in Public Cloud Kalathoti Rambabu 1, M. Chandra Sekhar 2 1 M. Tech (CSE), MVR College
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
areprovidedtoviewprograminformationgatheredbythecompilerandrelateittoinformation
ParallelProgrammingandPerformanceEvaluationwithThe InsungParkMichaelVossBrianArmstrongRudolfEigenmann SchoolofElectricalandComputerEngineering UrsaToolFamily andtheirintegrationwithperformanceevaluationenvironments.first,weproposeinteractivecompilationscenariosinsteadoftheusualblack-box-orienteduseofcompilertools.insuchscenarios,
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
Load Balancing on a Grid Using Data Characteristics
Load Balancing on a Grid Using Data Characteristics Jonathan White and Dale R. Thompson Computer Science and Computer Engineering Department University of Arkansas Fayetteville, AR 72701, USA {jlw09, drt}@uark.edu
