A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn
|
|
|
- Lindsay Dawson
- 10 years ago
- Views:
Transcription
1 A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn
2
3 CHAPTER 6 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, and Colonic Polyps 6.1 Introduction 6.2 Logistic Regression and Generalised Linear Models 6.3 Analysis Using R ESR and Plasma Proteins We can now fit a logistic regression model to the data using the glm function. We start with a model that includes only a single explanatory variable, fibrinogen. The code to fit the model is R> plasma_glm_1 <- glm(esr ~ fibrinogen, data = plasma, + family = binomial()) The formula implicitly defines a parameter for the global mean (the intercept term) as discussed in Chapters?? and??. The distribution of the response is defined by the family argument, a binomial distribution in our case. (The default link function when the binomial family is requested is the logistic function.) From the results in Figure 6.2 we see that the regression coefficient for fibrinogen is significant at the 5% level. An increase of one unit in this variable increases the log-odds in favour of an ESR value greater than 20 by an estimated 1.83 with 95% confidence interval R> confint(plasma_glm_1, parm = "fibrinogen") 2.5 % 97.5 % These values are more helpful if converted to the corresponding values for the odds themselves by exponentiating the estimate R> exp(coef(plasma_glm_1)["fibrinogen"]) fibrinogen and the confidence interval R> exp(confint(plasma_glm_1, parm = "fibrinogen")) 3
4 4 LOGISTIC REGRESSION AND GENERALISED LINEAR MODELS R> data("plasma", package = "HSAUR") R> layout(matrix(1:2, ncol = 2)) R> cdplot(esr ~ fibrinogen, data = plasma) R> cdplot(esr ~ globulin, data = plasma) ESR ESR < 20 ESR > ESR ESR < 20 ESR > fibrinogen globulin Figure 6.1 Conditional density plots of the erythrocyte sedimentation rate (ESR) given fibrinogen and globulin. 2.5 % 97.5 % The confidence interval is very wide because there are few observations overall and very few where the ESR value is greater than 20. Nevertheless it seems likely that increased values of fibrinogen lead to a greater probability of an ESR value greater than 20. We can now fit a logistic regression model that includes both explanatory variables using the code R> plasma_glm_2 <- glm(esr ~ fibrinogen + globulin, data = plasma, + family = binomial()) and the output of the summary method is shown in Figure 6.3. The coefficient for gamma globulin is not significantly different from zero. Subtracting the residual deviance of the second model from the corresponding value for the first model we get a value of Tested using a χ 2 -distribution with a single degree of freedom this is not significant at the 5% level and so we conclude that gamma globulin is not associated with ESR level. In R, the task of comparing the two nested models can be performed using the anova function
5 ANALYSIS USING R 5 R> summary(plasma_glm_1) Call: glm(formula = ESR ~ fibrinogen, family = binomial(), data = plasma) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) * fibrinogen * --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 31 degrees of freedom Residual deviance: on 30 degrees of freedom AIC: Number of Fisher Scoring iterations: 5 Figure 6.2 R output of the summary method for the logistic regression model fitted to the plasma data. R> anova(plasma_glm_1, plasma_glm_2, test = "Chisq") Analysis of Deviance Table Model 1: ESR ~ fibrinogen Model 2: ESR ~ fibrinogen + globulin Resid. Df Resid. Dev Df Deviance Pr(>Chi) Nevertheless we shall use the predicted values from the second model and plot them against the values of both explanatory variables using a bubble plot to illustrate the use of the symbols function. The estimated conditional probability of a ESR value larger 20 for all observations can be computed, following formula (??), by R> prob <- predict(plasma_glm_2, type = "response") and now we can assign a larger circle to observations with larger probability as shown in Figure 6.4. The plot clearly shows the increasing probability of an ESR value above 20 (larger circles) as the values of fibrinogen, and to a lesser extent, gamma globulin, increase Women s Role in Society Originally the data in Table?? would have been in a completely equivalent form to the data in Table?? data, but here the individual observations have been grouped into counts of numbers of agreements and disagreements for
6 6 LOGISTIC REGRESSION AND GENERALISED LINEAR MODELS R> summary(plasma_glm_2) Call: glm(formula = ESR ~ fibrinogen + globulin, family = binomial(), data = plasma) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) * fibrinogen * globulin Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 31 degrees of freedom Residual deviance: on 29 degrees of freedom AIC: Number of Fisher Scoring iterations: 5 Figure 6.3 R output of the summary method for the logistic regression model fitted to the plasma data. the two explanatory variables, sex and education. To fit a logistic regression model to such grouped data using the glm function we need to specify the number of agreements and disagreements as a two-column matrix on the left hand side of the model formula. We first fit a model that includes the two explanatory variables using the code R> data("womensrole", package = "HSAUR") R> fm1 <- cbind(agree, disagree) ~ sex + education R> womensrole_glm_1 <- glm(fm1, data = womensrole, + family = binomial()) From the summary output in Figure 6.5 it appears that education has a highly significant part to play in predicting whether a respondent will agree with the statement read to them, but the respondent s sex is apparently unimportant. As years of education increase the probability of agreeing with the statement declines. We now are going to construct a plot comparing the observed proportions of agreeing with those fitted by our fitted model. Because we will reuse this plot for another fitted object later on, we define a function which plots years of education against some fitted probabilities, e.g., R> role.fitted1 <- predict(womensrole_glm_1, type = "response") and labels each observation with the person s sex: R> myplot <- function(role.fitted) { + f <- womensrole$sex == "Female" + plot(womensrole$education, role.fitted, type = "n", + ylab = "Probability of agreeing",
7 ANALYSIS USING R 7 R> plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6), + ylim = c(25, 55), pch = ".") R> symbols(plasma$fibrinogen, plasma$globulin, circles = prob, + add = TRUE) globulin fibrinogen Figure 6.4 Bubble plot of fitted values for a logistic regression model fitted to the ESR data. + xlab = "Education", ylim = c(0,1)) + lines(womensrole$education[!f], role.fitted[!f], lty = 1) + lines(womensrole$education[f], role.fitted[f], lty = 2) + lgtxt <- c("fitted (Males)", "Fitted (Females)") + legend("topright", lgtxt, lty = 1:2, bty = "n") + y <- womensrole$agree / (womensrole$agree + + womensrole$disagree) + text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), + family = "HersheySerif", cex = 1.25) + }
8 8 LOGISTIC REGRESSION AND GENERALISED LINEAR MODELS R> summary(womensrole_glm_1) Call: glm(formula = fm1, family = binomial(), data = womensrole) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) <2e-16 *** sexfemale education <2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 40 degrees of freedom Residual deviance: on 38 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 Figure 6.5 R output of the summary method for the logistic regression model fitted to the womensrole data. The two curves for males and females in Figure 6.6 are almost the same reflecting the non-significant value of the regression coefficient for sex in womensrole_glm_1. But the observed values plotted on Figure 6.6 suggest that there might be an interaction of education and sex, a possibility that can be investigated by applying a further logistic regression model using R> fm2 <- cbind(agree,disagree) ~ sex * education R> womensrole_glm_2 <- glm(fm2, data = womensrole, + family = binomial()) The sex and education interaction term is seen to be highly significant, as can be seen from the summary output in Figure 6.7. We can obtain a plot of deviance residuals plotted against fitted values using the following code above Figure 6.9. The residuals fall into a horizontal band between 2 and 2. This pattern does not suggest a poor fit for any particular observation or subset of observations Colonic Polyps The data on colonic polyps in Table?? involves count data. We could try to model this using multiple regression but there are two problems. The first is that a response that is a count can only take positive values, and secondly such a variable is unlikely to have a normal distribution. Instead we will apply a GLM with a log link function, ensuring that fitted values are positive, and
9 ANALYSIS USING R 9 R> myplot(role.fitted1) Probability of agreeing Fitted (Males) Fitted (Females) Education Figure 6.6 Fitted (from womensrole_glm_1) and observed probabilities of agreeing for the womensrole data. a Poisson error distribution, i.e., P(y) = e λ λ y. y! This type of GLM is often known as Poisson regression. We can apply the model using R> data("polyps", package = "HSAUR") R> polyps_glm_1 <- glm(number ~ treat + age, data = polyps, + family = poisson()) (The default link function when the Poisson family is requested is the log function.)
10 10 LOGISTIC REGRESSION AND GENERALISED LINEAR MODELS R> summary(womensrole_glm_2) Call: glm(formula = fm2, family = binomial(), data = womensrole) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** sexfemale * education < 2e-16 *** sexfemale:education ** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 40 degrees of freedom Residual deviance: on 37 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 Figure 6.7 R output of the summary method for the logistic regression model fitted to the womensrole data. We can deal with overdispersion by using a procedure known as quasilikelihood, which allows the estimation of model parameters without fully knowing the error distribution of the response variable. McCullagh and Nelder (1989) give full details of the quasi-likelihood approach. In many respects it simply allows for the estimation of φ from the data rather than defining it to be unity for the binomial and Poisson distributions. We can apply quasilikelihood estimation to the colonic polyps data using the following R code R> polyps_glm_2 <- glm(number ~ treat + age, data = polyps, + family = quasipoisson()) R> summary(polyps_glm_2) Call: glm(formula = number ~ treat + age, family = quasipoisson(), data = polyps) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-08 *** treatdrug ** age
11 ANALYSIS USING R 11 R> role.fitted2 <- predict(womensrole_glm_2, type = "response") R> myplot(role.fitted2) Probability of agreeing Fitted (Males) Fitted (Females) Education Figure 6.8 Fitted (from womensrole_glm_2) and observed probabilities of agreeing for the womensrole data. Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for quasipoisson family taken to be ) Null deviance: on 19 degrees of freedom Residual deviance: on 17 degrees of freedom AIC: NA Number of Fisher Scoring iterations: 5 The regression coefficients for both explanatory variables remain significant but their estimated standard errors are now much greater than the values given in Figure A possible reason for overdispersion in these data is that
12 12 LOGISTIC REGRESSION AND GENERALISED LINEAR MODELS R> res <- residuals(womensrole_glm_2, type = "deviance") R> plot(predict(womensrole_glm_2), res, + xlab="fitted values", ylab = "Residuals", + ylim = max(abs(res)) * c(-1,1)) R> abline(h = 0, lty = 2) Residuals Fitted values Figure 6.9 Plot of deviance residuals from logistic regression model fitted to the womensrole data. polyps do not occur independently of one another, but instead may cluster together.
13 ANALYSIS USING R 13 R> summary(polyps_glm_1) Call: glm(formula = number ~ treat + age, family = poisson(), data = polyps) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** treatdrug < 2e-16 *** age e-11 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: on 19 degrees of freedom Residual deviance: on 17 degrees of freedom AIC: Number of Fisher Scoring iterations: 5 Figure 6.10 R output of the summary method for the Poisson regression model fitted to the polyps data.
14
15 Bibliography McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, London, UK: Chapman & Hall/CRC.
Generalized Linear Models
Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the
Lab 13: Logistic Regression
Lab 13: Logistic Regression Spam Emails Today we will be working with a corpus of emails received by a single gmail account over the first three months of 2012. Just like any other email address this account
Logistic Regression (a type of Generalized Linear Model)
Logistic Regression (a type of Generalized Linear Model) 1/36 Today Review of GLMs Logistic Regression 2/36 How do we find patterns in data? We begin with a model of how the world works We use our knowledge
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
Régression logistique : introduction
Chapitre 16 Introduction à la statistique avec R Régression logistique : introduction Une variable à expliquer binaire Expliquer un risque suicidaire élevé en prison par La durée de la peine L existence
Multivariate Logistic Regression
1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation
Logistic regression (with R)
Logistic regression (with R) Christopher Manning 4 November 2007 1 Theory We can transform the output of a linear regression to be suitable for probabilities by using a logit link function on the lhs as
Multiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
Automated Biosurveillance Data from England and Wales, 1991 2011
Article DOI: http://dx.doi.org/10.3201/eid1901.120493 Automated Biosurveillance Data from England and Wales, 1991 2011 Technical Appendix This online appendix provides technical details of statistical
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate
Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne
Applied Statistics J. Blanchet and J. Wadsworth Institute of Mathematics, Analysis, and Applications EPF Lausanne An MSc Course for Applied Mathematicians, Fall 2012 Outline 1 Model Comparison 2 Model
Examining a Fitted Logistic Model
STAT 536 Lecture 16 1 Examining a Fitted Logistic Model Deviance Test for Lack of Fit The data below describes the male birth fraction male births/total births over the years 1931 to 1990. A simple logistic
GLMs: Gompertz s Law. GLMs in R. Gompertz s famous graduation formula is. or log µ x is linear in age, x,
Computing: an indispensable tool or an insurmountable hurdle? Iain Currie Heriot Watt University, Scotland ATRC, University College Dublin July 2006 Plan of talk General remarks The professional syllabus
We extended the additive model in two variables to the interaction model by adding a third term to the equation.
Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma [email protected] The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
MSwM examples. Jose A. Sanchez-Espigares, Alberto Lopez-Moreno Dept. of Statistics and Operations Research UPC-BarcelonaTech.
MSwM examples Jose A. Sanchez-Espigares, Alberto Lopez-Moreno Dept. of Statistics and Operations Research UPC-BarcelonaTech February 24, 2014 Abstract Two examples are described to illustrate the use of
Basic Statistical and Modeling Procedures Using SAS
Basic Statistical and Modeling Procedures Using SAS One-Sample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom
11. Analysis of Case-control Studies Logistic Regression
Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
Lecture 8: Gamma regression
Lecture 8: Gamma regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Models with constant coefficient of variation Gamma regression: estimation and testing
Chapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -
Lecture 6: Poisson regression
Lecture 6: Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction EDA for Poisson regression Estimation and testing in Poisson regression
Psychology 205: Research Methods in Psychology
Psychology 205: Research Methods in Psychology Using R to analyze the data for study 2 Department of Psychology Northwestern University Evanston, Illinois USA November, 2012 1 / 38 Outline 1 Getting ready
Multinomial and Ordinal Logistic Regression
Multinomial and Ordinal Logistic Regression ME104: Linear Regression Analysis Kenneth Benoit August 22, 2012 Regression with categorical dependent variables When the dependent variable is categorical,
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
ANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R.
ANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R. 1. Motivation. Likert items are used to measure respondents attitudes to a particular question or statement. One must recall
Package dsmodellingclient
Package dsmodellingclient Maintainer Author Version 4.1.0 License GPL-3 August 20, 2015 Title DataSHIELD client site functions for statistical modelling DataSHIELD
Effect Displays in R for Generalised Linear Models
Effect Displays in R for Generalised Linear Models John Fox McMaster University Hamilton, Ontario, Canada Abstract This paper describes the implementation in R of a method for tabular or graphical display
GENERALIZED LINEAR MODELS IN VEHICLE INSURANCE
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 62 41 Number 2, 2014 http://dx.doi.org/10.11118/actaun201462020383 GENERALIZED LINEAR MODELS IN VEHICLE INSURANCE Silvie Kafková
VI. Introduction to Logistic Regression
VI. Introduction to Logistic Regression We turn our attention now to the topic of modeling a categorical outcome as a function of (possibly) several factors. The framework of generalized linear models
Time-Series Regression and Generalized Least Squares in R
Time-Series Regression and Generalized Least Squares in R An Appendix to An R Companion to Applied Regression, Second Edition John Fox & Sanford Weisberg last revision: 11 November 2010 Abstract Generalized
Chapter 29 The GENMOD Procedure. Chapter Table of Contents
Chapter 29 The GENMOD Procedure Chapter Table of Contents OVERVIEW...1365 WhatisaGeneralizedLinearModel?...1366 ExamplesofGeneralizedLinearModels...1367 TheGENMODProcedure...1368 GETTING STARTED...1370
Using R for Linear Regression
Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
Chapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,
GLM I An Introduction to Generalized Linear Models
GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March 2009 Presented by: Tanya D. Havlicek, Actuarial Assistant 0 ANTITRUST Notice The Casualty Actuarial
Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)
Overview Classes 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) 2-4 Loglinear models (8) 5-4 15-17 hrs; 5B02 Building and
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
Simple example of collinearity in logistic regression
1 Confounding and Collinearity in Multivariate Logistic Regression We have already seen confounding and collinearity in the context of linear regression, and all definitions and issues remain essentially
MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group
MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could
Journal of Statistical Software
JSS Journal of Statistical Software January 2011, Volume 38, Issue 5. http://www.jstatsoft.org/ Lexis: An R Class for Epidemiological Studies with Long-Term Follow-Up Martyn Plummer International Agency
Local classification and local likelihoods
Local classification and local likelihoods November 18 k-nearest neighbors The idea of local regression can be extended to classification as well The simplest way of doing so is called nearest neighbor
Electronic Thesis and Dissertations UCLA
Electronic Thesis and Dissertations UCLA Peer Reviewed Title: A Multilevel Longitudinal Analysis of Teaching Effectiveness Across Five Years Author: Wang, Kairong Acceptance Date: 2013 Series: UCLA Electronic
Stat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015
Stat 412/512 CASE INFLUENCE STATISTICS Feb 2 2015 Charlotte Wickham stat512.cwick.co.nz Regression in your field See website. You may complete this assignment in pairs. Find a journal article in your field
HLM software has been one of the leading statistical packages for hierarchical
Introductory Guide to HLM With HLM 7 Software 3 G. David Garson HLM software has been one of the leading statistical packages for hierarchical linear modeling due to the pioneering work of Stephen Raudenbush
Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This
CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS
Examples: Regression And Path Analysis CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Regression analysis with univariate or multivariate dependent variables is a standard procedure for modeling relationships
EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION
EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988). Dutch children spend 5.5 hours/day
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,
Package smoothhr. November 9, 2015
Encoding UTF-8 Type Package Depends R (>= 2.12.0),survival,splines Package smoothhr November 9, 2015 Title Smooth Hazard Ratio Curves Taking a Reference Value Version 1.0.2 Date 2015-10-29 Author Artur
SUGI 29 Statistics and Data Analysis
Paper 194-29 Head of the CLASS: Impress your colleagues with a superior understanding of the CLASS statement in PROC LOGISTIC Michelle L. Pritchard and David J. Pasta Ovation Research Group, San Francisco,
Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@
Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@ Yanchun Xu, Andrius Kubilius Joint Commission on Accreditation of Healthcare Organizations,
Logistic (RLOGIST) Example #1
Logistic (RLOGIST) Example #1 SUDAAN Statements and Results Illustrated EFFECTS RFORMAT, RLABEL REFLEVEL EXP option on MODEL statement Hosmer-Lemeshow Test Input Data Set(s): BRFWGT.SAS7bdat Example Using
Package MDM. February 19, 2015
Type Package Title Multinomial Diversity Model Version 1.3 Date 2013-06-28 Package MDM February 19, 2015 Author Glenn De'ath ; Code for mdm was adapted from multinom in the nnet package
Regression 3: Logistic Regression
Regression 3: Logistic Regression Marco Baroni Practical Statistics in R Outline Logistic regression Logistic regression in R Outline Logistic regression Introduction The model Looking at and comparing
Statistics in Retail Finance. Chapter 2: Statistical models of default
Statistics in Retail Finance 1 Overview > We consider how to build statistical models of default, or delinquency, and how such models are traditionally used for credit application scoring and decision
SUMAN DUVVURU STAT 567 PROJECT REPORT
SUMAN DUVVURU STAT 567 PROJECT REPORT SURVIVAL ANALYSIS OF HEROIN ADDICTS Background and introduction: Current illicit drug use among teens is continuing to increase in many countries around the world.
Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.)
Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.) Logistic regression generalizes methods for 2-way tables Adds capability studying several predictors, but Limited to
MODEL I: DRINK REGRESSED ON GPA & MALE, WITHOUT CENTERING
Interpreting Interaction Effects; Interaction Effects and Centering Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 20, 2015 Models with interaction effects
data visualization and regression
data visualization and regression Sepal.Length 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 I. setosa I. versicolor I. virginica I. setosa I. versicolor I. virginica Species Species
Gamma Distribution Fitting
Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics
I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Beckman HLM Reading Group: Questions, Answers and Examples Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Linear Algebra Slide 1 of
Outline. Dispersion Bush lupine survival Quasi-Binomial family
Outline 1 Three-way interactions 2 Overdispersion in logistic regression Dispersion Bush lupine survival Quasi-Binomial family 3 Simulation for inference Why simulations Testing model fit: simulating the
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
LOGISTIC REGRESSION ANALYSIS
LOGISTIC REGRESSION ANALYSIS C. Mitchell Dayton Department of Measurement, Statistics & Evaluation Room 1230D Benjamin Building University of Maryland September 1992 1. Introduction and Model Logistic
Correlation and Simple Linear Regression
Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a
Comparing Nested Models
Comparing Nested Models ST 430/514 Two models are nested if one model contains all the terms of the other, and at least one additional term. The larger model is the complete (or full) model, and the smaller
sample median Sample quartiles sample deciles sample quantiles sample percentiles Exercise 1 five number summary # Create and view a sorted
Sample uartiles We have seen that the sample median of a data set {x 1, x, x,, x n }, sorted in increasing order, is a value that divides it in such a way, that exactly half (i.e., 50%) of the sample observations
Regression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
Linda Staub & Alexandros Gekenidis
Seminar in Statistics: Survival Analysis Chapter 2 Kaplan-Meier Survival Curves and the Log- Rank Test Linda Staub & Alexandros Gekenidis March 7th, 2011 1 Review Outcome variable of interest: time until
Simple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
1 Logistic Regression
Generalized Linear Models 1 May 29, 2012 Generalized Linear Models (GLM) In the previous chapter on regression, we focused primarily on the classic setting where the response y is continuous and typically
Penalized Logistic Regression and Classification of Microarray Data
Penalized Logistic Regression and Classification of Microarray Data Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France Penalized Logistic Regression andclassification
Time Series Analysis
Time Series 1 April 9, 2013 Time Series Analysis This chapter presents an introduction to the branch of statistics known as time series analysis. Often the data we collect in environmental studies is collected
Statistics 305: Introduction to Biostatistical Methods for Health Sciences
Statistics 305: Introduction to Biostatistical Methods for Health Sciences Modelling the Log Odds Logistic Regression (Chap 20) Instructor: Liangliang Wang Statistics and Actuarial Science, Simon Fraser
Simple Predictive Analytics Curtis Seare
Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use
Poisson Regression or Regression of Counts (& Rates)
Poisson Regression or Regression of (& Rates) Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Generalized Linear Models Slide 1 of 51 Outline Outline
Ordinal Regression. Chapter
Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe
Nominal and ordinal logistic regression
Nominal and ordinal logistic regression April 26 Nominal and ordinal logistic regression Our goal for today is to briefly go over ways to extend the logistic regression model to the case where the outcome
Logistic regression modeling the probability of success
Logistic regression modeling the probability of success Regression models are usually thought of as only being appropriate for target variables that are continuous Is there any situation where we might
Time Series Analysis with R - Part I. Walter Zucchini, Oleg Nenadić
Time Series Analysis with R - Part I Walter Zucchini, Oleg Nenadić Contents 1 Getting started 2 1.1 Downloading and Installing R.................... 2 1.2 Data Preparation and Import in R.................
Unit 26: Small Sample Inference for One Mean
Unit 26: Small Sample Inference for One Mean Prerequisites Students need the background on confidence intervals and significance tests covered in Units 24 and 25. Additional Topic Coverage Additional coverage
Exchange Rate Regime Analysis for the Chinese Yuan
Exchange Rate Regime Analysis for the Chinese Yuan Achim Zeileis Ajay Shah Ila Patnaik Abstract We investigate the Chinese exchange rate regime after China gave up on a fixed exchange rate to the US dollar
Data exploration with Microsoft Excel: analysing more than one variable
Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical
15.1 The Structure of Generalized Linear Models
15 Generalized Linear Models Due originally to Nelder and Wedderburn (1972), generalized linear models are a remarkable synthesis and extension of familiar regression models such as the linear models described
2013 MBA Jump Start Program. Statistics Module Part 3
2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just
General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n
Milk Data Analysis. 1. Objective Introduction to SAS PROC MIXED Analyzing protein milk data using STATA Refit protein milk data using PROC MIXED
1. Objective Introduction to SAS PROC MIXED Analyzing protein milk data using STATA Refit protein milk data using PROC MIXED 2. Introduction to SAS PROC MIXED The MIXED procedure provides you with flexibility
ANOVA. February 12, 2015
ANOVA February 12, 2015 1 ANOVA models Last time, we discussed the use of categorical variables in multivariate regression. Often, these are encoded as indicator columns in the design matrix. In [1]: %%R
Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model
Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity
MIXED MODEL ANALYSIS USING R
Research Methods Group MIXED MODEL ANALYSIS USING R Using Case Study 4 from the BIOMETRICS & RESEARCH METHODS TEACHING RESOURCE BY Stephen Mbunzi & Sonal Nagda www.ilri.org/rmg www.worldagroforestrycentre.org/rmg
Each function call carries out a single task associated with drawing the graph.
Chapter 3 Graphics with R 3.1 Low-Level Graphics R has extensive facilities for producing graphs. There are both low- and high-level graphics facilities. The low-level graphics facilities provide basic
GLM with a Gamma-distributed Dependent Variable
GLM with a Gamma-distributed Dependent Variable Paul E. Johnson October 6, 204 Introduction I started out to write about why the Gamma distribution in a GLM is useful. In the end, I ve found it difficult
Using An Ordered Logistic Regression Model with SAS Vartanian: SW 541
Using An Ordered Logistic Regression Model with SAS Vartanian: SW 541 libname in1 >c:\=; Data first; Set in1.extract; A=1; PROC LOGIST OUTEST=DD MAXITER=100 ORDER=DATA; OUTPUT OUT=CC XBETA=XB P=PROB; MODEL
Module 4 - Multiple Logistic Regression
Module 4 - Multiple Logistic Regression Objectives Understand the principles and theory underlying logistic regression Understand proportions, probabilities, odds, odds ratios, logits and exponents Be
