Automated Biosurveillance Data from England and Wales,
|
|
|
- April Gordon
- 10 years ago
- Views:
Transcription
1 Article DOI: Automated Biosurveillance Data from England and Wales, Technical Appendix This online appendix provides technical details of statistical methods; further technical description of results; and online Technical Appendix Figures 1 to 5 referred to in the main text. References are numbered as in the main text. Statistical Methods The models used to analyse the data were quasi-poisson models of the form E(y t ) = μ t, var(y t ) = μ t with 1 (A) where y t is the count of a particular organism in week t and is a dispersion parameter representing extra-poisson variability when > 1. Generalised linear models (GLM) of the form log(μ t ) = α + βt + seas(t) (B) were used, where seas(t) is a 12-level factor representing seasons, the factor levels roughly corresponding to calendar months (13). In analyses where more detailed modelling of trends was required we used generalized additive models (GAM) of the form log(μ t ) = α + s(t) + seas(t) (C) where s(t) represents a smooth function of time (14). Time t was centred in all analyses. Estimation of the regression parameters was by maximum quasi-likelihood, and inclusion of model terms was tested using the likelihood ratio test. The dispersion parameter was estimated by dividing the Pearson chi-square by the degrees of freedom (13, p. 200). To avoid overfitting the model with sparse data, if the estimated value of was less than 1 we forced it to equal 1 ( was only ever less than 1 with sparse data). A natural statistical model for surveillance data is the negative binomial model, describing a random variable which is conditionally Poisson with mean ν, with ν itself a random variable with a gamma density of mean μ. This is a negative binomial distribution Page 1 of 6
2 with mean μ and variance of the form μ, with > 1 (13, p. 199). The skewness of the distribution is (2 1) / ( μ) 1/2. To study the mean-variance and mean-skewness relationships empirically we first deseasonalized the data using the transformation z t = y t /exp(seas(t)), (D) where y t is the observed count and seas(t) is the fitted seasonal factor. Mean-variance relationships were analysed by plotting the log of the variance of z t against the log of the mean of z t in adjacent 6-month periods. The line log(var) = log(mean) corresponds to the Poisson distribution, and the line log(var) = log( ) + log(mean) corresponds to the negative binomial model. Consistency of the data with the latter was investigated by testing the null hypothesis that the slope in the normal errors regression of log(var) against log(mean) is 1. Similarly, we plotted the skewness of z t against the log of the mean of z t. The curve skewness = exp( 0.5 log(mean)) corresponds to the Poisson distribution, and the line skewness = exp(log( 1/2 (2 1)) 0.5 log(mean)) corresponds to the negative binomial model. Consistency of the data with the latter was investigated by testing the null hypothesis that the coefficient of log(mean) in the normal errors regression with log link is 0.5. Formal goodness of fit tests were not employed, owing to the sparsity of the data for many organisms. Results Means, Seasonality and Trends Linear trends were investigated using the model in equation B, with slope parameter β. We investigated seasonality as follows. When the estimated value of α in the GLM of equation A was non-negative, as was the case for 283 organisms, we fitted the GAM of equation B. We did not seek to fit the GAM to sparse data (defined as those organisms with α < 0) owing to convergence problems. Seasonality was assessed from the final model fitted for each time series. Dispersion We studied overdispersion relative to the Poisson distribution for all 2,254 organisms. We first obtained the log of the mean weekly count, α. Then for organisms with specimen dates spanning 52 or fewer weeks we fitted the GLM of equation A and obtained the Page 2 of 6
3 dispersion parameter,. For organisms spanning more than 52 weeks we used the procedure described previously, fitting a GLM or a GAM according to the value of α, and obtained the dispersion parameter. The means shown in online Technical Appendix Figure 4 (left) and Figure 4 (right) are the values of exp(α) (the data were centred prior to analysis). Relationships between Mean, Variance and Skewness Figure 5 (B) and Figure 6 (B) of the main text show histograms of the slope parameters obtained for the two regressions, of log(variance) against log(mean), and of skewness against log(mean). The median value of the slope parameter for the linear regression of log(variance) on log(mean) was 1.2, corresponding to a variance function proportional to μ 1.2. For the log-linear regression of skewness against log(mean), the median slope parameter was 0.34, corresponding to a skewness function proportional to μ Thus, the data tend to exhibit greater variance and skewness than under the negative binomial model, though very substantial departures from it are uncommon. The quasi-poisson and negative binomial models provide reasonable compromises if a single model is sought for all organisms, though there is clearly room for improvement, perhaps by allowing a more general power dependence between the variance (and the skewness) and the mean. Technical Appendix Figures 1 to 5 All additional figures are referred to in the main text. Technical Appendix Figure 4 is also referred to under Results. Page 3 of 6
4 Technical Appendix Figure 1. Number of laboratories reporting by date of specimen and date of report. Both decline over time. The numbers by date of report are lower than the number by date of specimen, suggesting batching of reports. Technical Appendix Figure 2. Differences in weekly counts, date of report minus date of specimen. Left: isolates. Right: organism types. Both fluctuate around zero, with substantial variance. Page 4 of 6
5 Technical Appendix Figure 3. Histograms of reporting delays (days) for four organisms. Modal delays are longer for the salmonellas, owing to the extra typing step involved. Page 5 of 6
6 Technical Appendix Figure 4. Dispersion parameter. Left: plotted against mean count (on log scale). Right: for data by week of report and by week of specimen, with diagonal line. Technical Appendix Figure 5. Weekly counts of Helicobacter pylori isolates. Left: histogram, showing an excess of weeks with a count of zero. Right: time series of weekly counts, showing sudden changes in level, and a long run of zeroes between 1996 and Page 6 of 6
Poisson Models for Count Data
Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the
A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn
A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 6 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, and Colonic Polyps
Logistic Regression (a type of Generalized Linear Model)
Logistic Regression (a type of Generalized Linear Model) 1/36 Today Review of GLMs Logistic Regression 2/36 How do we find patterns in data? We begin with a model of how the world works We use our knowledge
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model
Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity
Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
EVALUATION OF PROBABILITY MODELS ON INSURANCE CLAIMS IN GHANA
EVALUATION OF PROBABILITY MODELS ON INSURANCE CLAIMS IN GHANA E. J. Dadey SSNIT, Research Department, Accra, Ghana S. Ankrah, PhD Student PGIA, University of Peradeniya, Sri Lanka Abstract This study investigates
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Logistic Regression (1/24/13)
STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used
Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives
Factors affecting online sales
Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4
Introduction to Predictive Modeling Using GLMs
Introduction to Predictive Modeling Using GLMs Dan Tevet, FCAS, MAAA, Liberty Mutual Insurance Group Anand Khare, FCAS, MAAA, CPCU, Milliman 1 Antitrust Notice The Casualty Actuarial Society is committed
Regression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA
VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density
business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
Generalized Linear Models
Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the
Lecture 8: Gamma regression
Lecture 8: Gamma regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Models with constant coefficient of variation Gamma regression: estimation and testing
2. Simple Linear Regression
Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression
15.1 The Structure of Generalized Linear Models
15 Generalized Linear Models Due originally to Nelder and Wedderburn (1972), generalized linear models are a remarkable synthesis and extension of familiar regression models such as the linear models described
Computer exercise 4 Poisson Regression
Chalmers-University of Gothenburg Department of Mathematical Sciences Probability, Statistics and Risk MVE300 Computer exercise 4 Poisson Regression When dealing with two or more variables, the functional
International Statistical Institute, 56th Session, 2007: Phil Everson
Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: [email protected] 1. Introduction
Normality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected]
CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS
Examples: Regression And Path Analysis CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Regression analysis with univariate or multivariate dependent variables is a standard procedure for modeling relationships
We extended the additive model in two variables to the interaction model by adding a third term to the equation.
Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
Regression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
11. Analysis of Case-control Studies Logistic Regression
Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
GENERALIZED LINEAR MODELS IN VEHICLE INSURANCE
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 62 41 Number 2, 2014 http://dx.doi.org/10.11118/actaun201462020383 GENERALIZED LINEAR MODELS IN VEHICLE INSURANCE Silvie Kafková
Predicting Health Care Costs by Two-part Model with Sparse Regularization
Predicting Health Care Costs by Two-part Model with Sparse Regularization Atsuyuki Kogure Keio University, Japan July, 2015 Abstract We consider the problem of predicting health care costs using the two-part
GLM I An Introduction to Generalized Linear Models
GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March 2009 Presented by: Tanya D. Havlicek, Actuarial Assistant 0 ANTITRUST Notice The Casualty Actuarial
CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
Practical. I conometrics. data collection, analysis, and application. Christiana E. Hilmer. Michael J. Hilmer San Diego State University
Practical I conometrics data collection, analysis, and application Christiana E. Hilmer Michael J. Hilmer San Diego State University Mi Table of Contents PART ONE THE BASICS 1 Chapter 1 An Introduction
MATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!
MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics
Gene Expression Analysis
Gene Expression Analysis Jie Peng Department of Statistics University of California, Davis May 2012 RNA expression technologies High-throughput technologies to measure the expression levels of thousands
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Xavier Conort [email protected] Motivation Location matters! Observed value at one location is
Causal Forecasting Models
CTL.SC1x -Supply Chain & Logistics Fundamentals Causal Forecasting Models MIT Center for Transportation & Logistics Causal Models Used when demand is correlated with some known and measurable environmental
Pearson's Correlation Tests
Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation
Logs Transformation in a Regression Equation
Fall, 2001 1 Logs as the Predictor Logs Transformation in a Regression Equation The interpretation of the slope and intercept in a regression change when the predictor (X) is put on a log scale. In this
Time series Forecasting using Holt-Winters Exponential Smoothing
Time series Forecasting using Holt-Winters Exponential Smoothing Prajakta S. Kalekar(04329008) Kanwal Rekhi School of Information Technology Under the guidance of Prof. Bernard December 6, 2004 Abstract
PREDICTIVE DISTRIBUTIONS OF OUTSTANDING LIABILITIES IN GENERAL INSURANCE
PREDICTIVE DISTRIBUTIONS OF OUTSTANDING LIABILITIES IN GENERAL INSURANCE BY P.D. ENGLAND AND R.J. VERRALL ABSTRACT This paper extends the methods introduced in England & Verrall (00), and shows how predictive
Appendix 1: Estimation of the two-variable saturated model in SPSS, Stata and R using the Netherlands 1973 example data
Appendix 1: Estimation of the two-variable saturated model in SPSS, Stata and R using the Netherlands 1973 example data A. SPSS commands and corresponding parameter estimates Copy the 1973 data from the
The zero-adjusted Inverse Gaussian distribution as a model for insurance claims
The zero-adjusted Inverse Gaussian distribution as a model for insurance claims Gillian Heller 1, Mikis Stasinopoulos 2 and Bob Rigby 2 1 Dept of Statistics, Macquarie University, Sydney, Australia. email:
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
MTH 140 Statistics Videos
MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative
2.2 Elimination of Trend and Seasonality
26 CHAPTER 2. TREND AND SEASONAL COMPONENTS 2.2 Elimination of Trend and Seasonality Here we assume that the TS model is additive and there exist both trend and seasonal components, that is X t = m t +
HLM software has been one of the leading statistical packages for hierarchical
Introductory Guide to HLM With HLM 7 Software 3 G. David Garson HLM software has been one of the leading statistical packages for hierarchical linear modeling due to the pioneering work of Stephen Raudenbush
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
ANNUITY LAPSE RATE MODELING: TOBIT OR NOT TOBIT? 1. INTRODUCTION
ANNUITY LAPSE RATE MODELING: TOBIT OR NOT TOBIT? SAMUEL H. COX AND YIJIA LIN ABSTRACT. We devise an approach, using tobit models for modeling annuity lapse rates. The approach is based on data provided
Premaster Statistics Tutorial 4 Full solutions
Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for
SKEWNESS. Measure of Dispersion tells us about the variation of the data set. Skewness tells us about the direction of variation of the data set.
SKEWNESS All about Skewness: Aim Definition Types of Skewness Measure of Skewness Example A fundamental task in many statistical analyses is to characterize the location and variability of a data set.
T O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these
Modelling the Scores of Premier League Football Matches
Modelling the Scores of Premier League Football Matches by: Daan van Gemert The aim of this thesis is to develop a model for estimating the probabilities of premier league football outcomes, with the potential
Nonnested model comparison of GLM and GAM count regression models for life insurance data
Nonnested model comparison of GLM and GAM count regression models for life insurance data Claudia Czado, Julia Pfettner, Susanne Gschlößl, Frank Schiller December 8, 2009 Abstract Pricing and product development
Underwriting risk control in non-life insurance via generalized linear models and stochastic programming
Underwriting risk control in non-life insurance via generalized linear models and stochastic programming 1 Introduction Martin Branda 1 Abstract. We focus on rating of non-life insurance contracts. We
GLMs: Gompertz s Law. GLMs in R. Gompertz s famous graduation formula is. or log µ x is linear in age, x,
Computing: an indispensable tool or an insurmountable hurdle? Iain Currie Heriot Watt University, Scotland ATRC, University College Dublin July 2006 Plan of talk General remarks The professional syllabus
Technical Efficiency Accounting for Environmental Influence in the Japanese Gas Market
Technical Efficiency Accounting for Environmental Influence in the Japanese Gas Market Sumiko Asai Otsuma Women s University 2-7-1, Karakida, Tama City, Tokyo, 26-854, Japan [email protected] Abstract:
CALL VOLUME FORECASTING FOR SERVICE DESKS
CALL VOLUME FORECASTING FOR SERVICE DESKS Krishna Murthy Dasari Satyam Computer Services Ltd. This paper discusses the practical role of forecasting for Service Desk call volumes. Although there are many
Examining a Fitted Logistic Model
STAT 536 Lecture 16 1 Examining a Fitted Logistic Model Deviance Test for Lack of Fit The data below describes the male birth fraction male births/total births over the years 1931 to 1990. A simple logistic
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
Poisson Regression or Regression of Counts (& Rates)
Poisson Regression or Regression of (& Rates) Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Generalized Linear Models Slide 1 of 51 Outline Outline
BEST PRACTICE GUIDE ON STATISTICAL ANALYSIS OF FATIGUE DATA
INTERNATIONAL INSTITUTE OF WELDING UNITED KINGDOM DELEGATION Commission XIII - WG Doc: IIW-XIII-WG-4-03 FEBRUARY 003 BEST PRACTICE GUIDE ON STATISTICAL ANALYSIS OF FATIGUE DATA C R A Schneider and S J
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
17. SIMPLE LINEAR REGRESSION II
17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.
Univariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
Regression and Correlation
Regression and Correlation Topics Covered: Dependent and independent variables. Scatter diagram. Correlation coefficient. Linear Regression line. by Dr.I.Namestnikova 1 Introduction Regression analysis
STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
Course Syllabus MATH 110 Introduction to Statistics 3 credits
Course Syllabus MATH 110 Introduction to Statistics 3 credits Prerequisites: Algebra proficiency is required, as demonstrated by successful completion of high school algebra, by completion of a college
SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing [email protected]
SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing [email protected] IN SPSS SESSION 2, WE HAVE LEARNT: Elementary Data Analysis Group Comparison & One-way
PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS INTRODUCTION TO STATISTICS MATH 2050
PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS INTRODUCTION TO STATISTICS MATH 2050 Class Hours: 2.0 Credit Hours: 3.0 Laboratory Hours: 2.0 Date Revised: Fall 2013 Catalog Course Description: Descriptive
Predictive Modeling in Long-Term Care Insurance
Predictive Modeling in Long-Term Care Insurance Nathan R. Lally and Brian M. Hartman May 3, 2015 Abstract The accurate prediction of long-term care insurance (LTCI) mortality, lapse, and claim rates is
Lecture 18: Logistic Regression Continued
Lecture 18: Logistic Regression Continued Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina
Introduction to General and Generalized Linear Models
Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby
Nominal and ordinal logistic regression
Nominal and ordinal logistic regression April 26 Nominal and ordinal logistic regression Our goal for today is to briefly go over ways to extend the logistic regression model to the case where the outcome
Gamma Distribution Fitting
Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
Chi Square Tests. Chapter 10. 10.1 Introduction
Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square
MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
Penalized Logistic Regression and Classification of Microarray Data
Penalized Logistic Regression and Classification of Microarray Data Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France Penalized Logistic Regression andclassification
Simple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
Chapter 27 Using Predictor Variables. Chapter Table of Contents
Chapter 27 Using Predictor Variables Chapter Table of Contents LINEAR TREND...1329 TIME TREND CURVES...1330 REGRESSORS...1332 ADJUSTMENTS...1334 DYNAMIC REGRESSOR...1335 INTERVENTIONS...1339 TheInterventionSpecificationWindow...1339
Lecture 6: Poisson regression
Lecture 6: Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction EDA for Poisson regression Estimation and testing in Poisson regression
Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools
Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................
Chapter 29 The GENMOD Procedure. Chapter Table of Contents
Chapter 29 The GENMOD Procedure Chapter Table of Contents OVERVIEW...1365 WhatisaGeneralizedLinearModel?...1366 ExamplesofGeneralizedLinearModels...1367 TheGENMODProcedure...1368 GETTING STARTED...1370
