R Tools Evaluation. A review by Global BI / Local & Regional Capabilities. Telefónica CCDO May 2015
|
|
|
- Elisabeth Miller
- 10 years ago
- Views:
Transcription
1 R Tools Evaluation A review by Global BI / Local & Regional Capabilities Telefónica CCDO May 2015
2 R Features
3 What is? Most widely used data analysis software Used by 2M+ data scientists, statisticians and analysts Most powerful statistical programming language Flexible, extensible and comprehensive for productivity Create beautiful and unique data visualizations As seen in New York Times, Twitter and Flowing Data Thriving open-source community Leading edge of analytics research Fills the talent gap New graduates prefer R Text from
4 Importance of R is the highest paid IT skill R most-used data science language after SQL R is used by 70% of data miners R is #15 of all programming languages R growing faster than any other data science language R is the #1 Google Search for Advanced Analytics software R has more than 2 million users worldwide R Usage Growth Rexer Data Miner Survey, % of data miners report using R Text from R is the first choice of more data miners than any other software Source:
5 Data import with Data collection (multiple connectors) CSV Text files delimited or fixed, xml, json... (1) (2) (3) Other analytics formats files (Excel, SPSS, SAS, Stata, Systat ) ODBC/JDBC connectors (9) (10) (4) (5) (6) (7) (8) Native relational database connectors (Oracle, Teradata, SQL Server, Mysql ) (11) (12) (13) (14) Hadoop connectors (Revolution RRE, Rhadoop, Rhipe, ORAAH, Rhive, SparkR, H2O) (15) (16) (17) (18) No SQL connectors (MongoDB, Cassandra, Hbase, Neo4j ) Http (SOA, WS, REST) and ftp connectors (22) (23) (24) (25) (26) (19) (20) (21) Social networks connectors (Twitter, Facebook ) (27) (28) Other enterprise tools connectors (SAP/R3, Salesforce, Splunk) () Packages reference, see last slide (29) (30) (31)
6 Data preparation with Variable creation and transformation Recode variables Factor variables Missing value handling Sort Merge & Join Split Aggregate (means, sums) Reshape
7 Traditional BI: Reports & Dashboards with Reports in Html, MS Word and Pdf with r markdown and knitr Very easy way to create reports from r markdown files with RStudio knitr
8 Traditional BI: Reports & Dashboards with 1 The three most known and easiest options to publish reports in R 2 knitr knitr R Presentation
9 Discover Analytics with 1 Interactive reports On-premise Shiny Server knitr Cloud Shinyapps.io 3
10 Data Visualizations with ggplot2 ( contains a very complete catalog of visualization widgets (PieChart, BarCharts, Directed/Undirected Graphs, CloudWords, Gauges, Tree Map, Scatter charts ) Rcharts ( use R to create graphs in html5 by leveraging the most advanced javascript libraries for visualizations (d3js, Polycharts,Morris,NVD3,xCharts ) + + Plotly ( ) is a platform to create and publish html5 graphs from several programming languages: R, python, mathlab, excel +
11 Predictive Analytics with : Open Source Tools R Console - CLI Rattle: A Graphical User Interface for Data Mining using R
12 Predictive Analytics with : Packages More than 5,000 packages for statistical, predictive analytics and data visualization Descriptive Statistics Min / Max Mean Median Quantiles Standard Deviation Variance Correlation Covariance Sum of Squares Pairwise Cross tabs Risk Ratio & Odds Ratio Cross-Tabulation of Data Marginal Summaries of Cross Tabulations Text and figures from Sampling Subsample (observations & variables) Random Sampling Variable Selection Stepwise Regression Linear Logistic GLM Cluster Analysis Predictive & Classification Sum of Squares (cross product matrix for set variables) Multiple Linear Regression Generalized Linear Models (GLM) - All exponential family distributions: binomial, Gaussian, inverse Gaussian, Poisson, Tweedie. Standard link functions including: cauchy, identity, log, logit, probit Covariance Matrix Correlation Matrix Logistic Regression Classification & Regression Trees Residuals for all models Decision Trees Decision Forests Boosted Decision Trees Deployment K-Means Hierarchical Model Based Prediction (scoring) PMML Export
13 In Cloud As a Service AWS On Premise (*) (*) It could be run in Amazon EC2 too
14 Data Visualizations with Rbokeh ( use R to create graphs in html5/d3js + ggvis ( is a data visualization package for R using Vega, a javascript html5 library ggvis + 14
15 R & BIG DATA
16 Limitations of for enterprises Big Data In-memory bound for many use cases Speed of Analysis Enterprise Readiness Single threaded by design Community support AnalyticBreadth & Depth Commercial Viability innovative analytic packages Risk of deployment of open source
17 Hadoop processing modes with Figure from Method 1: Local parallel processing using all cores on one node, using local linuxfile-system data Revolution Analytics parallelr ( Method 2: Local parallel processing using all cores on one node, reading from / to HDFS data Revolution Rhadoop ( RHIPE ( ), ORAAH (Oracle R Advanced Analytics for Hadoop) or package RHIVE ( ) Revolution Analytics parallelr (
18 Hadoop processing modes with Method 3: Hadoop (Map-Reduce) parallel processing using all cores on n nodes, using HDFS data in-situ Commercial Tool Open Source Tool
19 BD Analytic Tools Strenghts Most widely used data analysis and predictive software in the world A lot of packages (5000+) to do almost everything you want, kept by a huge developers community Completely free Integration with a great amount of tools (free and commercial) Multiple connectors to get a lot of type of data Not only for analytics, good to data discover and reporting too Weaknesses More difficult to learn than other software Help files are written for relatively advanced users R holds all its data in your computer s main memory. There are free and commercial tools to parallelize R but not too many alternatives Because the great amount of packages it is often difficult finding and choosing the better ones R core is quite stable, but sometimes some package changes and dependencies are not updated Integration with web apps is not mature Packages & Projects Reference ( or Data Access RForcecom github.com/rfsp/r (30) (31) RSAP RJDBC RCurl (29) (10) (26) yhatr RODBC (26) XML(2) (9) sqldf RHive (19) twitter(27) rjson(3) ROracle foreign (11) Rfacebook rmongodb dplyr RSQLServer RCassandra (13) tidyr xlsx github.com/nicolewhite/rneo4j RMySQL (4) (14) Hmisc rpython datadr.org RPostgresSQL rjava github.com/revolutionanalytics/rhadoop/wiki amplab-extras.github.io/sparkr-pkg Reporting & Discover Predictive manipulate rstudio.com rpubs.com shinyapps.io care rattle.togaware.com rstudio.com intuitics.com caret slidify.github.io topepo.github.io/caret rcharts.io pvclust ggvis.rstudio.com plot.ly/r yhatr mclust ggplot2.org yihui.name/knitr opencpu neuralnet github.com/bart6114/scheduler ga tm maps mapdata maps mapdata sp mapproj sp mapproj
20 Área Company Name 20
High Performance Predictive Analytics in R and Hadoop:
High Performance Predictive Analytics in R and Hadoop: Achieving Big Data Big Analytics Presented by: Mario E. Inchiosa, Ph.D. US Chief Scientist August 27, 2013 1 Polling Questions 1 & 2 2 Agenda Revolution
R and Hadoop: Architectural Options. Bill Jacobs VP Product Marketing & Field CTO, Revolution Analytics @bill_jacobs
R and Hadoop: Architectural Options Bill Jacobs VP Product Marketing & Field CTO, Revolution Analytics @bill_jacobs Polling Question #1: Who Are You? (choose one) Statistician or modeler who uses R Other
WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat
Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise
Revolution R Enterprise: Efficient Predictive Analytics for Big Data
Revolution R Enterprise: Efficient Predictive Analytics for Big Data Prepared for The Bloor Group August 2014 Bill Jacobs Director Product Marketing / Field CTO - Big Data Products [email protected]
Revolution R Enterprise
Revolution R Enterprise Michele Chambers Chief Strategy Officer & VP Product Management @ Revolution Analytics Bill Franks Chief Analytics Officer @ Teradata Agenda Emerging Big Data Analytic Patterns
Decision Trees built in Hadoop plus more Big Data Analytics with Revolution R Enterprise
Decision Trees built in Hadoop plus more Big Data Analytics with Revolution R Enterprise Revolution Webinar April 17, 2014 Mario Inchiosa, US Chief Scientist [email protected] All
In-Database Analytics Deep Dive with Teradata and Revolution R
In-Database Analytics Deep Dive with Teradata and Revolution R Mario Inchiosa Chief Scientist, Revolution Analytics Tim Miller Partner Integration Lab, Teradata Agenda Introduction Revolution R Enterprise
Using Microsoft R Server to Address Scalability Issues
Using Microsoft R Server to Address Scalability Issues February 4th, 2016 - Welcome! R What is it? Open Source lingua franca Global Community Ecosystem Can be Scaled to Big Data, Big Analytics Analytics,
Big Data and Data Science: Behind the Buzz Words
Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing
Find the Hidden Signal in Market Data Noise
Find the Hidden Signal in Market Data Noise Revolution Analytics Webinar, 13 March 2013 Andrie de Vries Business Services Director (Europe) @RevoAndrie [email protected] Agenda Find the Hidden
Lavastorm Analytic Library Predictive and Statistical Analytics Node Pack FAQs
1.1 Introduction Lavastorm Analytic Library Predictive and Statistical Analytics Node Pack FAQs For brevity, the Lavastorm Analytics Library (LAL) Predictive and Statistical Analytics Node Pack will be
SEIZE THE DATA. 2015 SEIZE THE DATA. 2015
1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. BIG DATA CONFERENCE 2015 Boston August 10-13 Predicting and reducing deforestation
R-Academy I Knowledge, that matters
I Knowledge, that matters About the R-Academy The R Academy of eoda is a modular course program for the R statistical language with regular events and training sessions. Our course instructors have been
Session 85 IF, Predictive Analytics for Actuaries: Free Tools for Life and Health Care Analytics--R and Python: A New Paradigm!
Session 85 IF, Predictive Analytics for Actuaries: Free Tools for Life and Health Care Analytics--R and Python: A New Paradigm! Moderator: David L. Snell, ASA, MAAA Presenters: Brian D. Holland, FSA, MAAA
Sisense. Product Highlights. www.sisense.com
Sisense Product Highlights Introduction Sisense is a business intelligence solution that simplifies analytics for complex data by offering an end-to-end platform that lets users easily prepare and analyze
Some vendors have a big presence in a particular industry; some are geared toward data scientists, others toward business users.
Bonus Chapter Ten Major Predictive Analytics Vendors In This Chapter Angoss FICO IBM RapidMiner Revolution Analytics Salford Systems SAP SAS StatSoft, Inc. TIBCO This chapter highlights ten of the major
Advanced Big Data Analytics with R and Hadoop
REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional
ANALYTICS CENTER LEARNING PROGRAM
Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals
Fast Analytics on Big Data with H20
Fast Analytics on Big Data with H20 0xdata.com, h2o.ai Tomas Nykodym, Petr Maj Team About H2O and 0xdata H2O is a platform for distributed in memory predictive analytics and machine learning Pure Java,
Data Science with R. Introducing Data Mining with Rattle and R. [email protected]
http: // togaware. com Copyright 2013, [email protected] 1/35 Data Science with R Introducing Data Mining with Rattle and R [email protected] Senior Director and Chief Data Miner,
Delivering Value from Big Data with Revolution R Enterprise and Hadoop
Executive White Paper Delivering Value from Big Data with Revolution R Enterprise and Hadoop Bill Jacobs, Director of Product Marketing Thomas W. Dinsmore, Director of Product Management October 2013 Abstract
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Up Your R Game. James Taylor, Decision Management Solutions Bill Franks, Teradata
Up Your R Game James Taylor, Decision Management Solutions Bill Franks, Teradata Today s Speakers James Taylor Bill Franks CEO Chief Analytics Officer Decision Management Solutions Teradata 7/28/14 3 Polling
WROX Certified Big Data Analyst Program by AnalytixLabs and Wiley
WROX Certified Big Data Analyst Program by AnalytixLabs and Wiley Disclaimer: This material is protected under copyright act AnalytixLabs, 2011. Unauthorized use and/ or duplication of this material or
Big Data Analytics and Optimization
Big Data Analytics and Optimization C e r t i f i c a t e P r o g r a m i n E n g i n e e r i n g E x c e l l e n c e e.edu.in http://www.insof LIST OF COURSES Essential Business Skills for a Data Scientist...
White Paper: Datameer s User-Focused Big Data Solutions
CTOlabs.com White Paper: Datameer s User-Focused Big Data Solutions May 2012 A White Paper providing context and guidance you can use Inside: Overview of the Big Data Framework Datameer s Approach Consideration
KnowledgeSEEKER POWERFUL SEGMENTATION, STRATEGY DESIGN AND VISUALIZATION SOFTWARE
POWERFUL SEGMENTATION, STRATEGY DESIGN AND VISUALIZATION SOFTWARE Most Effective Modeling Application Designed to Address Business Challenges Applying a predictive strategy to reach a desired business
How To Understand Data Mining In R And Rattle
http: // togaware. com Copyright 2014, [email protected] 1/40 Data Analytics and Business Intelligence (8696/8697) Introducing Data Science with R and Rattle [email protected] Chief
Building and Deploying Customer Behavior Models
Building and Deploying Customer Behavior Models February 20, 2014 David Smith, VP Marketing and Community, Revolution Analytics Paul Maiste, President and CEO, Lityx In Today s Webinar About Revolution
Operationalise Predictive Analytics
Operationalise Predictive Analytics Publish SPSS, Excel and R reports online Predict online using SPSS and R models Access models and reports via Android app Organise people and content into projects Monitor
How To Test The Performance Of An Ass 9.4 And Sas 7.4 On A Test On A Powerpoint Powerpoint 9.2 (Powerpoint) On A Microsoft Powerpoint 8.4 (Powerprobe) (
White Paper Revolution R Enterprise: Faster Than SAS Benchmarking Results by Thomas W. Dinsmore and Derek McCrae Norton In analytics, speed matters. How much? We asked the director of analytics from a
JAVASCRIPT CHARTING. Scaling for the Enterprise with Metric Insights. 2013 Copyright Metric insights, Inc.
JAVASCRIPT CHARTING Scaling for the Enterprise with Metric Insights 2013 Copyright Metric insights, Inc. A REVOLUTION IS HAPPENING... 3! Challenges... 3! Borrowing From The Enterprise BI Stack... 4! Visualization
SAP Predictive Analytics: An Overview and Roadmap. Charles Gadalla, SAP @cgadalla SESSION CODE: 603
SAP Predictive Analytics: An Overview and Roadmap Charles Gadalla, SAP @cgadalla SESSION CODE: 603 Advanced Analytics SAP Vision Embed Smart Agile Analytics into Decision Processes to Deliver Business
KnowledgeSEEKER Marketing Edition
KnowledgeSEEKER Marketing Edition Predictive Analytics for Marketing The Easiest to Use Marketing Analytics Tool KnowledgeSEEKER Marketing Edition is a predictive analytics tool designed for marketers
Classroom Demonstrations of Big Data
Classroom Demonstrations of Big Data Eric A. Suess Abstract We present examples of accessing and analyzing large data sets for use in a classroom at the first year graduate level or senior undergraduate
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be
KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES
HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within
EMC Greenplum Driving the Future of Data Warehousing and Analytics. Tools and Technologies for Big Data
EMC Greenplum Driving the Future of Data Warehousing and Analytics Tools and Technologies for Big Data Steven Hillion V.P. Analytics EMC Data Computing Division 1 Big Data Size: The Volume Of Data Continues
Sunnie Chung. Cleveland State University
Sunnie Chung Cleveland State University Data Scientist Big Data Processing Data Mining 2 INTERSECT of Computer Scientists and Statisticians with Knowledge of Data Mining AND Big data Processing Skills:
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Big Data Visualization and Dashboards
Big Data Visualization and Dashboards Boney Pandya Marketing Manager Greg Harris Systems Engineer Follow us @Jinfonet #BigDataWebinar JReport Highlights Advanced, Embedded Data Visualization Platform:
WHAT S NEW IN SAS 9.4
WHAT S NEW IN SAS 9.4 PLATFORM, HPA & SAS GRID COMPUTING MICHAEL GODDARD CHIEF ARCHITECT SAS INSTITUTE, NEW ZEALAND SAS 9.4 WHAT S NEW IN THE PLATFORM Platform update SAS Grid Computing update Hadoop support
Native Connectivity to Big Data Sources in MSTR 10
Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single
Welcome to the second half ofour orientation on Spotfire Administration.
Welcome to the second half ofour orientation on Spotfire Administration. In this presentation, I ll give a quick overview of the products that can be used to enhance a Spotfire environment: TIBCO Metrics,
Big Data Analytics. Benchmarking SAS, R, and Mahout. Allison J. Ames, Ralph Abbey, Wayne Thompson. SAS Institute Inc., Cary, NC
Technical Paper (Last Revised On: May 6, 2013) Big Data Analytics Benchmarking SAS, R, and Mahout Allison J. Ames, Ralph Abbey, Wayne Thompson SAS Institute Inc., Cary, NC Accurate and Simple Analysis
Geo Analysis, Visualization and Performance with JReport 13
Geo Analysis, Visualization and Performance with JReport 13 Boney Pandya Marketing Manager Leo Zhao Systems Engineer Follow us @Jinfonet JReport Highlights Advanced, Embedded Data Visualization Platform:
How to Build MicroStrategy Projects on Top of Big Data Sources in the Cloud
How to Build MicroStrategy Projects on Top of Big Data Sources in the Cloud Jochen Demuth, Director, Partner Engineering Use Cases for Big Data in the Cloud Four broad categories and their value Traditional
Open Source Technologies on Microsoft Azure
Open Source Technologies on Microsoft Azure A Survey @DChappellAssoc Copyright 2014 Chappell & Associates The Main Idea i Open source technologies are a fundamental part of Microsoft Azure The Big Questions
Predictive Analytics Powered by SAP HANA. Cary Bourgeois Principal Solution Advisor Platform and Analytics
Predictive Analytics Powered by SAP HANA Cary Bourgeois Principal Solution Advisor Platform and Analytics Agenda Introduction to Predictive Analytics Key capabilities of SAP HANA for in-memory predictive
An In-Depth Look at In-Memory Predictive Analytics for Developers
September 9 11, 2013 Anaheim, California An In-Depth Look at In-Memory Predictive Analytics for Developers Philip Mugglestone SAP Learning Points Understand the SAP HANA Predictive Analysis library (PAL)
MicroStrategy Course Catalog
MicroStrategy Course Catalog 1 microstrategy.com/education 3 MicroStrategy course matrix 4 MicroStrategy 9 8 MicroStrategy 10 table of contents MicroStrategy course matrix MICROSTRATEGY 9 MICROSTRATEGY
Ad Hoc Analysis of Big Data Visualization
Ad Hoc Analysis of Big Data Visualization Dean Yao Director of Marketing Greg Harris Systems Engineer Follow us @Jinfonet #BigDataWebinar JReport Highlights Advanced, Embedded Data Visualization Platform:
Technical Paper. Performance of SAS In-Memory Statistics for Hadoop. A Benchmark Study. Allison Jennifer Ames Xiangxiang Meng Wayne Thompson
Technical Paper Performance of SAS In-Memory Statistics for Hadoop A Benchmark Study Allison Jennifer Ames Xiangxiang Meng Wayne Thompson Release Information Content Version: 1.0 May 20, 2014 Trademarks
Journée Thématique Big Data 13/03/2015
Journée Thématique Big Data 13/03/2015 1 Agenda About Flaminem What Do We Want To Predict? What Is The Machine Learning Theory Behind It? How Does It Work In Practice? What Is Happening When Data Gets
2015 Workshops for Professors
SAS Education Grow with us Offered by the SAS Global Academic Program Supporting teaching, learning and research in higher education 2015 Workshops for Professors 1 Workshops for Professors As the market
Embedded Analytics & Big Data Visualization in Any App
Embedded Analytics & Big Data Visualization in Any App Boney Pandya Marketing Manager Greg Harris Systems Engineer Follow us @Jinfonet Our Mission Simplify the Complexity of Reporting and Visualization
Deploy. Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture
Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture Apps and data source extensions with APIs Future white label, embed or integrate Power BI Deploy Intelligent
Introducing the Reimagined Power BI Platform. Jen Underwood, Microsoft
Introducing the Reimagined Power BI Platform Jen Underwood, Microsoft Thank You Sponsors Empower users with new insights through familiar tools while balancing the need for IT to monitor and manage user
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
Predictive Analytics
Predictive Analytics How many of you used predictive today? 2015 SAP SE. All rights reserved. 2 2015 SAP SE. All rights reserved. 3 How can you apply predictive to your business? Predictive Analytics is
ANALYTICS IN BIG DATA ERA
ANALYTICS IN BIG DATA ERA ANALYTICS TECHNOLOGY AND ARCHITECTURE TO MANAGE VELOCITY AND VARIETY, DISCOVER RELATIONSHIPS AND CLASSIFY HUGE AMOUNT OF DATA MAURIZIO SALUSTI SAS Copyr i g ht 2012, SAS Ins titut
Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011
Scalable Data Analysis in R Lee E. Edlefsen Chief Scientist UserR! 2011 1 Introduction Our ability to collect and store data has rapidly been outpacing our ability to analyze it We need scalable data analysis
An Open Source NoSQL solution for Internet Access Logs Analysis
An Open Source NoSQL solution for Internet Access Logs Analysis A practical case of why, what and how to use a NoSQL Database Management System instead of a relational one José Manuel Ciges Regueiro
Extend your analytic capabilities with SAP Predictive Analysis
September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics
Predictive Modeling Techniques in Insurance
Predictive Modeling Techniques in Insurance Tuesday May 5, 2015 JF. Breton Application Engineer 2014 The MathWorks, Inc. 1 Opening Presenter: JF. Breton: 13 years of experience in predictive analytics
Data Mining. Dr. Saed Sayad. University of Toronto 2010 [email protected]. http://chem-eng.utoronto.ca/~datamining/
Data Mining Dr. Saed Sayad University of Toronto 2010 [email protected] http://chem-eng.utoronto.ca/~datamining/ 1 Data Mining Data mining is about explaining the past and predicting the future by
Data processing goes big
Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,
BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES
BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES Relational vs. Non-Relational Architecture Relational Non-Relational Rational Predictable Traditional Agile Flexible Modern 2 Agenda Big Data
Data Mining in the Swamp
WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all
Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth
MAKING BIG DATA COME ALIVE Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth Steve Gonzales, Principal Manager [email protected]
TIBCO Spotfire Server Deployment and Administration
TIBCO Spotfire Server Deployment and Administration Software Release 6.0 November 2013 Two-Second Advantage 2 Important Information SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
Data Science and Business Analytics Certificate Data Science and Business Intelligence Certificate
Data Science and Business Analytics Certificate Data Science and Business Intelligence Certificate Description The Helzberg School of Management has launched two graduate-level certificates: one in Data
SAP Solution Brief SAP HANA. Transform Your Future with Better Business Insight Using Predictive Analytics
SAP Brief SAP HANA Objectives Transform Your Future with Better Business Insight Using Predictive Analytics Dealing with the new reality Dealing with the new reality Organizations like yours can identify
You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required.
What is this course about? This course is an overview of Big Data tools and technologies. It establishes a strong working knowledge of the concepts, techniques, and products associated with Big Data. Attendees
Microsoft Services Exceed your business with Microsoft SharePoint Server 2010
Microsoft Services Exceed your business with Microsoft SharePoint Server 2010 Business Intelligence Suite Alexandre Mendeiros, SQL Server Premier Field Engineer January 2012 Agenda Microsoft Business Intelligence
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford
SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems
Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com
SPSS-SA Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Training Brochure 2009 TABLE OF CONTENTS 1 SPSS TRAINING COURSES FOCUSING
Big Data Visualization with JReport
Big Data Visualization with JReport Dean Yao Director of Marketing Greg Harris Systems Engineer Next Generation BI Visualization JReport is an advanced BI visualization platform: Faster, scalable reports,
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data: Global Digital Data Growth Growing leaps and bounds by 40+% Year over Year! 2009 =.8 Zetabytes =.08
How To Write A Trusted Analytics Platform (Tap)
Trusted Analytics Platform (TAP) TAP Technical Brief October 2015 TAP Technical Brief Overview Trusted Analytics Platform (TAP) is open source software, optimized for performance and security, that accelerates
P4.1 Reference Architectures for Enterprise Big Data Use Cases Romeo Kienzler, Data Scientist, Advisory Architect, IBM Germany, Austria, Switzerland
P4.1 Reference Architectures for Enterprise Big Data Use Cases Romeo Kienzler, Data Scientist, Advisory Architect, IBM Germany, Austria, Switzerland IBM Center of Excellence for Data Science, Cognitive
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
SAS REPORTS ON YOUR FINGERTIPS? SAS BI IS THE ANSWER FOR CREATING IMMERSIVE MOBILE REPORTS
PharmaSUG 2015 - Paper AD10 SAS REPORTS ON YOUR FINGERTIPS? SAS BI IS THE ANSWER FOR CREATING IMMERSIVE MOBILE REPORTS Swapnil Udasi, inventiv Health, Hyderabad, India ABSTRACT The widespread use of smartphone
Starting Smart with Oracle Advanced Analytics
Starting Smart with Oracle Advanced Analytics Great Lakes Oracle Conference Tim Vlamis Thursday, May 19, 2016 Vlamis Software Solutions Vlamis Software founded in 1992 in Kansas City, Missouri Developed
Client Overview. Engagement Situation. Key Requirements
Client Overview Our client is one of the leading providers of business intelligence systems for customers especially in BFSI space that needs intensive data analysis of huge amounts of data for their decision
White Paper. Redefine Your Analytics Journey With Self-Service Data Discovery and Interactive Predictive Analytics
White Paper Redefine Your Analytics Journey With Self-Service Data Discovery and Interactive Predictive Analytics Contents Self-service data discovery and interactive predictive analytics... 1 What does
Make Better Decisions Through Predictive Intelligence
IBM SPSS Modeler Professional Make Better Decisions Through Predictive Intelligence Highlights Easily access, prepare and model structured data with this intuitive, visual data mining workbench Rapidly
Workday Big Data Analytics
Workday Big Data Analytics Today s fast-paced business climate demands that decision-makers stay informed. Having access to key information gives them the best insight into their business. However, many
Oracle Data Miner (Extension of SQL Developer 4.0)
An Oracle White Paper September 2013 Oracle Data Miner (Extension of SQL Developer 4.0) Integrate Oracle R Enterprise Mining Algorithms into a workflow using the SQL Query node Denny Wong Oracle Data Mining
APPROACHABLE ANALYTICS MAKING SENSE OF DATA
APPROACHABLE ANALYTICS MAKING SENSE OF DATA AGENDA SAS DELIVERS PROVEN SOLUTIONS THAT DRIVE INNOVATION AND IMPROVE PERFORMANCE. About SAS SAS Business Analytics Framework Approachable Analytics SAS for
