Starting Smart with Oracle Advanced Analytics
|
|
|
- Reginald Goodman
- 9 years ago
- Views:
Transcription
1 Starting Smart with Oracle Advanced Analytics Great Lakes Oracle Conference Tim Vlamis Thursday, May 19, 2016
2 Vlamis Software Solutions Vlamis Software founded in 1992 in Kansas City, Missouri Developed 200+ Oracle BI and analytics systems Specializes in Oracle-based: Enterprise Business Intelligence & Analytics Analytic Warehousing Data Mining and Predictive Analytics Data Visualization Multiple Oracle ACEs, consultants average 15+ years (blog, papers, newsletters, services) Co-authors of book Data Visualization for OBI 11g Co-author of book Oracle Essbase & Oracle OLAP Oracle University Partner Oracle Gold Partner
3 Tim Vlamis Vice President & Analytics Strategist 30+ years in business modeling and valuation, forecasting, and scenario analyses Oracle ACE Instructor for Oracle University s Predictive Analytics, Data Mining Techniques and Oracle R Enterprise Essentials Courses Professional Certified Marketer (PCM) from AMA Adjunct Professor of Business Benedictine College MBA Kellogg School of Management (Northwestern University) BA Economics Yale University
4 Presentation Agenda Background on Analytic Options to the Oracle DB Oracle Advanced Analytics Oracle Data Mining Oracle R Enterprise How to start with OAA comparison of options
5 Spectrum of Oracle DB Analytics OLAP Data Mining & R Spatial Summaries, hierarchies and dimensional data Analysis What is the average income of mutual fund buyers, by region, by year? Knowledge discovery of hidden patterns Insight & Prediction Who is likely to purchase a mutual fund in the next 6 months and why? Spatial relationships between data Location Where were mutual funds purchased in the last 3 years?
6 Competitive Advantage Competitive Advantage of BI & Analytics Optimization Predictive Modeling Forecasting/Extrapolation $$ What s the best that can happen? What will happen next? What if these trends continue? Analytic$ Statistical Analysis Why is this happening? Alerts What actions are needed? Query/drill down Ad hoc reports Where exactly is the problem? How many, how often, where? Access & Reporting Standard Reports What happened? Degree of Intelligence Source: Competing on Analytics, by T. Davenport & J. Harris
7 Oracle Advanced Analytics (OAA) DB Option Oracle Data Mining + Oracle R Enterprise Powerful in-database algorithms for Data Mining and Statistical Analysis Easy to add predictive analytics to enterprise applications and BI Fastest way to deliver scalable, enterprise-wide predictive analytics ORE eliminates R s limitations (memory and speed) for Enterprise-scale analytics 7
8 What is Data Mining? Automatically sifts through data to find hidden patterns, discover new insights, and make predictions Data Mining can provide valuable results: Predict customer behavior (Classification) Predict or estimate a value (Regression) Segment a population (Clustering) Identify factors more associated with a business problem (Attribute Importance) Find profiles of targeted people or items (Decision Trees) Determine co-ocurrances and market baskets within an event set (Associations) Find fraudulent or rare events (Anomaly Detection)
9 Oracle Data Mining Oracle Data Mining is an option for the Enterprise Edition of the Oracle Database. A collection of APIs and specialized SQL functions. Includes a large number of specialized algorithms and built-in procedures. Makes use of many built-in capabilities of the Oracle Database ODM typically refers to Oracle Data Mining
10 In-Database Data Mining Traditional Analytics Data Import Data Mining Model Scoring Data Preparation and Transformation Data Mining Model Building Data Prep & Transformation Oracle Data Mining Savings Results Faster time for Data to Insights Lower TCO Eliminates Data Movement Data Duplication Maintains Security Model Scoring Data remains in the Database Embedded data preparation Data Extraction Hours, Days or Weeks Model Scoring Embedded Data Prep Model Building Data Preparation Secs, Mins or Hours Cutting edge machine learning algorithms inside the SQL kernel of Database SQL Most powerful language for data preparation and transformation Data remains in the Database
11 Data Mining Provides Better Information, Valuable Insights and Predictions Cell Phone Churners vs. Loyal Customers Insight & Prediction Segment #3: IF CUST_MO > 7 AND INCOME < $175K, THEN Prediction = Cell Phone Churner Confidence = 83% Support = 6/39 Segment #1: IF CUST_MO > 14 AND INCOME < $90K, THEN Prediction = Cell Phone Churner, Confidence = 100% Support = 8/39 Customer Months Source: Inspired from Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management by Michael J. A. Berry, Gordon S. Linoff
12 Oracle Data Mining Algorithms Problem Algorithm Applicability Classification Regression Logistic Regression (GLM) Decision Trees Naïve Bayes Support Vector Machine Linear Regression (GLM Support Vector Machine Classical Statistical Technique Popular/Rules/Transparency Embedded app Wide/Narrow Data or Text Classical Statistical Technique Wide/Narrow Data or Text Anomaly Detection One Class SMV Unknown fraud cases or anomalies Attribute Importance A1 A2 A3 A4 A5 A6 A7 Minimum Description Length Principal Component Analysis Attribute reduction Reduce data noise Association Rules Apriori Market Basket Analysis Clustering Feature Extraction Hierarchical K-Means Orthogonal Partitioning Expectation Maximization Non-negative Matrix Factorization Singular Value Decomposition Market Segmentation Product / Location Groupings Text analysis Feature Reduction Text Analysis
13 Oracle Data Miner Easy to Use Oracle Data Miner GUI for data analysts Work flow paradigm Powerful Multiple algorithms & data transformations Runs 100% in-db Build, evaluate and apply models Automate and Deploy Save and share analytical workflows Generate SQL scripts for deployment
14 Understand Model Details Interactive model viewers
15 Oracle Data Mining & OBI 11g ODM s predictions & probabilities are available in the Database for reporting using Oracle BI EE and other tools
16 Dynamically Using ODM From Oracle BI
17 What is R? An Open Source scripting language and environment for statistical computing and graphics Popular alternative to SAS, SPSS & other proprietary statistical environments 2 million+ users worldwide and growing Thousands of R packages available Taught extensively in higher education 80% 70% 60% 50% 40% 30% 20% 10% 0% R Usage Rexer Analytics Data Miner Survey 76% of data miners report using R 36% of data miners select R as their primary tool 17
18 R is extensively used by Statisticians, Data Analysts, Students Free (Open source) Graphical Powerful Extensible Ease to install and use Industry/subject specific packages Out-of-the-box functionality with many knobs, but smart defaults 18
19 Oracle s R Technologies Oracle R Distribution ROracle Open Source Software available to R Community for free Oracle R Enterprise (ORE) Oracle R Advanced Analytics for Hadoop (ORAAH) Oracle R Connector for Hadoop (ORCH)
20 Oracle R Enterprise Oracle R Enterprise (ORE) is a component of the Oracle Advanced Analytics (OAA) option to Oracle Database EE Provides transparent access to database-resident data from R Execute R scripts at the database machine managed by Oracle Database with data and task parallelism Execute R scripts from SQL Integrates R into the IT software stack Extends and enhances open source R
21 Oracle R Enterprise A comprehensive, database-centric environment for end-to-end analytical processes in R, with immediate deployment to production environments Operationalize entire R scripts in production applications eliminate porting R code Seamlessly leverage Oracle Database as an HPC environment for R scripts, providing data parallelism and resource management Avoid reinventing code to integrate R results into existing applications Transparently analyze and manipulate data in Oracle Database through R using versatile and customizable R functions Eliminate memory constraint of client R engine Score R models in Oracle Database Execute R scripts through Oracle Database server machine for scalability and performance Get maximum value from your Oracle Database and Exadata Enable integration and management through SQL Integrate R into the IT software stack, e.g. OBIEE Client R Engine Transparency Layer ORE packages Oracle Database User tables In-db stats SQL Interfaces SQLDeveloper, OAA: ORE ODM Database Server Machine
22 R now integrated into OBIEE 11g and 12c
23 R now integrated into OBIEE 11g and 12c
24 Oracle Advanced Analytics & Spatial Customer most likely be be HIGH and VERY HIGH value customer in the future
25 5 Common use cases for predictive analytics 1) Customer Segmentation using Clustering algorithms Discovered patterns can be extremely meaningful Able to include hundreds of dimensions Great first project 2) Predict Lifetime Customer Value Measure impact of different product purchases on LCV Promote and incentive profitable purchases 25
26 5 Common use cases for predictive analytics 3) Market Basket Analysis for retailers and warehouses Understand purchasing and picking patterns 4) Employee Retention analysis Classify employees into basic categories Understand impact of different incentives and rewards 5) Optimize Customer Service and Next Best Offer Use decision trees to determine rules for customers Dramatically increase effectiveness of offers 26
27 Basic Ways to Get Started Do a POC project on your own Conduct a workshop for key stakeholders to build support One hour to one day Half-day works great Conduct ODM and ORE training classes with 1-day workshop Use a defined Quick Start program (2 weeks)
28 ODM Quick Start Overview Hardware or Cloud Oracle Database Appliance/Oracle Database Cloud Service Software Oracle Database 12c (with options) Oracle Advanced Analytics Option including Oracle Data Mining Oracle SQL Developer: Data Miner Add-in (free download) Services Implementation and configuration from Vlamis Software Solutions (Oracle Gold Partner) Oracle University Oracle Data Mining Techniques course (taught by Vlamis Software Solutions) Market Basket Analysis Project performed on company data Time frame: 9 business days (less than 2 weeks)
29 Quick Start Compressed Schedule Day 1: Two consultants meet with client team to review project plan, review data sources, identification of best data to start with, set technical objectives for project (basic market basket analysis deliverable) Day 2: Consultant One: Install ODA and configure to network (need support from client tech staff) Consultant Two: Conduct first day of ODM class with client team Day 3: Consultant One: Install new pluggable Database, SQL Developer Consultant Two: Conduct second day of ODM class with client team Day 4: Two consultants establish data plan for project with client and import data Day 5: Consultant One: Prepare tables for mining (add keys, new tables, transforms, etc.) Consultant Two: Document data plan Day 6: Consultant Two: Build market basket workflow Day 7: Consultant Two: Conduct market basket analyses Day 8: Consultant Two: Prepare presentation of findings from market basket analyses Day 9: Consultant Two: Deliver presentation with client
30 Important Factors in Getting Started Lots of internal experts and people who would like to be involved and learn Lots of people intimidated by what they don t know Start by level setting and establishing a strong foundation Bring people along on the journey, establish culture Everyone shares a minimum common knowledge base Use workshops (JAD style session) for investigation of possibilities Evaluation of data sources and data sets Recognition of major business issues Review of basic algorithms Identification of potential PoC projects (plusses and minuses) Decide on pilot projects and who works on it Start simple and return value quickly
31 Oracle Data Mining Training (2 days) Introduction Data Mining Concepts and Terminology The Data Mining Process Introducing Oracle Data Miner 11g Release 2 Using Classification Models Using Regression Models Using Clustering Models Performing Market Basket Analysis Performing Anomaly Detection Deploying Data Mining Results
32 Oracle R Enterprise Training (2 days) Oracle R Enterprise technologies introduction Introduction to R hands-on ORE transparency layer with hands-on exercises ORE embedded R execution with hands-on exercises ORE predictive analytics with hands-on exercises Using ROracle Overview of ORE with OBIEE
33 Comparison of Training Courses Oracle Data Mining Organized by algorithm Intro to data mining MBAs, BI Admin, DBAs Focused on business issues Uses GUI Approachable for new users Oracle R Enterprise Organized by process Intro to Oracle R Enterprise Data Scientists, BI Admin, DBAs Focused on executing R in Oracle Database Uses R scripts Technical
34 Oracle Test Drive Free to try Oracle BI, Advanced Analytics Go to Runs off of Oracle Cloud Test Drives for: Oracle BI Oracle Advanced Analytics Once sign up, you have private instance for one day Available now
35 Drawing for Free Book Add business card to basket or fill out card
36 Thank You! Data Visualization for Oracle Business Intelligence Tim Vlamis
Data Analysis with Various Oracle Business Intelligence and Analytic Tools
Data Analysis with Various Oracle Business Intelligence and Analytic Tools Session ID: 108680 Prepared by: Tim and Dan Vlamis Vlamis Software Solutions www.vlamis.com @TimVlamis Agenda What we will talk
Anomaly and Fraud Detection with Oracle Data Mining 11g Release 2
Oracle 11g DB Data Warehousing ETL OLAP Statistics Anomaly and Fraud Detection with Oracle Data Mining 11g Release 2 Data Mining Charlie Berger Sr. Director Product Management, Data
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features Charlie Berger, MS Eng, MBA Sr. Director Product Management, Data Mining and Advanced Analytics [email protected] www.twitter.com/charliedatamine
The Oracle Data Mining Machine Bundle: Zero to Predictive Analytics in Two Weeks Collaborate 15 IOUG
The Oracle Data Mining Machine Bundle: Zero to Predictive Analytics in Two Weeks Collaborate 15 IOUG Presentation #730 Tim Vlamis and Dan Vlamis Vlamis Software Solutions 816-781-2880 www.vlamis.com Presentation
Data Visualization for Mobile Devices with OBI 11g. Collaborate 14
Data Visualization for Mobile Devices with OBI 11g Collaborate 14 Session 711 Chris Claterbos & Tim Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com Copyright 2014, Vlamis Software Solutions,
Oracle Advanced Analytics Oracle R Enterprise & Oracle Data Mining
Oracle Advanced Analytics Oracle R Enterprise & Oracle Data Mining R The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
Getting Started with Oracle Data Miner 11g R2. Brendan Tierney
Getting Started with Oracle Data Miner 11g R2 Brendan Tierney Scene Setting This is not about DB log mining This is an introduction to ODM And how ODM can be included in OBIEE (next presentation) Domain
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
Blazing BI: the Analytic Options to the Oracle Database. ODTUG Kscope 2013
Blazing BI: the Analytic Options to the Oracle Database ODTUG Kscope 2013 Dan Vlamis Tim Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com Copyright 2013, Vlamis Software Solutions, Inc.
Anomaly and Fraud Detection with Oracle Data Mining
Oracle 11g DB Data Warehousing ETL OLAP Statistics Anomaly and Fraud Detection with Oracle Data Mining Data Mining Charlie Berger Sr. Director Product Management, Data Mining Technologies
Oracle Advanced Analytics - Option to Oracle Database: Oracle R Enterprise and Oracle Data Mining. Data Warehouse Global Leaders Winter 2013
Oracle Advanced Analytics - Option to Oracle Database: Oracle R Enterprise and Oracle Data Mining Data Warehouse Global Leaders Winter 2013 Dan Vlamis, Vlamis Software Solutions Tim Vlamis, Vlamis Software
Tax Fraud in Increasing
Preventing Fraud with Through Analytics Satya Bhamidipati Data Scientist Business Analytics Product Group Copyright 2014 Oracle and/or its affiliates. All rights reserved. 2 Tax Fraud in Increasing 27%
Forecasting, Prediction Models, and Times Series Analysis with Oracle Business Intelligence and Analytics. Rittman Mead BI Forum 2013
Forecasting, Prediction Models, and Times Series Analysis with Oracle Business Intelligence and Analytics Rittman Mead BI Forum 2013 Dan Vlamis and Tim Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com
Fraud and Anomaly Detection Using Oracle Advanced Analytic Option 12c
Fraud and Anomaly Detection Using Oracle Advanced Analytic Option 12c Charlie Berger Sr. Director Product Management, Data Mining and Advanced Analytics [email protected] www.twitter.com/charliedatamine
Budgeting and Planning with Microsoft Excel and Oracle OLAP
Copyright 2009, Vlamis Software Solutions, Inc. Budgeting and Planning with Microsoft Excel and Oracle OLAP Dan Vlamis and Cathye Pendley [email protected] [email protected] Vlamis Software Solutions,
Data Mining with Oracle Database 11g Release 2
An Oracle White Paper September 2009 Data Mining with Oracle Database 11g Release 2 Competing on In-Database Analytics Executive Overview... 1 In-Database Data Mining... 1 Key Benefits of Oracle Data Mining...
ORACLE TAX ANALYTICS. The Solution. Oracle Tax Data Model KEY FEATURES
ORACLE TAX ANALYTICS KEY FEATURES A set of comprehensive and compatible BI Applications. Advanced insight into tax performance Built on World Class Oracle s Database and BI Technology Design after the
ETPL Extract, Transform, Predict and Load
ETPL Extract, Transform, Predict and Load An Oracle White Paper March 2006 ETPL Extract, Transform, Predict and Load. Executive summary... 2 Why Extract, transform, predict and load?... 4 Basic requirements
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
Big Data and Predictive Analytics: Fiserv Data Mining Case Study [CON8631] Data Warehouse and Big Data
Big Data and Predictive Analytics: Fiserv Data Mining Case Study [CON8631] Data Warehouse and Big Data Miguel Barrera - Director, Risk Analytics, Fiserv, Inc. Julia Minkowski - Risk Manager, Fiserv, Inc.
Oracle Data Mining 11g Release 2
An Oracle White Paper February 2012 Oracle Data Mining 11g Release 2 Competing on In-Database Analytics Disclaimer The following is intended to outline our general product direction. It is intended for
Building and Deploying Customer Behavior Models
Building and Deploying Customer Behavior Models February 20, 2014 David Smith, VP Marketing and Community, Revolution Analytics Paul Maiste, President and CEO, Lityx In Today s Webinar About Revolution
Empowering the Masses with Analytics
Empowering the Masses with Analytics THE GAP FOR BUSINESS USERS For a discussion of bridging the gap from the perspective of a business user, read Three Ways to Use Data Science. Ask the average business
ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process
ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced
Data Mining + Business Intelligence. Integration, Design and Implementation
Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution
SAP Solution Brief SAP HANA. Transform Your Future with Better Business Insight Using Predictive Analytics
SAP Brief SAP HANA Objectives Transform Your Future with Better Business Insight Using Predictive Analytics Dealing with the new reality Dealing with the new reality Organizations like yours can identify
1 Copyright 2011, Oracle and/or its affiliates. All rights reserved.
1 Copyright 2011, Oracle and/or its affiliates. FPO In-Database Analytics: Predictive Analytics, Data Mining, Exadata & Business Intelligence Charlie Berger Sr. Director Product Management, Data Mining
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Exadata V2 + Oracle Data Mining 11g Release 2 Importing 3 rd Party (SAS) dm models
Exadata V2 + Oracle Data Mining 11g Release 2 Importing 3 rd Party (SAS) dm models Charlie Berger Sr. Director Product Management, Data Mining Technologies Oracle Corporation [email protected]
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION EXECUTIVE SUMMARY Oracle business intelligence solutions are complete, open, and integrated. Key components of Oracle business intelligence
An In-Depth Look at In-Memory Predictive Analytics for Developers
September 9 11, 2013 Anaheim, California An In-Depth Look at In-Memory Predictive Analytics for Developers Philip Mugglestone SAP Learning Points Understand the SAP HANA Predictive Analysis library (PAL)
HIGH PERFORMANCE ANALYTICS FOR TERADATA
F HIGH PERFORMANCE ANALYTICS FOR TERADATA F F BORN AND BRED IN FINANCIAL SERVICES AND HEALTHCARE. DECADES OF EXPERIENCE IN PARALLEL PROGRAMMING AND ANALYTICS. FOCUSED ON MAKING DATA SCIENCE HIGHLY PERFORMING
What Are They Thinking? With Oracle Application Express and Oracle Data Miner
What Are They Thinking? With Oracle Application Express and Oracle Data Miner Roel Hartman Brendan Tierney Agenda Who are we The Scenario Graphs & Charts in APEX - Live Demo Oracle Data Miner & DBA tasks
Harnessing the power of advanced analytics with IBM Netezza
IBM Software Information Management White Paper Harnessing the power of advanced analytics with IBM Netezza How an appliance approach simplifies the use of advanced analytics Harnessing the power of advanced
KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES
HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within
Big Data Analytics with Oracle Advanced Analytics
Big Data Analytics with Oracle Advanced Analytics Making Big Data and Analytics Simple O R A C L E W H I T E P A P E R J U L Y 2 0 1 5 Disclaimer The following is intended to outline our general product
Make Better Decisions Through Predictive Intelligence
IBM SPSS Modeler Professional Make Better Decisions Through Predictive Intelligence Highlights Easily access, prepare and model structured data with this intuitive, visual data mining workbench Rapidly
Extend your analytic capabilities with SAP Predictive Analysis
September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics
IBM SPSS Modeler Professional
IBM SPSS Modeler Professional Make better decisions through predictive intelligence Highlights Create more effective strategies by evaluating trends and likely outcomes. Easily access, prepare and model
Predictive Analytics Powered by SAP HANA. Cary Bourgeois Principal Solution Advisor Platform and Analytics
Predictive Analytics Powered by SAP HANA Cary Bourgeois Principal Solution Advisor Platform and Analytics Agenda Introduction to Predictive Analytics Key capabilities of SAP HANA for in-memory predictive
Massive Predictive Modeling using Oracle R Technologies Mark Hornick, Director, Oracle Advanced Analytics
Massive Predictive Modeling using Oracle R Technologies Mark Hornick, Director, Oracle Advanced Analytics Safe Harbor Statement The following is intended to outline our general product direction. It is
Using Map Views and Spatial Analytics in OBI 11g. BIWA Summit 2014
Using Map Views and Spatial Analytics in OBI 11g BIWA Summit 2014 Tim Vlamis Dan Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com Vlamis Software Solutions Vlamis Software founded in
SAP Predictive Analytics: An Overview and Roadmap. Charles Gadalla, SAP @cgadalla SESSION CODE: 603
SAP Predictive Analytics: An Overview and Roadmap Charles Gadalla, SAP @cgadalla SESSION CODE: 603 Advanced Analytics SAP Vision Embed Smart Agile Analytics into Decision Processes to Deliver Business
IBM SPSS Modeler Professional
IBM SPSS Modeler Professional Make better decisions through predictive intelligence Highlights Create more effective strategies by evaluating trends and likely outcomes. Easily access, prepare and model
Oracle OLAP What's All This About?
Oracle OLAP What's All This About? IOUG Live! 2006 Dan Vlamis [email protected] Vlamis Software Solutions, Inc. 816-781-2880 http://www.vlamis.com Vlamis Software Solutions, Inc. Founded in 1992 in Kansas
Intelligent Government From Data to Decision. Robert Lindsley [email protected] Oracle, Public Sector Technology Group
Intelligent Government From Data to Decision Robert Lindsley [email protected] Oracle, Public Sector Technology Group Safe Harbor Statement The following is intended to outline our general product
How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK
How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK Agenda Analytics why now? The process around data and text mining Case Studies The Value of Information
Advanced Dashboard Design in OBI 11g. Collaborate 2013 Session 726
Advanced Dashboard Design in OBI 11g Collaborate 2013 Session 726 Tim Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com Vlamis Software Solutions Vlamis Software founded in 1992 in Kansas
III JORNADAS DE DATA MINING
III JORNADAS DE DATA MINING EN EL MARCO DE LA MAESTRÍA EN DATA MINING DE LA UNIVERSIDAD AUSTRAL PRESENTACIÓN TECNOLÓGICA IBM Alan Schcolnik, Cognos Technical Sales Team Leader, IBM Software Group. IAE
Business Intelligence in a Hybrid Cloud Environment
Business Intelligence in a Hybrid Cloud Environment Kshitij Kumar Global VP of BI/EPM and CTO Apps Associates LLC August 20, 2015 Copyright 2015. Apps Associates LLC. 1 Agenda Evolution of Hybrid Cloud
Advanced In-Database Analytics
Advanced In-Database Analytics Tallinn, Sept. 25th, 2012 Mikko-Pekka Bertling, BDM Greenplum EMEA 1 That sounds complicated? 2 Who can tell me how best to solve this 3 What are the main mathematical functions??
Using OBIEE for Location-Aware Predictive Analytics
Using OBIEE for Location-Aware Predictive Analytics Jean Ihm, Principal Product Manager, Oracle Spatial and Graph Jayant Sharma, Director, Product Management, Oracle Spatial and Graph, MapViewer Oracle
Oracle BI 11.1.1.6 New Features Dan Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com
Oracle BI 11.1.1.6 New Features Dan Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com Oracle BI 11.1.1.6 New Features Agenda IOUG, BIWA and Vlamis background Agenda for reviewing features:
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Advanced Big Data Analytics with R and Hadoop
REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional
Mike Maxey. Senior Director Product Marketing Greenplum A Division of EMC. Copyright 2011 EMC Corporation. All rights reserved.
Mike Maxey Senior Director Product Marketing Greenplum A Division of EMC 1 Greenplum Becomes the Foundation of EMC s Big Data Analytics (July 2010) E M C A C Q U I R E S G R E E N P L U M For three years,
Data Visualization for Oracle Business Intelligence 11g. Oracle OpenWorld 2014
Data Visualization for Oracle Business Intelligence 11g Oracle OpenWorld 2014 Tim Vlamis Dan Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com Session #UGF9227 Copyright 2014, Vlamis
SAP Predictive Analysis: Strategy, Value Proposition
September 10-13, 2012 Orlando, Florida SAP Predictive Analysis: Strategy, Value Proposition Thomas B Kuruvilla, Solution Management, SAP Business Intelligence Scott Leaver, Solution Management, SAP Business
whitepaper Predictive Analytics with TIBCO Spotfire and TIBCO Enterprise Runtime for R
Predictive Analytics with TIBCO Spotfire and TIBCO Enterprise Runtime for R Table of Contents 3 Predictive Analytics with TIBCO Spotfire 4 TIBCO Spotfire Statistics Services 8 TIBCO Enterprise Runtime
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
DATA MINING AND WAREHOUSING CONCEPTS
CHAPTER 1 DATA MINING AND WAREHOUSING CONCEPTS 1.1 INTRODUCTION The past couple of decades have seen a dramatic increase in the amount of information or data being stored in electronic format. This accumulation
WHITE PAPER. Harnessing the Power of Advanced Analytics How an appliance approach simplifies the use of advanced analytics
WHITE PAPER Harnessing the Power of Advanced How an appliance approach simplifies the use of advanced analytics Introduction The Netezza TwinFin i-class advanced analytics appliance pushes the limits of
UNLEASHING THE VALUE OF THE TERADATA UNIFIED DATA ARCHITECTURE WITH ALTERYX
UNLEASHING THE VALUE OF THE TERADATA UNIFIED DATA ARCHITECTURE WITH ALTERYX 1 Successful companies know that analytics are key to winning customer loyalty, optimizing business processes and beating their
Oracle Exalytics Briefing
Oracle Exalytics Briefing March 5, 2014 Dave Miller, Mythics Enterprise Architect Greg Mika, Mythics Enterprise Architect Agenda Introductions About Mythics Exalytics Overview Demonstration Scenario BI
Oracle Database 11g for Data Warehousing and Business Intelligence. An Oracle White Paper July 2007
Oracle Database 11g for Data Warehousing and Business Intelligence An Oracle White Paper July 2007 Oracle Database 11g for Data Warehousing and Business Intelligence Introduction...3 Integrate...3 Oracle
IDC MaturityScape Benchmark: Big Data and Analytics in Government. Adelaide O Brien Research Director IDC Government Insights June 20, 2014
IDC MaturityScape Benchmark: Big Data and Analytics in Government Adelaide O Brien Research Director IDC Government Insights June 20, 2014 IDC MaturityScape Benchmark: Big Data and Analytics in Government
Discovering, Not Finding. Practical Data Mining for Practitioners: Level II. Advanced Data Mining for Researchers : Level III
www.cognitro.com/training Predicitve DATA EMPOWERING DECISIONS Data Mining & Predicitve Training (DMPA) is a set of multi-level intensive courses and workshops developed by Cognitro team. it is designed
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Hexaware E-book on Predictive Analytics
Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be
Machine Learning with MATLAB David Willingham Application Engineer
Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
New Features in Oracle Application Express 4.1. Oracle Application Express Websheets. Oracle Database Cloud Service
Date and Time- Europe/Middle East/Africa Tuesday June 12, 2012 09:00 13:00 BST 10:00 14:00 CEST 12:00 16:00 GST Corresponding UTC (GMT) 08:00:00 Agenda Time Track and Keynote/Session Title 9:00 AM Keynote
Sunnie Chung. Cleveland State University
Sunnie Chung Cleveland State University Data Scientist Big Data Processing Data Mining 2 INTERSECT of Computer Scientists and Statisticians with Knowledge of Data Mining AND Big data Processing Skills:
Einsatzfelder von IBM PureData Systems und Ihre Vorteile.
Einsatzfelder von IBM PureData Systems und Ihre Vorteile [email protected] Agenda Information technology challenges PureSystems and PureData introduction PureData for Transactions PureData for Analytics
Fusion Applications Overview of Business Intelligence and Reporting components
Fusion Applications Overview of Business Intelligence and Reporting components This document briefly lists the components, their common acronyms and the functionality that they bring to Fusion Applications.
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Predictive Analytics with TIBCO Spotfire and TIBCO Enterprise Runtime for R
Predictive Analytics with TIBCO Spotfire and TIBCO Enterprise Runtime for R PREDICTIVE ANALYTICS WITH TIBCO SPOTFIRE TIBCO Spotfire is the premier data discovery and analytics platform, which provides
ANALYTICS CENTER LEARNING PROGRAM
Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals
Predictive Analytics for Better Business Intelligence
Oracle 11g DB Data Warehousing ETL OLAP Statistics Predictive Analytics for Better Business Intelligence Data Mining Charlie Berger Sr. Director Product Management, Data Mining Technologies
Getting it Right: How to Find the Right BI Package for the Right Situation Norma Waugh. RMOUG Training Days February 15-17, 2011
Delivering Oracle Success Getting it Right: How to Find the Right BI Package for the Right Situation Norma Waugh RMOUG Training Days February 15-17, 2011 About DBAK Oracle solution provider Co-founded
Actian SQL in Hadoop Buyer s Guide
Actian SQL in Hadoop Buyer s Guide Contents Introduction: Big Data and Hadoop... 3 SQL on Hadoop Benefits... 4 Approaches to SQL on Hadoop... 4 The Top 10 SQL in Hadoop Capabilities... 5 SQL in Hadoop
SQL Server 2005 Features Comparison
Page 1 of 10 Quick Links Home Worldwide Search Microsoft.com for: Go : Home Product Information How to Buy Editions Learning Downloads Support Partners Technologies Solutions Community Previous Versions
Building Cubes and Analyzing Data using Oracle OLAP 11g
Building Cubes and Analyzing Data using Oracle OLAP 11g Collaborate '08 Session 219 Chris Claterbos [email protected] Vlamis Software Solutions, Inc. 816-729-1034 http://www.vlamis.com Copyright 2007,
2015 Workshops for Professors
SAS Education Grow with us Offered by the SAS Global Academic Program Supporting teaching, learning and research in higher education 2015 Workshops for Professors 1 Workshops for Professors As the market
locuz.com Big Data Services
locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.
Digging for Gold: Business Usage for Data Mining Kim Foster, CoreTech Consulting Group, Inc., King of Prussia, PA
Digging for Gold: Business Usage for Data Mining Kim Foster, CoreTech Consulting Group, Inc., King of Prussia, PA ABSTRACT Current trends in data mining allow the business community to take advantage of
KnowledgeSEEKER POWERFUL SEGMENTATION, STRATEGY DESIGN AND VISUALIZATION SOFTWARE
POWERFUL SEGMENTATION, STRATEGY DESIGN AND VISUALIZATION SOFTWARE Most Effective Modeling Application Designed to Address Business Challenges Applying a predictive strategy to reach a desired business
