Client Overview. Engagement Situation. Key Requirements

Size: px
Start display at page:

Download "Client Overview. Engagement Situation. Key Requirements"

Transcription

1

2 Client Overview Our client is one of the leading providers of business intelligence systems for customers especially in BFSI space that needs intensive data analysis of huge amounts of data for their decision making. Our client s products aims at overcoming the limitations of regular business intelligence solutions like integrating data from different data sources, reducing data redundancy, etc. Our client s products utilize the benefits of modern technologies and implements graph traversal techniques that extract valuable information in days instead of weeks. Engagement Situation In today s rapidly changing environment, data analytics has become imperative to extract meaningful information from the raw data available in different form to meet the business requirements of any organization. Our client s customers wanted to have a capability of processing data extracted by using NoSQL databases and graph logical structures. Client s existing product had issues with scalability to keep pace with the ever increasing amount of data. Also, it was difficult to clean, convert and optimize the incoming data due to different sources and formats in which data was required to be extracted. Key Requirements Develop a scalable and optimal solution BI solution with: Data Extraction: retrieval of data from different data sources viz. DBMS, CSV, and text files in a specific pattern. Cleaning and fetching data with relatively few computational operations, and produce actionable output data. Develop reporting and provide real-time analytics and visualization on the processed data.

3 Xoriant Solution Xoriant has significant experience in database management systems. For the current engagement, the team studied the existing data processor to understand if the current architecture could support the new functionalities and if it could be made scalable. In reference to the requirement of the system, Xoriant team defined an optimal solution that accesses data across the multiple layers using Hadoop as the technology for data processing and storage. HTML 5 was used for visualization module for charts and tables displayed as different graphs e.g. line graphs, bar charts, pie charts, etc. A central graph logic based controller was developed which coordinates and makes the required changes across the data stack based on predefined rules. Xoriant Key Contributions Xoriant implemented a scalable solution which provided the required functionalities of eliminating large amount of code at each layer of present system by using Cassandra DB. Integrated client s platform with Hadoop framework while using Cassandra, a NoSQL database and Solr text search platform for processing data effectively. Incorporated NoSQL database, graph logical structures and graph traversal technique to enable validation, cleanup, and manipulation of data before it can be used by client s system. Integrated CassandraBulkOutputFormat and SolrBulkOutputFormat packages to write data in Cassandra and Solr. Integrated D3JS and Node JS library for visualization in the form of charts like line graphs, bar charts, pie charts, etc. with real time data. Used centralized graph algorithm to develop customer data connector and a loading framework to load data into the Graph storage.

4 High-Level Architecture Diagram Data Source (CSV) Tools and Technologies Java Cassandra Solr Hadoop HTML CSS Javascript NodeJS

5 Business Benefits Provided high scalability as any new data node can be added and related to current node in the system. Reduced the implementation and ongoing maintenance cost by 20% because of the centralized graph logic algorithm. Introduced new reports and reduced report generation time by 70% resulting in quick informed decisions. Resulted in highly optimized and efficient system in terms of time and storage space with customized graph searching functionality. Enabled the system to build, configure and solve complex analytical problems for e.g. Market Basket Analysis, Cluster Analysis etc.

Assignment 5: Visualization

Assignment 5: Visualization Assignment 5: Visualization Arash Vahdat March 17, 2015 Readings Depending on how familiar you are with web programming, you are recommended to study concepts related to CSS, HTML, and JavaScript. The

More information

Enterprise Reporting Solution

Enterprise Reporting Solution Background Current Reporting Challenges: Difficulty extracting various levels of data from AgLearn Limited ability to translate data into presentable formats Complex reporting requires the technical staff

More information

TDAQ Analytics Dashboard

TDAQ Analytics Dashboard 14 October 2010 ATL-DAQ-SLIDE-2010-397 TDAQ Analytics Dashboard A real time analytics web application Outline Messages in the ATLAS TDAQ infrastructure Importance of analysis A dashboard approach Architecture

More information

Data processing goes big

Data processing goes big Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,

More information

Testing Big data is one of the biggest

Testing Big data is one of the biggest Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing

More information

Unified Batch & Stream Processing Platform

Unified Batch & Stream Processing Platform Unified Batch & Stream Processing Platform Himanshu Bari Director Product Management Most Big Data Use Cases Are About Improving/Re-write EXISTING solutions To KNOWN problems Current Solutions Were Built

More information

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web

More information

Microsoft Services Exceed your business with Microsoft SharePoint Server 2010

Microsoft Services Exceed your business with Microsoft SharePoint Server 2010 Microsoft Services Exceed your business with Microsoft SharePoint Server 2010 Business Intelligence Suite Alexandre Mendeiros, SQL Server Premier Field Engineer January 2012 Agenda Microsoft Business Intelligence

More information

Search and Real-Time Analytics on Big Data

Search and Real-Time Analytics on Big Data Search and Real-Time Analytics on Big Data Sewook Wee, Ryan Tabora, Jason Rutherglen Accenture & Think Big Analytics Strata New York October, 2012 Big Data: data becomes your core asset. It realizes its

More information

The 4 Pillars of Technosoft s Big Data Practice

The 4 Pillars of Technosoft s Big Data Practice beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed

More information

BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON

BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing

More information

Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges

Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges James Campbell Corporate Systems Engineer HP Vertica jcampbell@vertica.com Big

More information

Software development & technologies in Market Research industry

Software development & technologies in Market Research industry Software development & technologies in Market Research industry Ember.js, PHP, ConfirmIt & Dimensions October 2014 1 ROC Online 2 Who we are and what we do? Team & Skills Process Software/Frameworks/Products

More information

Product Overview. Dream Report. OCEAN DATA SYSTEMS The Art of Industrial Intelligence. User Friendly & Programming Free Reporting.

Product Overview. Dream Report. OCEAN DATA SYSTEMS The Art of Industrial Intelligence. User Friendly & Programming Free Reporting. Dream Report OCEAN DATA SYSTEMS The Art of Industrial Intelligence User Friendly & Programming Free Reporting. Dream Report for Trihedral s VTScada Dream Report Product Overview Applications Compliance

More information

Client Overview. Engagement Situation

Client Overview. Engagement Situation Client Overview Our client is a provider of Operational Analytics and Visualization solutions for cloud/datacenters that enables IT function of an organization to monitor, and plan complex cloud and data

More information

A Next-Generation Analytics Ecosystem for Big Data. Colin White, BI Research September 2012 Sponsored by ParAccel

A Next-Generation Analytics Ecosystem for Big Data. Colin White, BI Research September 2012 Sponsored by ParAccel A Next-Generation Analytics Ecosystem for Big Data Colin White, BI Research September 2012 Sponsored by ParAccel BIG DATA IS BIG NEWS The value of big data lies in the business analytics that can be generated

More information

Client Requirement. Why SharePoint

Client Requirement. Why SharePoint Client Requirement Client wanted a sharepoint system that could meet their document and record management needs. It should also improve client s information management systems. To support existing and

More information

Big Data Architectures. Tom Cahill, Vice President Worldwide Channels, Jaspersoft

Big Data Architectures. Tom Cahill, Vice President Worldwide Channels, Jaspersoft Big Data Architectures Tom Cahill, Vice President Worldwide Channels, Jaspersoft Jaspersoft + Big Data = Fast Insights Success in the Big Data era is more than about size. It s about getting insight from

More information

Big Data Visualization. Apache Spark and Zeppelin

Big Data Visualization. Apache Spark and Zeppelin Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark

More information

Client Overview. Engagement Situation. Key Requirements for Platform Development :

Client Overview. Engagement Situation. Key Requirements for Platform Development : Client Overview Our client provides leading video platform for enterprise HD video conferencing and has product suite focused on product-based visual communication solutions. Our client leverages its solutions

More information

An Approach to Implement Map Reduce with NoSQL Databases

An Approach to Implement Map Reduce with NoSQL Databases www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh

More information

PROPOSAL To Develop an Enterprise Scale Disease Modeling Web Portal For Ascel Bio Updated March 2015

PROPOSAL To Develop an Enterprise Scale Disease Modeling Web Portal For Ascel Bio Updated March 2015 Enterprise Scale Disease Modeling Web Portal PROPOSAL To Develop an Enterprise Scale Disease Modeling Web Portal For Ascel Bio Updated March 2015 i Last Updated: 5/8/2015 4:13 PM3/5/2015 10:00 AM Enterprise

More information

Measure Customer Behaviour using C4.5 Decision Tree Map Reduce Implementation in Big Data Analytics and Data Visualization

Measure Customer Behaviour using C4.5 Decision Tree Map Reduce Implementation in Big Data Analytics and Data Visualization IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 10 March 2015 ISSN (online): 2349-6010 Measure Customer Behaviour using C4.5 Decision Tree Map Reduce Implementation

More information

International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop

International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: simmibagga12@gmail.com

More information

Dell Reference Configuration for DataStax Enterprise powered by Apache Cassandra

Dell Reference Configuration for DataStax Enterprise powered by Apache Cassandra Dell Reference Configuration for DataStax Enterprise powered by Apache Cassandra A Quick Reference Configuration Guide Kris Applegate kris_applegate@dell.com Solution Architect Dell Solution Centers Dave

More information

Migrating an Identity Resolution software to open source

Migrating an Identity Resolution software to open source Migrating an Identity Resolution software to open source www.xoriant.com Client Overview Our client is a leading developer and provider of identity resolution (entity analytics) software for government

More information

Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2

Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2 Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue

More information

ElegantJ BI. White Paper. The Enterprise Option Reporting Tools vs. Business Intelligence

ElegantJ BI. White Paper. The Enterprise Option Reporting Tools vs. Business Intelligence ElegantJ BI White Paper The Enterprise Option Integrated Business Intelligence and Reporting for Performance Management, Operational Business Intelligence and Data Management www.elegantjbi.com ELEGANTJ

More information

KnowledgeSEEKER Marketing Edition

KnowledgeSEEKER Marketing Edition KnowledgeSEEKER Marketing Edition Predictive Analytics for Marketing The Easiest to Use Marketing Analytics Tool KnowledgeSEEKER Marketing Edition is a predictive analytics tool designed for marketers

More information

IBM BigInsights Has Potential If It Lives Up To Its Promise. InfoSphere BigInsights A Closer Look

IBM BigInsights Has Potential If It Lives Up To Its Promise. InfoSphere BigInsights A Closer Look IBM BigInsights Has Potential If It Lives Up To Its Promise By Prakash Sukumar, Principal Consultant at iolap, Inc. IBM released Hadoop-based InfoSphere BigInsights in May 2013. There are already Hadoop-based

More information

Big Data Technology ดร.ช ชาต หฤไชยะศ กด. Choochart Haruechaiyasak, Ph.D.

Big Data Technology ดร.ช ชาต หฤไชยะศ กด. Choochart Haruechaiyasak, Ph.D. Big Data Technology ดร.ช ชาต หฤไชยะศ กด Choochart Haruechaiyasak, Ph.D. Speech and Audio Technology Laboratory (SPT) National Electronics and Computer Technology Center (NECTEC) National Science and Technology

More information

ADHAWK WORKS ADVERTISING ANALTICS ON A DASHBOARD

ADHAWK WORKS ADVERTISING ANALTICS ON A DASHBOARD ADHAWK WORKS ADVERTISING ANALTICS ON A DASHBOARD Mrs. Vijayalaxmi M. 1, Anagha Kelkar 2, Neha Puthran 2, Sailee Devne 2 Vice Principal 1, B.E. Students 2, Department of Information Technology V.E.S Institute

More information

Sisense. Product Highlights. www.sisense.com

Sisense. Product Highlights. www.sisense.com Sisense Product Highlights Introduction Sisense is a business intelligence solution that simplifies analytics for complex data by offering an end-to-end platform that lets users easily prepare and analyze

More information

Implementation of Model-View-Controller Architecture Pattern for Business Intelligence Architecture

Implementation of Model-View-Controller Architecture Pattern for Business Intelligence Architecture Implementation of -- Architecture Pattern for Business Intelligence Architecture Medha Kalelkar Vidyalankar Institute of Technology, University of Mumbai, Mumbai, India Prathamesh Churi Lecturer, Department

More information

ACEYUS REPORTING. Aceyus Intelligence Executive Summary

ACEYUS REPORTING. Aceyus Intelligence Executive Summary ACEYUS REPORTING Aceyus Intelligence Executive Summary Aceyus, Inc. June 2015 1 ACEYUS REPORTING ACEYUS INTELLIGENCE EXECUTIVE SUMMARY Aceyus Intelligence is a suite of products for optimizing contact

More information

On a Hadoop-based Analytics Service System

On a Hadoop-based Analytics Service System Int. J. Advance Soft Compu. Appl, Vol. 7, No. 1, March 2015 ISSN 2074-8523 On a Hadoop-based Analytics Service System Mikyoung Lee, Hanmin Jung, and Minhee Cho Korea Institute of Science and Technology

More information

III Big Data Technologies

III Big Data Technologies III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

A Grid Architecture for Manufacturing Database System

A Grid Architecture for Manufacturing Database System Database Systems Journal vol. II, no. 2/2011 23 A Grid Architecture for Manufacturing Database System Laurentiu CIOVICĂ, Constantin Daniel AVRAM Economic Informatics Department, Academy of Economic Studies

More information

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers 60 Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative

More information

JAVASCRIPT CHARTING. Scaling for the Enterprise with Metric Insights. 2013 Copyright Metric insights, Inc.

JAVASCRIPT CHARTING. Scaling for the Enterprise with Metric Insights. 2013 Copyright Metric insights, Inc. JAVASCRIPT CHARTING Scaling for the Enterprise with Metric Insights 2013 Copyright Metric insights, Inc. A REVOLUTION IS HAPPENING... 3! Challenges... 3! Borrowing From The Enterprise BI Stack... 4! Visualization

More information

160 Numerical Methods and Programming, 2012, Vol. 13 (http://num-meth.srcc.msu.ru) UDC 004.021

160 Numerical Methods and Programming, 2012, Vol. 13 (http://num-meth.srcc.msu.ru) UDC 004.021 160 Numerical Methods and Programming, 2012, Vol. 13 (http://num-meth.srcc.msu.ru) UDC 004.021 JOB DIGEST: AN APPROACH TO DYNAMIC ANALYSIS OF JOB CHARACTERISTICS ON SUPERCOMPUTERS A.V. Adinets 1, P. A.

More information

Internships and graduation jobs Development

Internships and graduation jobs Development Internships and graduation jobs Development We strongly believe in the power of students. Therefore we offer challenging internships and graduation projects to jumpstart your career. Your job not listed?

More information

Oracle Big Data Essentials

Oracle Big Data Essentials Oracle University Contact Us: Local: 1800 103 4775 Intl: +91 80 40291196 Oracle Big Data Essentials Duration: 3 Days What you will learn This Oracle Big Data Essentials training deep dives into using the

More information

XpoLog Center Suite Log Management & Analysis platform

XpoLog Center Suite Log Management & Analysis platform XpoLog Center Suite Log Management & Analysis platform Summary: 1. End to End data management collects and indexes data in any format from any machine / device in the environment. 2. Logs Monitoring -

More information

Accelerating Wordpress for Pagerank and Profit

Accelerating Wordpress for Pagerank and Profit Slide No. 1 Accelerating Wordpress for Pagerank and Profit Practical tips and tricks to increase the speed of your site, improve conversions and climb the search rankings By: Allan Jude November 2011 Vice

More information

Lost in Space? Methodology for a Guided Drill-Through Analysis Out of the Wormhole

Lost in Space? Methodology for a Guided Drill-Through Analysis Out of the Wormhole Paper BB-01 Lost in Space? Methodology for a Guided Drill-Through Analysis Out of the Wormhole ABSTRACT Stephen Overton, Overton Technologies, LLC, Raleigh, NC Business information can be consumed many

More information

Team Members: Christopher Copper Philip Eittreim Jeremiah Jekich Andrew Reisdorph. Client: Brian Krzys

Team Members: Christopher Copper Philip Eittreim Jeremiah Jekich Andrew Reisdorph. Client: Brian Krzys Team Members: Christopher Copper Philip Eittreim Jeremiah Jekich Andrew Reisdorph Client: Brian Krzys June 17, 2014 Introduction Newmont Mining is a resource extraction company with a research and development

More information

Decoding the Big Data Deluge a Virtual Approach. Dan Luongo, Global Lead, Field Solution Engineering Data Virtualization Business Unit, Cisco

Decoding the Big Data Deluge a Virtual Approach. Dan Luongo, Global Lead, Field Solution Engineering Data Virtualization Business Unit, Cisco Decoding the Big Data Deluge a Virtual Approach Dan Luongo, Global Lead, Field Solution Engineering Data Virtualization Business Unit, Cisco High-volume, velocity and variety information assets that demand

More information

OGP s Solution Stack. Luis Moreira. Copyright 2015, Oracle and/or its affiliates. All rights reserved.

OGP s Solution Stack. Luis Moreira. Copyright 2015, Oracle and/or its affiliates. All rights reserved. OGP s Solution Stack Luis Moreira Database + RAC GoldenGate Endeca WebCenter Sites/Portal/Content Database Enterprise Edition Key Features: Diagram: Journey to Database as a Service Cross platform backup

More information

Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges

Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges Prerita Gupta Research Scholar, DAV College, Chandigarh Dr. Harmunish Taneja Department of Computer Science and

More information

4/25/2016 C. M. Boyd, ceilyn_boyd@harvard.edu Practical Data Visualization with JavaScript Talk Handout

4/25/2016 C. M. Boyd, ceilyn_boyd@harvard.edu Practical Data Visualization with JavaScript Talk Handout Practical Data Visualization with JavaScript Talk Handout Use the Workflow Methodology to Compare Options Name Type Data sources End to end Workflow Support Data transformers Data visualizers General Data

More information

Chapter 1. Dr. Chris Irwin Davis Email: cid021000@utdallas.edu Phone: (972) 883-3574 Office: ECSS 4.705. CS-4337 Organization of Programming Languages

Chapter 1. Dr. Chris Irwin Davis Email: cid021000@utdallas.edu Phone: (972) 883-3574 Office: ECSS 4.705. CS-4337 Organization of Programming Languages Chapter 1 CS-4337 Organization of Programming Languages Dr. Chris Irwin Davis Email: cid021000@utdallas.edu Phone: (972) 883-3574 Office: ECSS 4.705 Chapter 1 Topics Reasons for Studying Concepts of Programming

More information

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop

More information

An Integrated Big Data & Analytics Infrastructure June 14, 2012 Robert Stackowiak, VP Oracle ESG Data Systems Architecture

An Integrated Big Data & Analytics Infrastructure June 14, 2012 Robert Stackowiak, VP Oracle ESG Data Systems Architecture An Integrated Big Data & Analytics Infrastructure June 14, 2012 Robert Stackowiak, VP ESG Data Systems Architecture Big Data & Analytics as a Service Components Unstructured Data / Sparse Data of Value

More information

Where is... How do I get to...

Where is... How do I get to... Big Data, Fast Data, Spatial Data Making Sense of Location Data in a Smart City Hans Viehmann Product Manager EMEA ORACLE Corporation August 19, 2015 Copyright 2014, Oracle and/or its affiliates. All rights

More information

Design Document. Offline Charging Server (Offline CS ) Version 1.0. - i -

Design Document. Offline Charging Server (Offline CS ) Version 1.0. - i - Design Document Offline Charging Server (Offline CS ) Version 1.0 - i - Document Scope Objective The information provided in this document specifies the design details of Operations of Offline Charging

More information

Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia

Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop

More information

Case Study. Web Application for Financial & Economic Data Analysis. www.brainvire.com 2013 Brainvire Infotech Pvt. Ltd Page 1 of 1

Case Study. Web Application for Financial & Economic Data Analysis. www.brainvire.com 2013 Brainvire Infotech Pvt. Ltd Page 1 of 1 Case Study Web Application for Financial & Economic Data Analysis www.brainvire.com 2013 Brainvire Infotech Pvt. Ltd Page 1 of 1 Client Requirement This is a highly customized application for financial

More information

Big Data. Copyright 2014 Engineering Group, SpagoBI Competency Center. All rights reserved. www.spagobi.org

Big Data. Copyright 2014 Engineering Group, SpagoBI Competency Center. All rights reserved. www.spagobi.org Big Data Overview on SpagoBI suite A comprehensive suiteoffering a full set of analytical and reporting tools. Innovative themes and solutions: Location Intelligence, Free inquiry, KPI, Interactive cockpits,

More information

Big Data for Investment Research Management

Big Data for Investment Research Management IDT Partners www.idtpartners.com Big Data for Investment Research Management Discover how IDT Partners helps Financial Services, Market Research, and Investment Management firms turn big data into actionable

More information

CISC 432/CMPE 432/CISC 832 Advanced Database Systems

CISC 432/CMPE 432/CISC 832 Advanced Database Systems CISC 432/CMPE 432/CISC 832 Advanced Database Systems Course Info Instructor: Patrick Martin Goodwin Hall 630 613 533 6063 martin@cs.queensu.ca Office Hours: Wednesday 11:00 1:00 or by appointment Schedule:

More information

BIG DATA What it is and how to use?

BIG DATA What it is and how to use? BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14

More information

Big Data Analytics with PowerPivot and Power View

Big Data Analytics with PowerPivot and Power View Big Data Analytics with PowerPivot and Power View Peter Myers Global Sponsors: Presenter Introduction Peter Myers BI Expert BBus,MCSE, MCT, SQL Server MVP 15 years of experience designing, developing and

More information

DATA VISUALIZATION: When Data Speaks Business PRODUCT ANALYSIS REPORT IBM COGNOS BUSINESS INTELLIGENCE. Technology Evaluation Centers

DATA VISUALIZATION: When Data Speaks Business PRODUCT ANALYSIS REPORT IBM COGNOS BUSINESS INTELLIGENCE. Technology Evaluation Centers PRODUCT ANALYSIS REPORT IBM COGNOS BUSINESS INTELLIGENCE DATA VISUALIZATION: When Data Speaks Business Jorge García, TEC Senior BI and Data Management Analyst Technology Evaluation Centers Contents About

More information

Big Data Analytics in LinkedIn. Danielle Aring & William Merritt

Big Data Analytics in LinkedIn. Danielle Aring & William Merritt Big Data Analytics in LinkedIn by Danielle Aring & William Merritt 2 Brief History of LinkedIn - Launched in 2003 by Reid Hoffman (https://ourstory.linkedin.com/) - 2005: Introduced first business lines

More information

Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>

Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here> s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline

More information

Data Mining in the Swamp

Data Mining in the Swamp WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all

More information

Client Overview. Engagement Situation

Client Overview. Engagement Situation Client Overview Our client is one of the fastest-growing technology businesses in North America, aiming at preventing/minimizing losses by providing security services through behavioral intelligence, predictive

More information

Skills for Employment Investment Project (SEIP)

Skills for Employment Investment Project (SEIP) Skills for Employment Investment Project (SEIP) Standards/ Curriculum Format for Web Application Development Using DOT Net Course Duration: Three Months 1 Course Structure and Requirements Course Title:

More information

Gradient An EII Solution From Infosys

Gradient An EII Solution From Infosys Gradient An EII Solution From Infosys Keywords: Grid, Enterprise Integration, EII Introduction New arrays of business are emerging that require cross-functional data in near real-time. Examples of such

More information

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems

More information

Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps

Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps White provides GRASP-powered big data predictive analytics that increases marketing effectiveness and customer satisfaction with API-driven adaptive apps that anticipate, learn, and adapt to deliver contextual,

More information

Cisco Data Preparation

Cisco Data Preparation Data Sheet Cisco Data Preparation Unleash your business analysts to develop the insights that drive better business outcomes, sooner, from all your data. As self-service business intelligence (BI) and

More information

Retail POS Data Analytics Using MS Bi Tools. Business Intelligence White Paper

Retail POS Data Analytics Using MS Bi Tools. Business Intelligence White Paper Retail POS Data Analytics Using MS Bi Tools Business Intelligence White Paper Introduction Overview There is no doubt that businesses today are driven by data. Companies, big or small, take so much of

More information

Big Data and Analytics (Fall 2015)

Big Data and Analytics (Fall 2015) Big Data and Analytics (Fall 2015) Core/Elective: MS CS Elective MS SPM Elective Instructor: Dr. Tariq MAHMOOD Credit Hours: 3 Pre-requisite: All Core CS Courses (Knowledge of Data Mining is a Plus) Every

More information

The Internet of Things and Big Data: Intro

The Internet of Things and Big Data: Intro The Internet of Things and Big Data: Intro John Berns, Solutions Architect, APAC - MapR Technologies April 22 nd, 2014 1 What This Is; What This Is Not It s not specific to IoT It s not about any specific

More information

BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014

BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014 BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014 Ralph Kimball Associates 2014 The Data Warehouse Mission Identify all possible enterprise data assets Select those assets

More information

Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84

Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84 Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics

More information

Powerful Management of Financial Big Data

Powerful Management of Financial Big Data Powerful Management of Financial Big Data TickSmith s solutions are the first to apply the processing power, speed, and capacity of cutting-edge Big Data technology to financial data. We combine open source

More information

Oracle Big Data Spatial & Graph Social Network Analysis - Case Study

Oracle Big Data Spatial & Graph Social Network Analysis - Case Study Oracle Big Data Spatial & Graph Social Network Analysis - Case Study Mark Rittman, CTO, Rittman Mead OTN EMEA Tour, May 2016 info@rittmanmead.com www.rittmanmead.com @rittmanmead About the Speaker Mark

More information

SQLstream 4 Product Brief. CHANGING THE ECONOMICS OF BIG DATA SQLstream 4.0 product brief

SQLstream 4 Product Brief. CHANGING THE ECONOMICS OF BIG DATA SQLstream 4.0 product brief SQLstream 4 Product Brief CHANGING THE ECONOMICS OF BIG DATA SQLstream 4.0 product brief 2 Latest: The latest release of SQlstream s award winning s-streaming Product Portfolio, SQLstream 4, is changing

More information

Hadoop and Relational Database The Best of Both Worlds for Analytics Greg Battas Hewlett Packard

Hadoop and Relational Database The Best of Both Worlds for Analytics Greg Battas Hewlett Packard Hadoop and Relational base The Best of Both Worlds for Analytics Greg Battas Hewlett Packard The Evolution of Analytics Mainframe EDW Proprietary MPP Unix SMP MPP Appliance Hadoop? Questions Is Hadoop

More information

Oracle Database Public Cloud Services

Oracle Database Public Cloud Services Oracle Database Public Cloud Services A Strategy and Technology Overview Bob Zeolla Principal Sales Consultant Oracle Education & Research November 23, 2015 Safe Harbor Statement The following is intended

More information

Medical Big Data Workshop 12:30-5pm Star Conference Room. #MedBigData15

Medical Big Data Workshop 12:30-5pm Star Conference Room. #MedBigData15 Medical Big Data Workshop 12:30-5pm Star Conference Room #MedBigData15 Welcome! Today s Goals: Introduce you to the Big Data @ CSAIL Introduce you to the popular MIMIC II Dataset Overview of Database Technologies

More information

Net Developer Role Description Responsibilities Qualifications

Net Developer Role Description Responsibilities Qualifications Net Developer We are seeking a skilled ASP.NET/VB.NET developer with a background in building scalable, predictable, high-quality and high-performance web applications on the Microsoft technology stack.

More information

InfiniteGraph: The Distributed Graph Database

InfiniteGraph: The Distributed Graph Database A Performance and Distributed Performance Benchmark of InfiniteGraph and a Leading Open Source Graph Database Using Synthetic Data Objectivity, Inc. 640 West California Ave. Suite 240 Sunnyvale, CA 94086

More information

Service Quality Analytics and Visualizations. SLA Suite

Service Quality Analytics and Visualizations. SLA Suite SLA Suite SLA Suite System features Data sources are typically 3rd party management and OSS systems: performance probes and event/log managers, trouble ticketing applications, alarm managers, etc. The

More information

Data Visualization Frameworks: D3.js vs. Flot vs. Highcharts by Igor Zalutsky, JavaScript Developer at Altoros

Data Visualization Frameworks: D3.js vs. Flot vs. Highcharts by Igor Zalutsky, JavaScript Developer at Altoros Data Visualization Frameworks: D3.js vs. Flot vs. Highcharts by Igor Zalutsky, JavaScript Developer at Altoros 2013 Altoros, Any unauthorized republishing, rewriting or use of this material is prohibited.

More information

Microsoft Visio 2010 Business Intelligence

Microsoft Visio 2010 Business Intelligence Microsoft Visio 2010 Business Intelligence St. Louis SharePoint User Group Candy Parisi Microsoft Visio Solution Specialist April 10, 2012 Agenda Microsoft Business Intelligence Overview Visio Business

More information

Copyright 2013 Splunk Inc. Introducing Splunk 6

Copyright 2013 Splunk Inc. Introducing Splunk 6 Copyright 2013 Splunk Inc. Introducing Splunk 6 Safe Harbor Statement During the course of this presentation, we may make forward looking statements regarding future events or the expected performance

More information

Architectures for Big Data Analytics A database perspective

Architectures for Big Data Analytics A database perspective Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum

More information

Gain insight, agility and advantage by analyzing change across time and space.

Gain insight, agility and advantage by analyzing change across time and space. White paper Location Intelligence Gain insight, agility and advantage by analyzing change across time and space. Spatio-temporal information analysis is a Big Data challenge. The visualization and decision

More information

Turning Big Data into Big Insights

Turning Big Data into Big Insights mwd a d v i s o r s Turning Big Data into Big Insights Helena Schwenk A special report prepared for Actuate May 2013 This report is the fourth in a series and focuses principally on explaining what s needed

More information

European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project

European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project Janet Delve, University of Portsmouth Kuldar Aas, National Archives of Estonia Rainer Schmidt, Austrian Institute

More information

INTRODUCING RETAIL INTELLIGENCE

INTRODUCING RETAIL INTELLIGENCE INTRODUCING RETAIL GET READY FOR THE NEXT WAVE OF ANALYTICS IN RETAIL By: Dan Theirl Rubikloud Technologies Inc. www.rubikloud.com Prepared by: Laura Leslie Neil Laing Tiffany Hsiao WHAT IS RETAIL? Retail

More information

Introduction to D3.js Interactive Data Visualization in the Web Browser

Introduction to D3.js Interactive Data Visualization in the Web Browser Datalab Seminar Introduction to D3.js Interactive Data Visualization in the Web Browser Dr. Philipp Ackermann Sample Code: http://github.engineering.zhaw.ch/visualcomputinglab/cgdemos 2016 InIT/ZHAW Visual

More information

Actuate Business Intelligence and Reporting Tools (BIRT)

Actuate Business Intelligence and Reporting Tools (BIRT) Product Datasheet Actuate Business Intelligence and Reporting Tools (BIRT) Eclipse s BIRT project is a flexible, open source, and 100% pure Java reporting tool for building and publishing reports against

More information

TRAINING PROGRAM ON BIGDATA/HADOOP

TRAINING PROGRAM ON BIGDATA/HADOOP Course: Training on Bigdata/Hadoop with Hands-on Course Duration / Dates / Time: 4 Days / 24th - 27th June 2015 / 9:30-17:30 Hrs Venue: Eagle Photonics Pvt Ltd First Floor, Plot No 31, Sector 19C, Vashi,

More information

Moving From Hadoop to Spark

Moving From Hadoop to Spark + Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com sujee@elephantscale.com Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee

More information

Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform...

Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform... Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Solution Spectrum... 6 Oracle s Big Data

More information