Search and Data Mining: Techniques. Introduction Anna Yarygina Boris Novikov
|
|
|
- Cody Woods
- 10 years ago
- Views:
Transcription
1 Search and Data Mining: Techniques Introduction Anna Yarygina Boris Novikov
2 Data Analytics: Conference Sections Fundamentals for data analytics Mechanisms and features Big Data Huge data Target analytics Application-oriented analytics Sentiment/opinion analysis 2
3 Fundamentals for data analytics Tools, frameworks and mechanisms for data analytics Open API for data analytics In-database analytics Pre-built analytics (pattern, time-series, clustering, graph, statistical analysis, etc. Analytics visualization Multi-modal support for data analytics Google/FaceBook/Twitter/etc. analytics High-performance data analytics 3
4 Mechanisms and features Scalable data analytics Big data analytics Deep data analytics Mass data analytics Storing, dropping and filtering data Relevant/redundant/obsolete data analytics Volume vs. semantics analytics Nomad analytics Predictive analytics Trust in data analytics Legal issues analytics Failure on data analytics 4
5 Big Data Foundational models for Big Data Big Data Analytics and Metrics Big Data processing and management Big Data search and mining Big Data platforms Big Data persistence and preservation Big Data and social networks Big Data economics 5
6 Huge data Knowledge Discovery from Huge Data Computational Intelligence for Huge Data Linked Huge Data Security Intelligence with Huge Data 6
7 Target analytis Business analytics Malware analytics Cyber-threats analytics Mining user logs Reputation analytics User choice analytics Branding analytics Utility proximity-search analytics Survey-based online asset analytics Online employment analytics Geology analytics Global climate analytics Remote learning analytics Homecare analytics Population growth and migration analytics Food-borne illness outbreaks analytics 7
8 Application-oriented analytics Statistical applications Simulation applications Crawling web services Cross-database analytics Forecast analytics Financial risk management ROI analytics 8
9 Sentiment/opinion analysis Architectures for generic sentiment analysis systems Sentiment analysis techniques on social media Document-level analysis Sentence-level analysis Aspect-based analysis Comparative-sentiment analysis Sentiment lexicon acquisition Optimizing sentiment analysis algorithms Applications of sentiment analysis 9
10 Statistic-Centered Viewpoint Statistics Data Science Data Mining Machine Learning Artificial Intelligence Technologies Information Retrieval Database 10
11 IR-CenteredViewpoint Statistics Data Science Database OLTP OLAP Information Retrieval Machine Learning Artificial Intelligence Natural Language Processing Data, Text, Log, Stream Mining 11
12 Database-Centered Viewpoint (the RIGHT ONE) Statistics Data Science Database OLTP Text search, similarity, ranking Information Retrieval Indexing OLAP Data Mining Machine Learning Artificial Intelligence 12
13 BalancedViewpoint Statistics Database Information Retrieval Artificial Intelligence Data Scien ce OLTP Text search, similarity, ranking Indexing Natural Language Processing OLAP Text, log, stream mining Data Mining Machine Learning 13
14 Topics to Covered 1. Data Preprocessing 2. OLAP Modeling and Presentation 3. Mining Association rules 4. Information Retrieval: Text search 5. Text processing 6. Mining: Classification 7. Extractomg frp, Data streams 8. Mining: Cluster Analysis 9. Back to the Earth: Applications 14
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper CAST-2015 provides an opportunity for researchers, academicians, scientists and
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Chapter ML:XI. XI. Cluster Analysis
Chapter ML:XI XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster
IT services for analyses of various data samples
IT services for analyses of various data samples Ján Paralič, František Babič, Martin Sarnovský, Peter Butka, Cecília Havrilová, Miroslava Muchová, Michal Puheim, Martin Mikula, Gabriel Tutoky Technical
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Big Data and Your Data Warehouse Philip Russom
Big Data and Your Data Warehouse Philip Russom TDWI Research Director for Data Management April 5, 2012 Sponsor Speakers Philip Russom Research Director, Data Management, TDWI Peter Jeffcock Director,
Data Mining + Business Intelligence. Integration, Design and Implementation
Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Computer-Based Text- and Data Analysis Technologies and Applications. Mark Cieliebak 9.6.2015
Computer-Based Text- and Data Analysis Technologies and Applications Mark Cieliebak 9.6.2015 Data Scientist analyze Data Library use 2 About Me Mark Cieliebak + Software Engineer & Data Scientist + PhD
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence
Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.
Search and Information Retrieval
Search and Information Retrieval Search on the Web 1 is a daily activity for many people throughout the world Search and communication are most popular uses of the computer Applications involving search
European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project
European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project Janet Delve, University of Portsmouth Kuldar Aas, National Archives of Estonia Rainer Schmidt, Austrian Institute
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,
SAP FINUG Teknologiaseminaari
SAP FINUG Teknologiaseminaari SAP Advanced Analytics Joni Ahola, 09 September 2015 Human Centric Innovation On the Agenda Advanced Analytics Approach SAP Predictive Analytics Tools, Functions & Libraries
Research of Postal Data mining system based on big data
3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015) Research of Postal Data mining system based on big data Xia Hu 1, Yanfeng Jin 1, Fan Wang 1 1 Shi Jiazhuang Post & Telecommunication
Aligning Your Strategic Initiatives with a Realistic Big Data Analytics Roadmap
Aligning Your Strategic Initiatives with a Realistic Big Data Analytics Roadmap 3 key strategic advantages, and a realistic roadmap for what you really need, and when 2012, Cognizant Topics to be discussed
Adobe Insight, powered by Omniture
Adobe Insight, powered by Omniture Accelerating government intelligence to the speed of thought 1 Challenges that analysts face 2 Analysis tools and functionality 3 Adobe Insight 4 Summary Never before
Big Data and Analytics in Government
Big Data and Analytics in Government Nov 29, 2012 Mark Johnson Director, Engineered Systems Program 2 Agenda What Big Data Is Government Big Data Use Cases Building a Complete Information Solution Conclusion
3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India
3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India Call for Papers Cloud computing has emerged as a de facto computing
BIG Data Analytics Move to Competitive Advantage
BIG Data Analytics Move to Competitive Advantage where is technology heading today Standardization Open Source Automation Scalability Cloud Computing Mobility Smartphones/ tablets Internet of Things Wireless
1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India
1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India Call for Papers Colossal Data Analysis and Networking has emerged as a de facto
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
SIMPLE MACHINE HEURISTIC INTELLIGENT AGENT FRAMEWORK
SIMPLE MACHINE HEURISTIC INTELLIGENT AGENT FRAMEWORK Simple Machine Heuristic (SMH) Intelligent Agent (IA) Framework Tuesday, November 20, 2011 Randall Mora, David Harris, Wyn Hack Avum, Inc. Outline Solution
How To Get A Computer Engineering Degree
COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) PREPARATORY PROGRAM* COME 27 Advanced Object Oriented Programming 5 COME 21 Data Structures and Algorithms COME 22 COME 1 COME 1 COME
Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014
Big Data Analytics An Introduction Oliver Fuchsberger University of Paderborn 2014 Table of Contents I. Introduction & Motivation What is Big Data Analytics? Why is it so important? II. Techniques & Solutions
Impact of Big Data in Oil & Gas Industry. Pranaya Sangvai Reliance Industries Limited 04 Feb 15, DEJ, Mumbai, India.
Impact of Big Data in Oil & Gas Industry Pranaya Sangvai Reliance Industries Limited 04 Feb 15, DEJ, Mumbai, India. New Age Information 2.92 billions Internet Users in 2014 Twitter processes 7 terabytes
Towards Smart and Intelligent SDN Controller
Towards Smart and Intelligent SDN Controller - Through the Generic, Extensible, and Elastic Time Series Data Repository (TSDR) YuLing Chen, Dell Inc. Rajesh Narayanan, Dell Inc. Sharon Aicler, Cisco Systems
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1
Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints
Mastering Big Data. Steve Hoskin, VP and Chief Architect INFORMATICA MDM. October 2015
Mastering Big Data Steve Hoskin, VP and Chief Architect INFORMATICA MDM October 2015 Agenda About Big Data MDM and Big Data The Importance of Relationships Big Data Use Cases About Big Data Big Data is
Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008
Professional Organization Checklist for the Computer Science Curriculum Updates Association of Computing Machinery Computing Curricula 2008 The curriculum guidelines can be found in Appendix C of the report
locuz.com Big Data Services
locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.
Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices
September 10-13, 2012 Orlando, Florida Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices Vishwanath Belur, Product Manager, SAP Predictive Analysis Learning
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics Dr. Liangxiu Han Future Networks and Distributed Systems Group (FUNDS) School of Computing, Mathematics and Digital Technology,
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
<Insert Picture Here> Oracle Retail Data Model Overview
Oracle Retail Data Model Overview The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into
From Raw Data to. Actionable Insights with. MATLAB Analytics. Learn more. Develop predictive models. 1Access and explore data
100 001 010 111 From Raw Data to 10011100 Actionable Insights with 00100111 MATLAB Analytics 01011100 11100001 1 Access and Explore Data For scientists the problem is not a lack of available but a deluge.
Certificate Program in Applied Big Data Analytics in Dubai. A Collaborative Program offered by INSOFE and Synergy-BI
Certificate Program in Applied Big Data Analytics in Dubai A Collaborative Program offered by INSOFE and Synergy-BI Program Overview Today s manager needs to be extremely data savvy. They need to work
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research &
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research & Innovation 04-08-2011 to the EC 8 th February, Luxembourg Your Atos business Research technologists. and Innovation
BSc in Information Systems & BSc in Information Technology Degree Programs
BSc in Information Systems & BSc in Information Technology Degree Programs General Sir John Kotelawala Defence University is about to start the above mentioned degree programs at Hambanthota Southern Campus
Evaluating NoSQL for Enterprise Applications. Dirk Bartels VP Strategy & Marketing
Evaluating NoSQL for Enterprise Applications Dirk Bartels VP Strategy & Marketing Agenda The Real Time Enterprise The Data Gold Rush Managing The Data Tsunami Analytics and Data Case Studies Where to go
Using OBIEE for Location-Aware Predictive Analytics
Using OBIEE for Location-Aware Predictive Analytics Jean Ihm, Principal Product Manager, Oracle Spatial and Graph Jayant Sharma, Director, Product Management, Oracle Spatial and Graph, MapViewer Oracle
LEVERAGING BIG DATA ANALYTICS TO REDUCE SECURITY INCIDENTS A use case in Finance Sector
LEVERAGING BIG DATA ANALYTICS TO REDUCE SECURITY INCIDENTS A use case in Finance Sector INITIAL SCENARIO IT Security Incidents Physical Incidents Stolen data/credentials Malware / Phishing Denial of Service
TEXT ANALYTICS INTEGRATION
TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment
ORACLE TAX ANALYTICS. The Solution. Oracle Tax Data Model KEY FEATURES
ORACLE TAX ANALYTICS KEY FEATURES A set of comprehensive and compatible BI Applications. Advanced insight into tax performance Built on World Class Oracle s Database and BI Technology Design after the
SAP Predictive Analytics
SAP Predictive Analytics What s the best that COULD happen? Bringing predictive analytics to the end user SAP Forum Belgium September 9, 2015 Waldemar Adams @adamsw SVP & GM Analytics SAP Europe, Middle-East
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
Big Data and Analytics (Fall 2015)
Big Data and Analytics (Fall 2015) Core/Elective: MS CS Elective MS SPM Elective Instructor: Dr. Tariq MAHMOOD Credit Hours: 3 Pre-requisite: All Core CS Courses (Knowledge of Data Mining is a Plus) Every
High Performance Data Management Use of Standards in Commercial Product Development
v2 High Performance Data Management Use of Standards in Commercial Product Development Jay Hollingsworth: Director Oil & Gas Business Unit Standards Leadership Council Forum 28 June 2012 1 The following
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data: The Datafication Of Everything Thoughts Devices Processes Thoughts Things Processes Run the Business Organize data to do something
Teradata Unified Big Data Architecture
Teradata Unified Big Data Architecture Agenda Recap the challenges of Big Analytics The 2 analytical gaps for most enterprises Teradata Unified Data Architecture - How we bridge the gaps - The 3 core elements
Big Data & Security. Aljosa Pasic 12/02/2015
Big Data & Security Aljosa Pasic 12/02/2015 Welcome to Madrid!!! Big Data AND security: what is there on our minds? Big Data tools and technologies Big Data T&T chain and security/privacy concern mappings
Big Data-ready, Secure & Sovereign Cloud
Copernicus Big Data Workshop Big Data-ready, Secure & Sovereign Cloud A Technology Enabler for Copernicus Data Innovation March 14 th, 2014 Brussels F. BOUJEMAA R&D Manager E. MICONNET - Head of Cyber
BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata
BIG DATA: FROM HYPE TO REALITY Leandro Ruiz Presales Partner for C&LA Teradata Evolution in The Use of Information Action s ACTIVATING MAKE it happen! Insights OPERATIONALIZING WHAT IS happening now? PREDICTING
REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])
305 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
From Data to Insight: Big Data and Analytics for Smart Manufacturing Systems
From Data to Insight: Big Data and Analytics for Smart Manufacturing Systems Dr. Sudarsan Rachuri Program Manager Smart Manufacturing Systems Design and Analysis Systems Integration Division Engineering
The University of Jordan
The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
Business Intelligence meets Big Data: An Overview on Security and Privacy
Business Intelligence meets Big Data: An Overview on Security and Privacy Claudio A. Ardagna Ernesto Damiani Dipartimento di Informatica - Università degli Studi di Milano NSF Workshop on Big Data Security
Big Data Analytics and Healthcare
Big Data Analytics and Healthcare Anup Kumar, Professor and Director of MINDS Lab Computer Engineering and Computer Science Department University of Louisville Road Map Introduction Data Sources Structured
Information Visualization and Visual Analytics
Information Visualization and Visual Analytics Pekka Wartiainen University of Jyväskylä [email protected] 23.4.2014 Outline Objectives Introduction Visual Analytics Information Visualization Our
Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015
Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours
Software Engineering for Big Data. CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo
Software Engineering for Big Data CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo Big Data Big data technologies describe a new generation of technologies that aim
Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84
Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics
Full-text Search in Intermediate Data Storage of FCART
Full-text Search in Intermediate Data Storage of FCART Alexey Neznanov, Andrey Parinov National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow, 101000, Russia [email protected],
VIEWPOINT. High Performance Analytics. Industry Context and Trends
VIEWPOINT High Performance Analytics Industry Context and Trends In the digital age of social media and connected devices, enterprises have a plethora of data that they can mine, to discover hidden correlations
Using Predictions to Power the Business. Wayne Eckerson Director of Research and Services, TDWI February 18, 2009
Using Predictions to Power the Business Wayne Eckerson Director of Research and Services, TDWI February 18, 2009 Sponsor 2 Speakers Wayne Eckerson Director, TDWI Research Caryn A. Bloom Data Mining Specialist,
SAP and Hortonworks Reference Architecture
SAP and Hortonworks Reference Architecture Hortonworks. We Do Hadoop. June Page 1 2014 Hortonworks Inc. 2011 2014. All Rights Reserved A Modern Data Architecture With SAP DATA SYSTEMS APPLICATIO NS Statistical
IDCORP Business Intelligence. Know More, Analyze Better, Decide Wiser
IDCORP Business Intelligence Know More, Analyze Better, Decide Wiser The Architecture IDCORP Business Intelligence architecture is consists of these three categories: 1. ETL Process Extract, transform
How To Make Sense Of Data With Altilia
HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS. ALTILIA turns Big Data into Smart Data and enables businesses to
DOCTORATE OF PHILOSOPHY
DOCTORATE OF PHILOSOPHY ENGINEERING SCIENCE WITH CONCENTRATION IN CONSTRUCTION MANAGEMENT Course Requirements Ph.D. 54 credit hours (with a BS degree) The Construction Management concentration requirements
National Security and Cyber Defense with Big Data
National Security and Cyber Defense with Big Data Tomasz Przybyszewski Big Data Solutions Lead ECE Region Sept 2015 Tomasz Przybyszewski Copyright 2014 Oracle and/or its affiliates. All rights reserved.
MLg. Big Data and Its Implication to Research Methodologies and Funding. Cornelia Caragea TARDIS 2014. November 7, 2014. Machine Learning Group
Big Data and Its Implication to Research Methodologies and Funding Cornelia Caragea TARDIS 2014 November 7, 2014 UNT Computer Science and Engineering Data Everywhere Lots of data is being collected and
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
Case Study: Real-time Analytics With Druid. Salil Kalia, Tech Lead, TO THE NEW Digital
Case Study: Real-time Analytics With Druid Salil Kalia, Tech Lead, TO THE NEW Digital Agenda Understanding the use-case Ad workflow Our use case Experiments with technologies Redis Cassandra Introduction
Ganzheitliches Datenmanagement
Ganzheitliches Datenmanagement für Hadoop Michael Kohs, Senior Sales Consultant @mikchaos The Problem with Big Data Projects in 2016 Relational, Mainframe Documents and Emails Data Modeler Data Scientist
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
An Introduction to Data Mining
An Introduction to Intel Beijing [email protected] January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
Getting the Most Out of SIEM. Presentation Title. Data in Big Data. Presented By: Dr. Char Sample, CERT
Getting the Most Out of SIEM Presentation Title Data in Big Data Presented By: Dr. Char Sample, CERT Acknowledgements Dr. Ben Shniederman, UMD Big Data Big Insights George Jones, John Stogoski, CERT Alternatives
Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform...
Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Solution Spectrum... 6 Oracle s Big Data
SIPAC. Signals and Data Identification, Processing, Analysis, and Classification
SIPAC Signals and Data Identification, Processing, Analysis, and Classification Framework for Mass Data Processing with Modules for Data Storage, Production and Configuration SIPAC key features SIPAC is
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Master Specialization in Knowledge Engineering
Master Specialization in Knowledge Engineering Pavel Kordík, Ph.D. Department of Computer Science Faculty of Information Technology Czech Technical University in Prague Prague, Czech Republic http://www.fit.cvut.cz/en
