areprovidedtoviewprograminformationgatheredbythecompilerandrelateittoinformation
|
|
|
- Juniper Boyd
- 9 years ago
- Views:
Transcription
1 ParallelProgrammingandPerformanceEvaluationwithThe InsungParkMichaelVossBrianArmstrongRudolfEigenmann SchoolofElectricalandComputerEngineering UrsaToolFamily andtheirintegrationwithperformanceevaluationenvironments.first,weproposeinteractivecompilationscenariosinsteadoftheusualblack-box-orienteduseofcompilertools.insuchscenarios, informationgatheredbythecompilerandthecompiler'sreasoningarepresentedtotheuserinmeaningfulwaysandon-demand.second,atightintegrationofcompilationandperformanceanalysis toolsisadvocated.manyoftheexisting,advancedinstrumentsforgatheringperformanceresults arebeingusedinthepresentedenvironmentandtheirresultsarecombinedinintegratedviews withcompilerinformationanddatafromothertools.initialinstrumentsthatassistusersin\data Abstract Thispapercontributestothesolutionofseveralopenproblemswithparallelprogrammingtools PurdueUniversity toolbymakingavailablethegatheredresultstotheusercommunityatlargeviatheworld-wide Web. usersataspecicsite,suchasaresearchordevelopmentproject.ursamajorcomplementsthis mining"thisinformationarepresentedandtheneedformuchstrongerfacilitiesisexplained. toolfamily.twocasestudiesarepresentedthatillustratetheuseofthetoolsfordevelopingand studyingparallelapplicationsandforevaluatingparallelizingcompilers. Thispaperpresentsobjectives,functionality,experience,andnextdevelopmentstepsoftheUrsa TheUrsaFamilyprovidestwotoolsaddressingtheseissues.UrsaMinorsupportsagroupof 1Introduction occur.inothercases,usersmayknowthatthearraysectionsaccessedindierentloopiterationsdonot theseshortcomings.forexample,althoughthecompilerdetectsavalue-specicdatadependence,the tool.onedisadvantageofthisscenarioisthatthecompilermayhaveinsucientknowledgeorlimited usermayknowthatineveryreasonableprograminputthevaluesaresuchthatthedependencedoesnot capabilitiestoparallelizeaprogramoptimally.insomecasesitwouldbeeasyfortheusertomakeupfor compileristhattheconversionofagivenserialprogramintoparallelformisdonemechanicallybythe importantclassofsuchtools[bde+96,haa+96].theapparentadvantageofusingaparallelizing thechallengingtaskofdevelopingwell-performingparallelprograms.parallelizingcompilersareone Interactiveuseofparallelizingcompilers.Manyprogrammingtoolsexistthatassisttheuserin overlap.furthermore,certainprogramtransformationsmaymakeasubstantialperformancedierence, ndthereasonwhyaloopwasnotparallelizedautomatically,asmallmodicationmaybeappliedthat butareapplicabletoveryfewprograms,andhencenotbuiltintoacompiler'srepertoire.ifausercan ensuresparallelexecution.becauseofthesereasons,manualcodemodicationinadditiontoautomatic parallelizationisoftennecessarytoachievegoodperformance. REERaward.ThisworkisnotnecessarilyrepresentativeofthepositionsorpoliciesoftheU.S.ArmyortheGovernment. ThisworkwassupportedinpartbyPurdueUniversity,U.S.Armycontract#DABT63-92-C-33,andanNSFCA- 1
2 timinginformationbecomesavailablefromvariousprogramruns,structuralinformationoftheprogram Integratedcompilationandperformanceevaluation.Duringtheprocessofcompilingaparallel formation.findingparallelismstartsfromlookingthroughthisinformationandlocatingpotentially programandmeasuringitsperformance,aconsiderableamountofinformationisgathered.forexample, isgatheredfromthecodedocumentation,andcompilersoeralargeamountofprogramanalysisin- accompanyingthisprocedureisoftenoverwhelming.toolsthatassistthisprocessareimportant. ofthecompilationprocess,thecharacteristicsofthegivenprogram,itsperformanceresults,andthe parallelsectionsofcode.improvingparallelperformanceistheimmediatenextstep.decisionsare relationshipsofthesedata.itisthebasisforenhancingtheperformanceofanexistingparallelprogram madebasedontimingresultsandtheirrelationshiptoprogramcharacteristics.thebookkeepingeort aswellasforbeginningtoparallelizeaserialprogram. gathersinformationalongthecourseofcompilingandrunningaprogramandpresentsitinaformat parallelization.thetoolhelpsaprogrammerunderstandthestructureofaprogram,identifyparallelism, andcompareperformanceresultsofdierentprogramvariants.thetool,ursaminor[pvae97], thatiseasytolookupandcomprehend.usingthetool,theprogrammercomestoanunderstanding ThepresentedtooliscloselyrelatedtothePolariscompilerinfrastructure[BDE+96].Polaris,asa Inthispaper,weintroduceanon-goingtoolprojectthatsupportsascenarioofuser-plus-compiler symbolicprogramanalysis.polarisalsorepresentsageneralinfrastructureforanalyzingandmanipulatingfortranprograms,whichcanprovideusefulinformationabouttheprogramstructureandits potentialparallelism.polarisplaysamajorroleingeneratingthedatalesusedasinputtoursa parallelismdetection. parallelapplications.section5thenshowstwocasestudiesofursaminorinuse.section6concludes discussesitsfunctionality.sectionpresentstheursamajortool[pe98],aweb-basedtoolbuiltupon UrsaMinorthatwasdesignedfordistributionandevaluationofexperimentalresultswithvarious thepaper. 2ObjectivesofUrsaMinor Section2presentsourobjectivesindevelopingUrsaMinor.Section3givesanoverviewand compiler,includesadvancedprogramanalysisandtransformationtechniques,suchasarrayprivatization,symbolicandnonlineardatadependencetesting,idiomrecognition,interproceduralanalysis,and Minor.Examplesofsuchlesareloopparallelizationsummaries,data-dependenceinformation,and loop/subroutinecallgraphs.polarisalsoinstrumentsprogramsfortimingmeasurementsandmaximum exploitingparallelism,thetoolpursuesthefollowingobjectives: IntegratedBrowsersforProgram,Compilation,andPerformanceData:TheUrsaMinor TheintendedusersoftheUrsaMinortoolareparallelprogrammersthathavesomeexperienceusingparallelizingcompilersandperformanceanalysistools.Inordertoassisttheminidentifyingand InteractiveCompilers:Thecurrent,predominantlyblack-boxuseofparallelizingcompilersneeds detailswheneverheorshefeelstheneedtoconcentrateonaspecicportionoftheprogram.the ofaprogram.inthisway,ausercanstartfromanoverallviewoftheprogramandinspectthe toolcollectsandfacilitatestheuseofprogram,compilation,andperformancedata.theinformationneedstobepresentedinaformatthatconveyshigh-levelaswellasdetaileddescriptions [MCC+95],andPTOPP[EM93]performanceanalysisenvironments. toolcomplementsandintegratescapabilitiesprovidedbytoolssuchasthepablo[ree9],paradyn tobechangedintoaninteractivescenario.thisgoesbeyondinteractivepassinvocationaspioneeredbytoolssuchasstart/pat[asm89]andparascope[bkk+89].theultimategoalofthe UrsaMinorprojectistoprovideacomprehensiveenvironmentthatencompassestheprocessof writing,compiling,running,andimprovingparallelprograms.tothisendinteractivecapabilities 2
3 performancedata,andvisualizingthisinformation.theursaminorenvironmentprovidesaidsforthe dynprojects,whichprovideadvancedfacilitiesforoptimizingandinstrumentingprograms,gathering usertounderstandthegatheredperformancedataandtoreasonabouttheinformationinaninteractive similarobjectivetothatofvtune[int97],whichisanadvancedtoolforsingle-processorsystems. way.inthesensethatthetoolprovidesuserswithadvicetoimproveperformance,ursaminorhasa Theseobjectivesdistinguishourapproachfromrelatedeorts,suchasthePolaris,PabloandPara- areprovidedtoviewprograminformationgatheredbythecompilerandrelateittoinformation Inadditiontothemainobjectives,weobservethefollowingdesignrulestomakeourtoolmoreuseful providedbyotherprogrammingtools. andeasilyaccessible: Portability:Fordisseminatinganewtooltotheusercommunity,itisimportantthatitbeeasyto compileranditsperformanceanalysislibraries,whichthemselvesareportabletomanyplatforms. independentjavalanguage,andbyusingonlywidely-availableapplicationprogramminginter- faces(apis).thetoolmakesuseofinformationgatheredbyotherfacilities,suchasthepolaris Inaddition,UrsaMinoristobeexibleinthedataformatitcanread,suchthatitcanadapt installonnewplatforms.weapproachthisgoalbyimplementingursaminorinthetarget- Expandability:ThemainfunctionoftheUrsaMinortoolisinformationgatheringandbrowsing. Leveragingoexistingtools:Weconsiderusingotheravailabletoolstoaugmentthefeaturesof sheetscapableofrichgraphicalpresentationofdata.byallowingtheinformationtobeunderstood byoneofthesespreadsheets,wecantakeadvantageofitsfeaturestocreatecharts,whilefocusing UrsaMinorthatweregardedas\notoriginalbutnicetohave".Forinstance,therearespread- tothetools(compilersandperformanceanalyzers)availableonthelocalplatform. 3DescriptionofUrsaMinor seeitthroughthetoolwithminimalmodications.wecanalsoenablethetooltoreadageneric Hence,wheneverweobtainnewtypesofinformationaboutthegivenprogramweshouldbeableto datale,sothatnewtypeofinformationcanbeunderstoodwithoutsignicantmodications. onthenewfunctionalityofursaminor. graphicalinterface,whichcanprovideselectiveviewsandcombinationsofthedata.figure1illustrates Thesesourcesincludetoolssuchascompilers,prolers,andsimulators.Itinteractswithusersthrougha 3.1Overview TheUrsaMinorprojectprovidestoolsthatassistparallelprogrammersineectivelywritingand tuningcodes.itprovidesuserswithinformationavailablefromvarioussourcesinacomprehensibleway. willdiscusshowourdesignobjectiveswererealizedintheconcretetool. Inthissection,weprovideanoverviewofUrsaMinor[PVAE97]anddescribeitsfunctionality.We Polariscompiler.TheUrsaMinortoolincludesasubroutineandloopneststructureanalyzer,also implementedusingthepolarisinfrastructure. tool[pet93,ke97].informationaboutwhichloopsareserialorparallelisprovidedbytheactual interactionbetweenursaminorandthevariousdatales. optionsareprovidedtoreadfromthevariousoriginalles,addtotheexistinginformationincrementally, explicitlybytheuserbeforeursaminorcanreadandcombinethem.oncetheyexist,severaltool notdiscussedfurtherinthispaper[eig93].maximumparallelismestimatesaresuppliedbythemax/p frominstrumentedprogramruns.thetoolperformingthisinstrumentationisapolaris-basedutility, Inthecurrentimplementation,theseinformationsourcesareavailableinlesthatneedtobecreated UrsaMinorcollectsandcombinesinformationfromvarioussources.Timinginformationisgathered 3
4 Calling Structure Analyzer Result Performance Results Information Sources Data Dependence Test Summary Simulation Report from Max/P Generated by Polaris-based Tools Other Information Sources Other Tools Saved DataBase Source File SpreadSheet open/save export storetheentiredatabase,orreadfromapreviouslysaveddatabase.infuturereleasesweplanto automatetheprocessofcreatingtheinformationsourcesby,forexample,invokingthecompilerondemand. Figure1:ComponentsoftheUrsaMinortoolandtheirinteractions. URSA MINOR UMD (Ursa DataBase) presentation/edit presentation/edit Loop Table View Call Graph View spectedwithaneditorandprinted.furthermore,theinformationcanbesavedinaformatthatcanbe isastorageunitthatholdsthecollectiveinformationaboutaprogramanditsexecutionresultsin acertainsystemenvironment.thisdatabaseisorganizedasatextle,whichcanoptionallybein- readbycommercialspreadsheets,providingarichersetofdatamanipulationfunctionsandgraphical Internally,UrsaMinorstoresinformationinUrsaMinor/MajorDatabases(UMD).AUMD interaction interaction representations. TheUrsaMinortooliswritteninJava.Thus,anyplatformonwhichtheJavaruntimeenvironment User prototypinguserinterfaces,whichenableustofocusonthedesignofthetoolfunctionality.furthermore, isavailablecanbeusedtorunthetool.itusesthebasicjavalanguagewithstandardapis,which thefunctionalityofursaminormoreclosely. newtypesofdatatothedatabase.thewindowingtoolkitsandutilitiesprovideagoodenvironmentfor Java,withitsnetworksupport,makesausefullanguageforrealizinganothergoalofthisproject:making beenrealizedintheursamajortool,whichisdiscussedinsection.inthenextsection,weexamine enhancestheportabilityofthetool.objectorientationinjavaallowsarelativelyeasyadditionof 3.2Functionality TheUrsaMinortoolpresentsinformationtotheuserthroughtwodisplaywindows:Aloopinformation tableandacallgraph.theuserinteractswiththetoolbychoosingmenuitemsormouse-clicking. availablethegatheredprogram,compilation,andperformanceresultstoremoteusers.thisgoalhas ofinvocationsofeachloop,theparentintheneststructure,andthemaximumdegreeofparallelism providedbymax/p[pet93,ke97].italsoindicateswhetheraloopisserialorparallelasdetectedby rently,thetabledisplaysinformationsuchastimingresultsfromvariousprogramruns,thenumber Polaris.Ifitisserial,thereasongivenbythecompilercanbedisplayedonmouse-clicking.InFigure2, Figure2showsthelooptableview,eachlinedisplayinginformationforanindividualloop.Cur-
5 theuserhasclickedonlooprestardo56toseethereasoninhibitingparallelization. programtuningprojects,anursaminorlooptableisusuallypresentallthetime.aftereachprogram view.also,ausercanrearrangecolumns,deletecolumns,sorttheentriesalphabeticallyorbasedon run,thenewlycollectedtiminginformationisincludedasanadditionalcolumninthelooptable.inthis theexecutiontime.byspecifyingareferencecolumn,speedupscanbecalculatedon-demand.inour Whenevernewinformationfromothertoolsbecomesavailable,theusercanaddcolumnsinthis Figure2:LoopTableViewoftheUrsaMinortool. overallprogram.eectsofprogrammodicationsonotherprogramsectionsbecomeobviousaswell. Themodicationmaychangetherelativeimportanceoftheloops,sothatsortingthembytheirnewest way,performancedierencescanbeinspectedimmediatelyforeachindividualloopaswellasforthe structure,theusercanzoominandout.thisdisplayhelpstounderstandtheprogramstructurefor taskssuchasinterchangingloopsorndingouterorinnercandidateparallelloops. executiontimeyieldsanewmost-time-consuminglooponwhichtheprogrammercanfocusnext. InFigurewehavereadthisformintothecommercialxess3spreadsheetprogram.Thisallowsone theuserisinspectingtheloopactfordo2inthisway.ifonewantsawiderviewoftheprogram subroutine,function,orloop.forexample,parallelloopsarerepresentedbygreenrectangles,andserial loopsbyredrectangles.clickingoneofthesewilldisplaythecorrespondingsourcecode.infigure3 subroutine,function,andloopnestinformationasshowninfigure3.eachrectanglerepresentseithera UrsaMinorcansavethedatabaseinaformatthatgenericspreadsheetprogramscanunderstand. AnotherviewofUrsaMinorprovidesthecallingstructureofagivenprogram,whichincludes toexploitthemanyoptionsandgraphicalrepresentationsofthistool.infiguretheuserhaschosen UrsaMajor[PE98]isanextensionoftheUrsaMinortool.BecausewechoseJavaasanimple- anexecutiontimegraphfortheprogrambdna,comparingtheperformanceofpolariswiththecompiler fromsunmicrosystems,(athirdlineindicating\linearspeedup"forreference). UrsaMajor:Web-basedevaluationofparallelapplications 5
6 Figure3:AnnotatedCallGraphViewoftheUrsaMinortool. Figure:Spread-SheetViewoftheUrsaMinortool. 6
7 mentationlanguage,itwasnaturaltocombineourtoolcapabilitieswiththerapidlyadvancinginternet canidentifypreciselytheeectofasourcecodechangeontheperformanceforboththemodiedcode codemodications,etc.thetoolhelpsrelateallthesepiecesofinformation,sothat,forexample,one thatcouldguidetheseusersinexploitingthenewmachines.ursamajorprovidesamethodologyof theirserialandparallelsourcecode,performanceimprovementsresultingfromcompilationorsource \learningbyexample"tobothlocalandremoteusers.newusersseeavarietyofsampleprograms, innon-expertusersandprogrammers.however,therearenoestablishedprogrammingmethodologies technologyand,inthisway,allowusersatremotesitestoaccessourexperimentaldata. sectionandtheoverallprogram. First,aordablemultiprocessorworkstationsandPCsarecurrentlyleadingtoasubstantialincrease Inextendingtheuseofourtooltoaworld-wideaudienceweareaddressingseveralnewissues: andthecomparisonofresultswiththoseobtainedbyothers.tothisend,manytestapplicationshave alargebodyofmeasurementsobtainedfromtheseprogramscanbefoundintheliteratureandon fromseveralpapers)andtheyhavetoundergosubstantialre-categorizationsandtransformations.in beenmadepubliclyavailableforstudyandbenchmarkingbybothresearchersandindustry.although Fromthebeginning,theabstractionofperformanceandprograminformationintoaformthatanswers addressingthisissue,theursamajorprojectiscreatingacomprehensivedatabaseofinformation. publicdatarepositories,itisusuallyextremelydiculttocombinethemintoaformmeaningfulfor newpurposes.inpartthisisbecausedataarenotreadilyavailable(i.e.,theyhavetobeextracted Second,acoreneedforadvancingthestateoftheartofcomputersystemsisperformanceevaluation thequestionsoftheobserverwasoneofourgoals.however,thisissuebecomesdrasticallymorecomplex asweconsiderlargedatarepositoriesorganizedintoamultitudeofdimensions.theinternettechnology anditscombinationwithhigh-performancecomputingtoolsopensthisnewrealmofquestionsand opportunities,whichwearebeginningtoexplorewithursamajor..1descriptionofursamajor UrsaMajorisaweb-basedtoolcapableofpresentingtheUrsaMinor/Majordatabasetoaremote networkingfeaturesandfororganizingthedataintoarepositorythatiseasytoaccessfromremote Majorrepository(UMR),whichwillbediscussedinthenextsection.UrsaMajorisavailableat UrsaMajor'smodulesfromthesecomponents.Inaddition,newmoduleswerecreatedforthetool's Websites.Thelatterincludesthedenitionofnamingschemeswithwhichinformationcanbefound basicbuildingblocksforursamajor.javaclassinheritancewasutilizedextensivelyfordeveloping user.figure5showsanoverallviewoftheinteractionsbetweenursamajor,auser,andtheursa intuitivelyandcaneasilyberelatedtootherinformation. UrsaMinor'sfacilitiesformanipulatingdatabasesandforcreatinggraphicaluserinterfacesare pagethroughjavaappletandisinvokedbyclickingabuttoninthewebpage. MajortoolisalmostidenticalwiththoseofUrsaMinor,butUrsaMajorisembeddedinaweb withursaminor,exceptthattheycannotsavelesonthelocaldisk.thelookandfeeloftheursa theumdsoftheirinterestbyexaminingthedescriptionsprovidedfortheavailableumds.umdsare thenretrievedbytheirurl.onceaumdisdisplayed,usersmayperformthesametasksastheydo istheaccesstotherepository.remotejavaapplicationscannotaccessdisklesdirectly.theyhaveto retrievedataintheformofwebdocuments.thisisduetojavasecurityrestrictions.usersmaychoose SinceitisbasedonUrsaMinor,UrsaMajoroersthesamebasicfunctionality.Onedierence amountofinformationisgathered.severalsucheortsareongoinginourgroup,hencetheumris Duringtheprocessofcompilingaparallelprogramandmeasuringitsperformance,aconsiderable.2UrsaMajorRepository(UMR) 7
8 Remote Server Ursa Major Applet UMR (Ursa Major Repository) Java Program Download DataBase Download PurdueUniversity,includingSPECandPerfectbenchmarks. continuouslybeingextended.itcurrentlycontainsseveralbenchmarksuitesthathavebeenstudiedat URSA MAJOR UMD (Ursa Database) reports,aswellasthetiminginformationofvariousprogramruns.findingparallelismstartsfrom Thespecicdataincludesstructuralprograminformation,resultsofprogramanalysis,simulation Figure5:InteractionprovidedbytheUrsaMajortool. presentation/edit database presentation/edit database Loop Table View Call Graph View interaction interaction leanddirectorynamesindicatingdatasuchastheprogramnames,platforms,compilers,optimization, andparallellanguages.tobeexible,theseextensionsarenothard-coded.instead,theyaredescribed ndinformationenteredbyotherusers.tothisend,therepositorystructureconsistsofextensionson lookingthroughthisinformationandlocatingpotentiallyparallelsectionsofcode.severaltoolsand methodologiesarebeingusedtogatherandorganizesuchdata[vggj+89,em93]. Oneissueindesigningtherepositorywastodenestorageschemesthatmakesiteasyforusersto User inacongurationlethatisreadbyursamajoratthestartofasession. WepresentearlyexperienceswithusingtheUrsaMajortoolandwithitsimplementation.Wehave.3ExperienceswithUrsaMajor usedthetoolinourresearchteam,onmultipleworkstationplatformsandalsopcsconnectedthrough modemsathome.ourteamincludesresearchersattwouniversities,sothatrealisticremoteaccesses wereinvolved.basedontheseexperienceswecanpicturescenariosofhowthedierentusercommunities canbesttakeadvantageofthetoolandwhatchallengesneedtobeaddressedtomakeitevenmore grammers,andresearchersinterestedinperformanceevaluationandbenchmarking.obviouslythese usefulinthefuture. categoriescanoverlap.forbeginners,thetoolsupportsamethodologyof\learningbyexample".new programmersstartbygettingthegeneralfeelfortherepository.thisisbestdonestartingwiththe callgraphviewandclickingonseveralnodesinthisgraphtoinspectthesourceprograms.togetmore UrsaMajortargetsseveralaudiences.Theyincludenoviceparallelprogrammers,advancedpro- 8
9 compareserialandparallelprogramversions.ursamajorsupportsthisbyprovidingthelooptable view.sourcecodecorrespondingtoserialandtheparallelvariantcanbeopened.thelooptablealso insightsaboutanindividualprogramtheusernowcanstepthroughthemosttime-consumingloopsand givesthenewuserarstideaofhowprogramsneedtobetransformedtoruninparallelandwhat showstimingsofthetwovariantsgivingtheuserarstviewofthespeedupsobtainedbyeachloop.the improvementsbycombiningtheperspectivesfrombothperformanceevaluationandcompileranalysis performanceimprovementcanbeobtained. spectionofthereasonswhycertainparallelloopsorprogramsectionsperformwellorpoorlyinmore toolcancomputeanddisplaythesespeedupnumbersasanoption.comparingtheseprogramvariants ofinformationkeptintheursamajorrepositoryandfacilitatingaccesstothisinformationinvarious detailandwhyacodesectionisnotparallel.inthisway,usersmayidentifythebottleneckandpossible results. dimensions.evenwithinourresearchgrouptheavailabilityoftherepositoryenabledmanydierent Theadvancedprogrammermaybenetfromthistoolbyexploitingthefeaturesallowingthein- ongoingeort. entsubroutinesandloopswithinaprogram,andscalabilitystudiesovernumbersofprocessorsanddata setsizes.increasingthesupportforinspectingourdatabasefromthesevariousanglesisanimportant studies,suchasarchitecturalcomparisons,comparisonsofdierentcompilers,dierentprograms,dier- UrsaMajorfurtherservestheresearchcommunityingeneralbymakingavailablethelargeamount performedontheperfectbenchmarkscodearc2d,ispresentedhereasourrstcasestudy. UrsaMinorisusedinthesearchforexplanationsofthesedierences.Anexampleofsuchasearch codeswithvariousdirectivesets.iftheperformanceresultsofthesecodesaresignicantlydierent, pileroutputrepresentation[vos97].indoingso,wehaveexpressedtheparallelisminseveralbenchmark 5CaseStudies 5.1ExperimentswiththeARC2DApplication Inacurrentstudy,wearecomparingparalleldirectivelanguagesfortheirsuitabilityasaportablecom- astheexecutiontimemeasuredbytheinstrumentation,itiseasilydeterminedwhensuchperturbation occurs.inarc2d,11ofthe19loopshadaninstrumentationoverheadofmorethan.1%oftheloop noticeablyimpactthemeasuredperformance.usingthenumberoftimeseachloopisexecuted,aswell executiontime.wechose.1%asthecutotoensurethattheinstrumentedtimingmeasurementsstill gatheredbyursaminorandtransformedintoaformwhichisreadablebycommercialspreadsheet packagessuchasexcelandxess3.oneconcernwithinstrumentationisthattheassociatedoverheadwill onaprocessorultrasparcworkstationwasdone.theresultsofthisinstrumentationwasthen reectedtheprogramperformancewithhighaccuracy.removingtheinstrumentationfromthese11 First,asabase-linemeasurement,aloopbyloopproleoftheserialversionofthecodeexecuted averageexecutiontimesforcomputingtheoverhead.infuturereleasesofthetoolthiscomputationwill parallelizedversionsoftheseloopswereusedtocomparetheperformanceofseveralparalleldirective loops,reducedthetotalexecutiontimeoftheprogramby6%.ursaminorcurrentlyprovidesthe befullyautomated. languages.themajorloopsinarc2dparallelizedbypolarisarefilerxdo19,stepfxdo21and OpenMPindustrystandard[OMP97].BrowsingthroughtheperformanceresultsdisplayedbyUrsa theseloopsintheserialversioncanbeseeninfigure6. STEPFXdo23.TheidenticationoftheseloopswasstraightforwardgiventhatUrsaMinorpresented dialectandtheotherusingtheportablekap/prodirectiveset[kuc88],acloserelativeofthenew theexecutiontimesofeachloopaswellasannotateditasparallelorserial.therelativeimportanceof Additionally,themosttime-consumingloopswereidentiedintheserialcode.ThePolaris- Minoritwasseenthatonprocessors,theKAP/Prodirectivelanguageexhibitedsuperiorperformance. TheparallelismfoundbyPolariswasexpressedintwoforms.OneusingthenativeSunSPARC 9
10 Figure6:PercentageofexecutiontimespentinmajorloopsofARC2D. STEPFX do23 (11.7%) STEPFX do21 (1.9%) FILERX do19 (6.%) reason.loopinterchangingwasbeingappliedtomanyoftheloopnestsinthekap/prodirectiveversion Furthermore,byaddingtheloop-by-loopproleofARC2D,asparallelizedbytheSunnativecompiler, loopsinthekap/proversionwhencomparingthe1processorparallelexecutiontotheexecutionof aninterestingphenomenonwasdiscovered:asignicant\negativeoverhead"existedformanyofthe theuntransformedcode.apparently,sequentialoptimizationswereperformedinthekap/proversion SunSPARCdirectives.TheperformanceofthethreemajorloopsisshowninFigure7. intheloopsfoundtobeparallelbythenativecompiler,butnotinthepolarisversionwhichusedthe whichwerenotperformedintheserialversion.interestingly,thissameoptimizationwasoftenperformed Usingthesourcecodebrowsingcapabilities,aside-by-sidecomparisonoftheloopnestsuncoveredthe Others interchangingwasnotdisabledwhenparallelizingthecodewiththenativesunparallelizingcompiler; bytheback-endcompiler.theuseofthesunsparcdirectivesinhibitedthistransformation.loop (71.%) wereimperfectlynestedintheoriginalsource,butweretransformedintoaperfectnestbypolaris. TheapplicationofforwardsubstitutionanddeadcodeeliminationbyPolariscreatedperfectlynested parallelizingcompilerwasabletoidentifythesameamountofparallelismaspolaris,itdidnotapply loops,whichtheback-endcompilerwasthenabletointerchange.therefore,althoughthenativesun furtheroptimizations.figure8showstheperformanceofthethreeparallelversionsofarc2dexecuted howeveritwasappliedlessfrequently.foramoredetaileddiscussionofthisphenomenonandothers onprocessorsoftheultrasparc.thisgurealsoshowstheperformancethatwouldbeobtainedin uncoveredduringtheanalysisofarc2d,pleasereferto[vos97]. thesunsparcdirectiveversioniftheinterchanginghadbeendone. structurerepresentation,showedthatthetwomostsignicantloopsstepfxdo21andstepfxdo23 Afurtheranalysisoftheserialsource,thePolaristranslatedversions,andtheirgraphicalloop quicklyidentied.theoftentedioustaskoftabularizingprolingresultswasperformedautomatically waseasilyperformedwiththebrowsingfacilities.thegraphspresentedinfigures6through8can graphingfunctions. andtheidenticationoftheparallelloopsinthistablewasmadeobvious.thenestingstructureof begeneratedbyexportingtheursaminor/majordatabasetothexess3spreadsheetandusingits severalversionsofthesourcecodeforeachloopnestwasoftennecessary,andaside-by-sidecomparison theloopstructurewasasignicantaidinquicklyidentifyingthisphenomenon.adetailedstudyofthe theloopswasamajorfactorintheperformanceofthiscode,andursaminor'sgraphicaldisplayof UrsaMinorallowedthecharacteristicsresponsiblefortheperformancedierencesinARC2Dtobe obtainedonaprocessorsparcstation2,a6processorultrasparcenterprise,a16processorsilicongraphicspowerchallengeanda32processorsorigin2havebeenmadeavailableasumdsatures,canbeinteractivelyexploredthroughtheursamajorwebpage.performancemeasurements Thefullresultsofthisstudy,performedon8benchmarkprogramsacrossmultiprocessorarchitec- 1
11 (a) (b) (c) (d) (e) (f) 8 Figure7:LoopperformanceofARC2DonanUltraSPARC:(a)ExecutiontimeofFILERXdo19,(b) SpeedupofFILERXdo19,(c)ExecutiontimeofSTEPFXdo21,(d)SpeedupofSTEPFXdo21,(e) ExecutiontimeofSTEPFXdo23and(f)SpeedupofSTEPFXdo Execution Time (sec) Execution Time (sec) Execution Time (sec)12 ser Number of Processors ser Number of Processors ser Number of Processors Speedup Speedup Speedup Number of Processors Number of Processors 1 Native Parallelizer Polaris+Native Directives Polaris+KAP/Pro Directives Number of Processors Figure8:PerformanceofARC2DonProcessorsofUltraSPARC Native Sun Parallelizer Polaris+Sun Directives 2 +Perfect Nest Interchange +Imperfect Nest Interchange Polaris+KAP/Pro Directives 1
12 howthecomputationalcomplexityoftheoverallapplicationsuitescaleswiththenumberofprocessors 5.2ExperimentwiththeSeismicApplicationSuite Asthesecondcasestudy,weintroduceanotherprojectthatcharacterizesandanalyzeslarge-scope thatsite.foradetaileddescriptionoftheseresultsreferto[vos97]. [MH93],aseismicactivitysimulationprogramconsistingof2,linesofFortrancode.TheSeismic BenchmarkSuitecontainsadeephierarchyofnestedsubroutinesandloops.Ourgoalistounderstand industrialapplications[ae97].oneoftheprogramsweconsideredwastheseismicbenchmarksuite providesaverageloopexecutiontimesaswellasaloop'sparentinthecallingstructure.withcodes aslargeastheseismicsuitethesimpletaskoflocatingthebeginningandendingofloopsbecomes andwiththeinputdataspace.here,wewillbrieydescribehowtheursaminortoolcanbeofhelp loopfromactualmeasurements.inordertodothisweusethelooptableviewinursaminorwhich executiontime,exclusiveofanyinner-loops,isestimatedbyobtaininganexpressionforthenumberof iterationstheloopwillexecuteandcombiningthisexpressionwiththeaveragetimeperiterationofthe intheprocessofcharacterizingalargeapplication. cumbersomeandpronetohumanerrors.ursaminorgreatlysimpliesthistaskandprovidesavisual descriptionoftheloopnesthierarchywithitscallgraphview. Tocharacterizeanapplication'sexecutiontimewesumthetimescontributedbyeachloop.Aloop's Figure9:Actualmeasurementsofloopexecutiontimeswerecomparedwithpredictedtimestodetermine 7 theaccuracyofthemodelonaloop-by-loopbasis.theseparatecolorsrepresenttheloopsofthisseismic 6 phase.theactualmeasurementsweregatheredusinga32-processornodeofansgi/crayorigin2 ofncsaattheuniversityofillinois. 5 3 characterizationandlocatethepointsneedingrenement.figure9comparesactualmeasurementswith ourpredictedtimesforoneseismicprocessingphase(calleddepthmigration)asthenumberofprocessors 2 increasesfrom1to32.ursaminoraidedingatheringthedatafromboththemeasurementsandour 1 modelsothateachloop'sperformancecouldbeanalyzedindividually.loopsthatscaleddierently fromthemeasuredtimingswereeasytond.ourmodelcouldthenbemodiedformoreaccurate Afterwecharacterizedthecode'sperformance,weusedUrsaMinortodeterminetheaccuracyofour F M F M F M F M F M F M F = Forecasted, 12 M = Measured Number Processors Time (seconds) Phase : Depth Migration
13 whenthenumberofprocessorsincreased. predictions.weusedthisprocesstotestourmodel'sscalabilitywhenthedatasizeincreasedaswellas importingintoanxess3spreadsheet,inwhichweproducedgraphsvisuallydepictingthescalability machineslarger(moreprocessors)thanwecurrentlyhaveavailableandtoinputdatasizesappropriate dominatedbythecomputationtime(becauseofthisthecurves\total"and\comp"overlap). Figure1:ForecastedperformanceoftheSeismicSuiteasthemachinesizeisscaledup.Thecurves oftheapplication.figure1showsextrapolationresultsforoneseismicprocessingphase,againdepth forsuchlargemachines.databasesofpredictedexecutiontimeswereexportedfromursaminorfor dividethetotalexecutiontimeintocomputation,communication,anddiskiotimes.thetotaltimeis migration,asthenumberofprocessorsisincreasedfrom1to2,8processors.thedatasetisonewhich woulduse3terabytesofdiskspace. ThenalgoalofourcharacterizingprocesswasextrapolatingtheSeismicSuite'sperformanceto wellaloop-parallelversionoftheprogramwouldperformusingpolarisasastartingpoint.ursaminor program.asoriginallywritten,theseismicbenchmarkisamessage-passingcode.weinvestigatedhow parallelexecutionoverhead. calculatedthespeedupofourloop-parallelprogramforeachloop,aggingtheloopswithspeedupsbelow 1.TheseloopsweretheninvestigatedfurthertoimprovetheirautomaticparallelizationbyPolaris.If useofursamajor.measurementsweregatheredusingthesgi/crayorigin2atncsa. noimprovementscouldbemade,weforcedalooptoexecuteseriallysothatitwouldnotincurany AnotherobjectiveoftheSeismicBenchmarkcasestudywastoproduceawell-performingloop-parallel 6Conclusion Wehavepresentedanon-goingprojectthatprovidestoolsandmethodologiesforparallelprogram developmentandperformanceevaluation.ursaminorandursamajorsupportusermodelsof \parallelprogrammingbyexamples"forbeginnersandinteractivecompilationandperformancetuning ThedatafromtheSeismicBenchmarkcasestudyiscurrentlyavailabletooutsideusersthroughthe forexperts.theyalsoserveasaprogramandbenchmarkdatabaseforcomputingsystemsresearch.the 13 Time (seconds, log scale) 1x1 9 1x1 8 1x1 7 1x1 6 1x1 5 1x1 1x1 3 1x1 2 1x1 1 Phase : Depth Migration 1x Number of Processors Total Comp Comm Disk IO Disk Reads Disk Writes
14 toolsintegrateinformationavailablefromperformanceanalysistools,compilers,simulators,andsource Keepingclosetogetherthetooldesignprojectsandapplicationcharacterizationeortswillensurethe programstoadegreenotprovidedbyprevioustools.ursamajorcanbeexecutedontheworld-wide practicalityofourtoolinthefuture. Web,fromwhereagrowingrepositoryofinformationcanbeviewed. toolsandtheiruserviews.forexample,wewillincludeimprovedcompilerexplanationswhycertain compilerortoperformcertaintransformationsbyhand.anotherimportantgoalisthesupportfor optimizationswereorwerenotperformed.thisenablestheprogrammertoinputmissingdatatothe ToolcapabilitiesneededintheseeortsarebeingintegratedinbothUrsaMinorandUrsaMajor. asthecharacterizationandanalysisofrealapplicationsandthedevelopmentofparallelizingcompilers. Severalenhancementsareplannednext.Newcategoriesofinformationwillbeintegratedintothe TheUrsatoolfamilyisevolvinginaneed-drivenway.Itsdevelopersarealsoinvolvedinprojectssuch thetool'sservicetoaworld-wideaudience. References usermethodologies.asalong-termgoalweenvisionfacilitiesthatallowonetoquerytheinformation [AE97]BrianArmstrongandRudolfEigenmann.Performanceforecasting:Characterizationofap- repositorydirectlyforsuggestedimprovementsofprograms,compilers,orarchitectures.bettersupport oeredbythenewinternettechnology,continuousfeedbackfromitsusercommunitywillhelpimprove forthetool'swebresponseisanotherongoingeort.aswehaveonlybeguntoexplorethepotential [AO88]J.AmbrasandV.O'Day.MicroScope:AKnowledge-BasedProgrammingEnvironment. [ASM89]BillAppelbe,KevinSmith,andCharlesMcDowell.Start/Pat:AParallel-Programming putinglaboratory,february97. Toolkit.IEEESoftware,6():29{38,July1989. IEEESoftware,pages5{58,May1988. dueuniversity,schoolofelectricalandcomputer,engineering,high-performancecom- plicationsoncurrentandfuturearchitectures.technicalreportece-hpclab-9722,pur- [BKK+89]V.Balasundaram,K.Kennedy,U.Kremer,K.McKinley,andJ.Subhlok.TheParaScope [BDE+96]W.Blume,R.Doallo,R.Eigenmann,J.Grout,J.Hoeinger,T.Lawrence,J.Lee,D.Padua, [BST86]G.Bruno,P.Spiller,andI.Tota.AISPE:AnAdvanced,IndustrialSoftware-Production Y.Paek,B.Pottenger,L.Rauchwerger,andP.Tu.ParallelprogrammingwithPolaris.IEEE editor:aninteractiveparallelprogrammingtool.ininternationalconferenceonsupercomputing,pages5{55,1989. Computer,pages78{82,December1996. Environment.ProceedingsofComputerSoftwareandApplicationsConf.,pages9{99, [EM93]RudolfEigenmannandPatrickMcClaughry.PracticalToolsforOptimizingParallelPrograms.Presentedatthe1993SCSMulticonference,Arlington,VA,March27-April1, Computers.ConferenceProceedings,ICS'93,Tokyo,Japan,pages27{36,July2-22, [Eig93]RudolfEigenmann.TowardaMethodologyofOptimizingProgramsforHigh-Performance [HAA+96]M.W.Hall,J.M.Anderson,S.P.Amarasinghe,B.R.Murphy,S.-W.Liao,E.Bugnion, andm.s.lam.maximizingmultiprocessorperformancewiththesuifcompiler.ieee Computer,pages8{89,December
15 [KT87]J.H.KuoandH.C.Tu.PrototypingaSoftwareInformationBaseforSoftware-Engineeri [KE97]Seon-WookKimandRudolfEigenmann.Max/P:detectingthemaximumparallelismin [Int97]Intel. afortranprogram.purdueuniversity,schoolofelectricalandcomputer,engineering, High-PerformanceComputingLaboratory,1997.ManualECE-HPCLab ngenvironments.proceedingsofcomputersoftwareandapplicationsconf.,pages38{, VTune: VisualTuningEnvironment, [MCC+95]BartonP.Miller,MarkD.Callaghan,JonathanM.Cargille,JereyK.Hollingsworth [Kuc88]Kuck&Associates,Inc.,Champaign,Illinois.KAPUser'sGuide,1988. [MH93]C.C.MosherandS.Hassanzadeh.ARCOseismicprocessingperformanceevaluationsuite, user'sguide.technicalreport,arco,plano,tx.,1993. Paradynparallelperformancemeasurementtools.IEEEComputer,28(11),November1995. R.BruceIrvin,KarenL.Karavanic,KrishnaKunchithapadam,andTiaNewhall.The [PE98]InsungParkandRudolfEigenmann.UrsaMajor:ExploringWebtechnologyfordesign [Pet93]PaulMarxPetersen.EvaluationofProgramsandParallelizingCompilersUsingDynamic [OMP97]OpenMP:AProposedIndustryStandardAPIforSharedMemoryProgramming.Technical computingres.&dev.,january1993. HighPerformanceComputingandNetworking,April1998. AnalysisTechniques.PhDthesis,Univ.ofIllinoisatUrbana-Champaign,CenterforSuper- andevaluationofhigh-performancesystems.inproc.oftheinternationalconferenceon report,openmp,october1997. [VGGJ+89]Jr.VincentGuarna,DennisGannon,DavidJablonowski,AllenMalony,andYogeshGaur. [Ree9]DanielA.Reed.Experimentalperformanceanalysisofparallelsystems:Techniquesand [PVAE97]InsungPark,MichaelJ.Voss,BrianArmstrong,andRudolfEigenmann.InteractivecompilationandperformanceanalysiswithUrsaMinor.InWorkshopofLanguagesandCompilers openproblems.inproc.ofthe7thint'confonmodellingtechniquesandtoolsforcomputerperformanceevaluation,pages25{51,199. Faust:AnIntegratedEnvironmentfortheDevelopmentofParallelPrograms.IEEESoftware,pages2{27,July1989. forparallelcomputing,august97. [Vos97]MichaelJ.Voss.Portableloop-levelparallelismforsharedmemorymultiprocessorarchitectures.Master'sthesis,SchoolofElectricalandComputerEngineering,PurdueUniversity, October97. 15
Advanced Digital Imaging
Asset Management System User Interface Cabin River Web Solutions Overview The ADI Asset Management System allows customers and ADI to share digital assets (images and files) in a controlled environment.
User Reports. Time on System. Session Count. Detailed Reports. Summary Reports. Individual Gantt Charts
DETAILED REPORT LIST Track which users, when and for how long they used an application on Remote Desktop Services (formerly Terminal Services) and Citrix XenApp (known as Citrix Presentation Server). These
Development of Monitoring and Analysis Tools for the Huawei Cloud Storage
Development of Monitoring and Analysis Tools for the Huawei Cloud Storage September 2014 Author: Veronia Bahaa Supervisors: Maria Arsuaga-Rios Seppo S. Heikkila CERN openlab Summer Student Report 2014
Windows 2003 Performance Monitor. System Monitor. Adding a counter
Windows 2003 Performance Monitor The performance monitor, or system monitor, is a utility used to track a range of processes and give a real time graphical display of the results, on a Windows 2003 system.
JAVA WEB START OVERVIEW
JAVA WEB START OVERVIEW White Paper May 2005 Sun Microsystems, Inc. Table of Contents Table of Contents 1 Introduction................................................................. 1 2 A Java Web Start
XP24000/XP20000 Performance Monitor User Guide
HP StorageWorks XP24000/XP20000 Performance Monitor User Guide Abstract This user's guide describes and provides instructions for using the Performance Monitor software. Part Number: T5214-96088 Eleventh
B) Using Processor-Cache Affinity Information in Shared Memory Multiprocessor Scheduling
A) Recovery Management in Quicksilver 1) What role does the Transaction manager play in the recovery management? It manages commit coordination by communicating with servers at its own node and with transaction
EMBL-EBI. Database Replication - Distribution
Database Replication - Distribution Relational public databases EBI s mission to provide freely accessible information on the public domain Data formats and technologies, should not contradict to this
Overlapping Data Transfer With Application Execution on Clusters
Overlapping Data Transfer With Application Execution on Clusters Karen L. Reid and Michael Stumm [email protected] [email protected] Department of Computer Science Department of Electrical and Computer
CS550. Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun
CS550 Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun Email: [email protected], Phone: (312) 567-5260 Office hours: 2:10pm-3:10pm Tuesday, 3:30pm-4:30pm Thursday at SB229C,
CHAPTER - 5 CONCLUSIONS / IMP. FINDINGS
CHAPTER - 5 CONCLUSIONS / IMP. FINDINGS In today's scenario data warehouse plays a crucial role in order to perform important operations. Different indexing techniques has been used and analyzed using
<Insert Picture Here> An Experimental Model to Analyze OpenMP Applications for System Utilization
An Experimental Model to Analyze OpenMP Applications for System Utilization Mark Woodyard Principal Software Engineer 1 The following is an overview of a research project. It is intended
How To Understand The Architecture Of An Ulteo Virtual Desktop Server Farm
ULTEO OPEN VIRTUAL DESKTOP V4.0.2 ARCHITECTURE OVERVIEW Contents 1 Introduction 2 2 Servers Roles 3 2.1 Session Manager................................. 3 2.2 Application Server................................
Understanding the Benefits of IBM SPSS Statistics Server
IBM SPSS Statistics Server Understanding the Benefits of IBM SPSS Statistics Server Contents: 1 Introduction 2 Performance 101: Understanding the drivers of better performance 3 Why performance is faster
Clonecloud: Elastic execution between mobile device and cloud [1]
Clonecloud: Elastic execution between mobile device and cloud [1] ACM, Intel, Berkeley, Princeton 2011 Cloud Systems Utility Computing Resources As A Service Distributed Internet VPN Reliable and Secure
Oracle Change Management Pack Installation
Oracle Change Management Pack Installation This guide contains instructions on how to install the Oracle Change Management Pack. IMPORTANT: Before installing Oracle Change Management Pack, please review
Checking IE Settings, and Basic System Requirements for QuestionPoint
Checking IE Settings, and Basic System Requirements for QuestionPoint This document covers basic IE settings and system requirements necessary for QuestionPoint. These settings and requirements apply to
Muse Server Sizing. 18 June 2012. Document Version 0.0.1.9 Muse 2.7.0.0
Muse Server Sizing 18 June 2012 Document Version 0.0.1.9 Muse 2.7.0.0 Notice No part of this publication may be reproduced stored in a retrieval system, or transmitted, in any form or by any means, without
Cloud Storage. Parallels. Performance Benchmark Results. White Paper. www.parallels.com
Parallels Cloud Storage White Paper Performance Benchmark Results www.parallels.com Table of Contents Executive Summary... 3 Architecture Overview... 3 Key Features... 4 No Special Hardware Requirements...
Using ELMS with TurningPoint Cloud
Using ELMS with TurningPoint Cloud The ELMS (Canvas) integration enables TurningPoint Cloud users to leverage response devices in class to easily collect student achievement data. Very simply one can load
Advanced Peer to Peer Discovery and Interaction Framework
Advanced Peer to Peer Discovery and Interaction Framework Peeyush Tugnawat J.D. Edwards and Company One, Technology Way, Denver, CO 80237 [email protected] Mohamed E. Fayad Computer Engineering
WHAT S NEW WITH EMC NETWORKER
WHAT S NEW WITH EMC NETWORKER Unified Backup And Recovery Software 1 Why EMC NetWorker? Centralized Management Industry-Leading Data Deduplication Advanced Application Support Broad Backup-To-Disk Capabilities
INUVIKA OPEN VIRTUAL DESKTOP FOUNDATION SERVER
INUVIKA OPEN VIRTUAL DESKTOP FOUNDATION SERVER OVERVIEW OF OPEN VIRTUAL DESKTOP Mathieu SCHIRES Version: 1.0.2 Published April 9, 2015 http://www.inuvika.com Contents 1 Introduction 2 2 Terminology and
IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications
Open System Laboratory of University of Illinois at Urbana Champaign presents: Outline: IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications A Fine-Grained Adaptive
Minimum Hardware Configurations for EMC Documentum Archive Services for SAP Practical Sizing Guide
Minimum Hardware Configurations for EMC Documentum Archive Services for SAP Practical Sizing Guide Abstract The sizing of hardware in a deployment of EMC Document Archive Services for SAP is determined
TECHNICAL CONDITIONS REGARDING ACCESS TO VP.ONLINE. User guide. vp.online 2011 2011-10-01
TECHNICAL CONDITIONS REGARDING ACCESS TO VP.ONLINE vp.online 2011 2011-10-01 Contents 1 PROBLEMS SEEING VP.ONLINE... 3 2 BROWSER CONFIGURATION... 6 3 WRITE ACCESS TO DISK DRIVE... 7 4 SESSION TIMEOUT AND
Altaro Hyper-V Backup - Offsite Backups & Seeding Guide
Altaro Hyper-V Backup - Offsite Backups & Seeding Guide The introduction of an Altaro Backup Server role means that you can install the Altaro Backup Server application on another server, and use that
How To Write A Network Operating System For A Network (Networking) System (Netware)
Otwarte Studium Doktoranckie 1 Adaptable Service Oriented Architectures Krzysztof Zieliński Department of Computer Science AGH-UST Krakow Poland Otwarte Studium Doktoranckie 2 Agenda DCS SOA WS MDA OCL
Attachments Internet Explorer
Attachments Internet Explorer Outlook Webmail allows you to share files with your email correspondents through the use of s. This document discusses accessing email s, attaching files, and deleting s using
FileMaker 11. ODBC and JDBC Guide
FileMaker 11 ODBC and JDBC Guide 2004 2010 FileMaker, Inc. All Rights Reserved. FileMaker, Inc. 5201 Patrick Henry Drive Santa Clara, California 95054 FileMaker is a trademark of FileMaker, Inc. registered
EMS. Trap Collection Active Alarm Alarms sent by E-mail & SMS. Location, status and serial numbers of all assets can be managed and exported
EMS SmartView TM Superior Design with Real-Time Monitor and Control Trap Collection Active Alarm Alarms sent by E-mail & SMS Network Topology Network Element Discovery Network Element Configuration Location,
System Requirements and Configuration Options
System Requirements and Configuration Options Software: CrimeView Community, CrimeView Web System requirements and configurations are outlined below for CrimeView Web and CrimeView Community (including
Web Application Testing. Web Performance Testing
Web Application Testing Web Performance Testing Objectives of Performance Testing Evaluate runtime compliance to performance requirements Check different properties such as throughput (bits/sec, packets/sec)
SQL Express to SQL Server Database Migration MonitorIT v10.5
SQL Express to SQL Server Database Migration MonitorIT v10.5 (v10.5) March 2013 www.goliathtechnologies.com Legal Notices MonitorIT v10.5 Installation Guide Inc. All rights reserved. www.goliathtechnologies.com
Distributed Network Management Using SNMP, Java, WWW and CORBA
Distributed Network Management Using SNMP, Java, WWW and CORBA André Marcheto Augusto Hack Augusto Pacheco Augusto Verzbickas ADMINISTRATION AND MANAGEMENT OF COMPUTER NETWORKS - INE5619 Federal University
Integrating Content Management Within Enterprise Applications: The Open Standards Option. Copyright Xythos Software, Inc. 2005 All Rights Reserved
Integrating Content Management Within Enterprise Applications: The Open Standards Option Copyright Xythos Software, Inc. 2005 All Rights Reserved Table of Contents Introduction...3 Why Developers Are Choosing
Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:
CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm
Data Visualization in Julia
Introduction: Data Visualization in Julia Andres Lopez-Pineda December 13th, 211 I am Course 6 and 18, and I am primarily interested in Human Interfaces and Graphics. I took this class because I believe
Scalability of Master-Worker Architecture on Heroku
Scalability of Master- Architecture on Heroku Vibhor Aggarwal, Shubhashis Sengupta, Vibhu Soujanya Sharma, Aravindan Santharam Accenture Technology Labs Page 0 Table of Contents Synopsis... 2 Introduction...
Installation Guide Sybase ETL Small Business Edition 4.2 for Windows
Installation Guide Sybase ETL Small Business Edition 4.2 for Windows Document ID: DC00738-01-0420-01 Last revised: April 2007 Topic Page 1. Overview 2 2. Before you begin 2 2.1 Review system requirements
PARALLELS CLOUD STORAGE
PARALLELS CLOUD STORAGE Performance Benchmark Results 1 Table of Contents Executive Summary... Error! Bookmark not defined. Architecture Overview... 3 Key Features... 5 No Special Hardware Requirements...
SAS Add in to MS Office A Tutorial Angela Hall, Zencos Consulting, Cary, NC
Paper CS-053 SAS Add in to MS Office A Tutorial Angela Hall, Zencos Consulting, Cary, NC ABSTRACT Business folks use Excel and have no desire to learn SAS Enterprise Guide? MS PowerPoint presentations
1. Accessing the LONZA network from a private PC or Internet Café
Using SSL VPN from non Lonza PCs 1. Accessing the LONZA network from a private PC or Internet Café To work at home with your private PC or from an Internet Café, you can use your browser to connect to
Remote Online Support
Remote Online Support STRONGVON Tournament Management System 1 Overview The Remote Online Support allow STRONGVON support personnel to log into your computer over the Internet to troubleshoot your system
EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers 9.4.1 Support Matrix
EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers 9.4.1 Version 9.4.1.0 302-002-262 REV 01 Abstract Smarts 9.4.1 Suite can be installed in a typical or a fully distributed, multi-machine production
Architecture and Mode of Operation
Open Source Scheduler Architecture and Mode of Operation http://jobscheduler.sourceforge.net Contents Components Platforms & Databases Architecture Configuration Deployment Distributed Processing Security
Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing. October 29th, 2015
E6893 Big Data Analytics Lecture 8: Spark Streams and Graph Computing (I) Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing
MIGRATING DESKTOP AND ROAMING ACCESS. Migrating Desktop and Roaming Access Whitepaper
Migrating Desktop and Roaming Access Whitepaper Poznan Supercomputing and Networking Center Noskowskiego 12/14 61-704 Poznan, POLAND 2004, April white-paper-md-ras.doc 1/11 1 Product overview In this whitepaper
Virtual machine interface. Operating system. Physical machine interface
Software Concepts User applications Operating system Hardware Virtual machine interface Physical machine interface Operating system: Interface between users and hardware Implements a virtual machine that
Printer Management Software
Printer Management Software This topic includes: "Using CentreWare Software" on page 3-9 "Using Printer Management Features" on page 3-11 Using CentreWare Software CentreWare Internet Service (IS) CentreWare
Fluke Networks NetFlow Tracker
Fluke Networks NetFlow Tracker Quick Install Guide for Product Evaluations Pre-installation and Installation Tasks Minimum System Requirements The type of system required to run NetFlow Tracker depends
XpoLog Center Suite Log Management & Analysis platform
XpoLog Center Suite Log Management & Analysis platform Summary: 1. End to End data management collects and indexes data in any format from any machine / device in the environment. 2. Logs Monitoring -
BarTender Print Portal. Web-based Software for Printing BarTender Documents WHITE PAPER
BarTender Print Portal Web-based Software for Printing BarTender Documents WHITE PAPER Contents Overview 3 Installing Print Portal 4 Configuring Your Installation 4 Supported Printing Technologies 5 Web
Tuning WebSphere Application Server ND 7.0. Royal Cyber Inc.
Tuning WebSphere Application Server ND 7.0 Royal Cyber Inc. JVM related problems Application server stops responding Server crash Hung process Out of memory condition Performance degradation Check if the
System requirements for ICS Skills ATS
System requirements for ICS Skills ATS A system requirements check verifies that the computer fulfils the requirements to run ICS Skills Automated tests. There are 4 possible checks that can be made prior
K1000: Advanced Topics
K1000: Advanced Topics Tyler Gingrich Senior Engineering Manager, K1000 Craig Thatcher, Software Engineer, K1000 Topics Konductor Scripting Managed Installs Munin 2 1/23/13 Konductor Background process
Checking Browser Settings, and Basic System Requirements for QuestionPoint
Checking Browser Settings, and Basic System Requirements for QuestionPoint This document covers basic IE settings and system requirements necessary for QuestionPoint. These settings and requirements apply
11.1 inspectit. 11.1. inspectit
11.1. inspectit Figure 11.1. Overview on the inspectit components [Siegl and Bouillet 2011] 11.1 inspectit The inspectit monitoring tool (website: http://www.inspectit.eu/) has been developed by NovaTec.
Table of Contents. 10.0 Release Notes 2013/04/08. Introduction ... 3. in OS Deployment Manager. in Security Manager ... 7. Known issues ... 9 ...
Release Notes Release Notes 2013/04/08 Table of Contents Introduction... 3 Deployment Manager... 3 New Features in Deployment Manager... 3 Security Manager... 7 New Features in Security Manager... 7 Known
Synergis Software 18 South 5 TH Street, Suite 100 Quakertown, PA 18951 +1 215.302.3000, 800.836.5440 www.synergissoftware.com version 20150330
Synergis Software 18 South 5 TH Street, Suite 100 Quakertown, PA 18951 +1 215.302.3000, 800.836.5440 www.synergissoftware.com version 20150330 CONTENTS Contents... 2 Overview... 2 Adept Server... 3 Adept
HSBCnet FX AND MM TRADING. Troubleshooting and Minimum System Requirements
HSBCnet FX AND MM TRADING Troubleshooting and Minimum System Requirements Troubleshooting If you experience any of the following symptoms, refer to the recommended sections for appropriate actions. SYMPTOM:
! E6893 Big Data Analytics Lecture 9:! Linked Big Data Graph Computing (I)
! E6893 Big Data Analytics Lecture 9:! Linked Big Data Graph Computing (I) Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and
Inform IT. Features and Benefits. Overview. Process Information Web Server Version 3.2/1
Overview Inform IT Process Information Web Server Version 3.2/1 Features and Benefits Real-time and historical process monitoring: Process Information Web Server (PIWS) allows web based querying, monitoring
SOFT 437. Software Performance Analysis. Ch 5:Web Applications and Other Distributed Systems
SOFT 437 Software Performance Analysis Ch 5:Web Applications and Other Distributed Systems Outline Overview of Web applications, distributed object technologies, and the important considerations for SPE
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
PIE. Internal Structure
PIE Internal Structure PIE Composition PIE (Processware Integration Environment) is a set of programs for integration of heterogeneous applications. The final set depends on the purposes of a solution
KACO-monitoring. watchdog prolog insight. Easy to install. Inverter integrated monitoring available. Monitor up to 32 inverters with one device
KACO-monitoring watchdog prolog insight Easy to install Inverter integrated monitoring available Monitor up to 32 inverters with one device Affordable, reliable and accurate data collection Instant alarms
ITPS AG. Aplication overview. DIGITAL RESEARCH & DEVELOPMENT SQL Informational Management System. SQL Informational Management System 1
ITPS AG DIGITAL RESEARCH & DEVELOPMENT SQL Informational Management System Aplication overview SQL Informational Management System 1 Contents 1 Introduction 3 Modules 3 Aplication Inventory 4 Backup Control
Magento & Zend Benchmarks Version 1.2, 1.3 (with & without Flat Catalogs)
Magento & Zend Benchmarks Version 1.2, 1.3 (with & without Flat Catalogs) 1. Foreword Magento is a PHP/Zend application which intensively uses the CPU. Since version 1.1.6, each new version includes some
Introduction to Cluster Computing
Introduction to Cluster Computing Brian Vinter [email protected] Overview Introduction Goal/Idea Phases Mandatory Assignments Tools Timeline/Exam General info Introduction Supercomputers are expensive Workstations
Enterprise Reporter Report Library
Enterprise Reporter Overview v2.5.0 This document contains a list of the reports in the Enterprise Reporter. Active Directory Reports Change History Reports Computer Reports File Storage Analysis Reports
Clientless SSL VPN Users
Manage Passwords, page 1 Username and Password Requirements, page 3 Communicate Security Tips, page 3 Configure Remote Systems to Use Clientless SSL VPN Features, page 3 Manage Passwords Optionally, you
MLM1000 Multi-Layer Monitoring Software 061-4281-00
MLM1000 Multi-Layer Monitoring Software 061-4281-00 Test Equipment Depot - 800.517.8431-99 Washington Street Melrose, MA 02176 - FAX 781.665.0780 - TestEquipmentDepot.com Read This First contains release
INSTALLATION MINIMUM REQUIREMENTS. Visit us on the Web www.docstar.com
INSTALLATION MINIMUM REQUIREMENTS Visit us on the Web www.docstar.com Clients This section details minimum requirements for client workstations that use. Workstation (Scan) Windows 7 (32/64 bit); Windows
Red Hat Network Satellite Management and automation of your Red Hat Enterprise Linux environment
Red Hat Network Satellite Management and automation of your Red Hat Enterprise Linux environment WHAT IS IT? Red Hat Network (RHN) Satellite server is an easy-to-use, advanced systems management platform
How To Login To Webex Online
Getting Prepared for Your Online Course! This document will let you know what to expect and walk you through a Test Login One of our top priorities is to meet your demand for high quality, easy to use,
IC 1101 Basic Electronic Practice for Electronics and Information Engineering
7. INDUSTRIAL CENTRE TRAINING In the summer between Year 1 and Year 2, students will undergo Industrial Centre Training I in the Industrial Centre (IC). In the summer between Year 2 and Year 3, they will
J-TRADER QUICK START USERGUIDE For Version 8.0
J-TRADER QUICK START USERGUIDE For Version 8.0 Notice Whilst every effort has been made to ensure that the information given in the J Trader Quick Start User Guide is accurate, no legal responsibility
Red Hat Satellite Management and automation of your Red Hat Enterprise Linux environment
Red Hat Satellite Management and automation of your Red Hat Enterprise Linux environment WHAT IS IT? Red Hat Satellite server is an easy-to-use, advanced systems management platform for your Linux infrastructure.
Using Windows Task Scheduler to Automate WPS Jobs on a Windows Server Platform
Using Windows Task Scheduler to Automate WPS Jobs on a Windows Server Platform January 2012 MineQuest, LLC WPS Consulting and an Authorized WPS Reseller Suite 202 8917 South Old State Street Lewis Center,
Active Merchandiser: Review Spotlight Orders and Performance
The Spotlight application allows you to gain insight into your sales process at a company level and at the individual sales rep and customer level. There are four tools provided for analyzing your sales
SSL VPN Service. To get started using the NASA IV&V/WVU SSL VPN service, you must verify that you meet all required criteria specified here:
SSL VPN Service Note: This guide was written using Windows 7 with Internet Explorer 8. The same principles and techniques are applicable to new versions of Internet Explorer as well as Firefox. Any significant
New Features in XE8. Marco Cantù RAD Studio Product Manager
New Features in XE8 Marco Cantù RAD Studio Product Manager Marco Cantù RAD Studio Product Manager Email: [email protected] @marcocantu Book author and Delphi guru blog.marcocantu.com 2 Agenda
BROCADE PERFORMANCE MANAGEMENT SOLUTIONS
Data Sheet BROCADE PERFORMANCE MANAGEMENT SOLUTIONS SOLUTIONS Managing and Optimizing the Performance of Mainframe Storage Environments HIGHLIGHTs Manage and optimize mainframe storage performance, while
BIT Course Description
BIT Course Description Introduction to Operating Systems BTEC 101 This course follows a systematic approach to operating systems explaining why they are needed and what they do. Topics include the basic
How do I use Citrix Staff Remote Desktop
How do I use Citrix Staff Remote Desktop September 2014 Initial Log On In order to login into the new Citrix system, you need to go to the following web address. https://remotets.tees.ac.uk/ Be sure to
Case Study. Regulatory Reporting
Case Study Regulatory Reporting Background The Reserve Bank of India (RBI), India's central bank, oversees a host of critical activities including monetary policy, bank supervision and foreign exchange
ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process
ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced
nanohub.org An Overview of Virtualization Techniques
An Overview of Virtualization Techniques Renato Figueiredo Advanced Computing and Information Systems (ACIS) Electrical and Computer Engineering University of Florida NCN/NMI Team 2/3/2006 1 Outline Resource
SUMMER SCHOOL ON ADVANCES IN GIS
SUMMER SCHOOL ON ADVANCES IN GIS Six Workshops Overview The workshop sequence at the UMD Center for Geospatial Information Science is designed to provide a comprehensive overview of current state-of-the-art
DBMS / Business Intelligence, Business Intelligence / DBMS
DBMS / Business Intelligence, Business Intelligence / DBMS Orsys, with 30 years of experience, is providing high quality, independant State of the Art seminars and hands-on courses corresponding to the
Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students
Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent
Hardware Information Managing your server, adapters, and devices ESCALA POWER5 REFERENCE 86 A1 00EW 00
86 A1 00EW 00 86 A1 00EW 00 Table of Contents Managing your server, adapters, and devices...1 Managing your server using the Hardware Management Console...1 What's new...1 Printable PDFs...2 HMC concepts
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
Installation and Administration Guide
Installation and Administration Guide BlackBerry Collaboration Service Version 12.1 Published: 2015-02-25 SWD-20150225135812271 Contents About this guide... 5 Planning a BlackBerry Collaboration Service
