Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System. Man Hoi Lee (UCSB)

Size: px
Start display at page:

Download "Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System. Man Hoi Lee (UCSB)"

Transcription

1 Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System Man Hoi Lee (UCSB)

2 Introduction: Extrasolar Planetary Systems Extrasolar planet searches have yielded ~ 150 planetary systems to date. Vast majority discovered by detecting the reflex motion of the host star. Transit searches are beginning to yield planets. ~ 18 systems with multiple planets.

3 ~ 1/3 of the known multiple planet systems have a pair of planets known or suspected to be in mean motion resonances. It is now well established that the pair of planets with orbital periods P 30 and 60 days about the star GJ 876 is deep in 2:1 orbital resonance. HD was the second star discovered to host a pair of planets with orbital periods nearly in the ratio 2:1. Analysis of the HD planetary system based on a radial velocity data set that combines new measurements obtained with the Keck telecope and the existing CORALIE measurements. (Lee, Butler, Fischer, Marcy, & Vogt 2006, astro ph/ )

4 It is likely that mean motion resonances were established during planet formation by the convergent migration of planets due to interactions with the protoplanetary disk. What are the conditions required to assemble the observed 2:1 resonance in the HD system? (Kley & Lee)

5 Introduction: the Pluto System

6 Weaver et al. (2006) discovered two small satellites of Pluto, S/2005 P1 and S/2005 P2, from two images taken with the HST in May First new satellites of Pluto since discovery of Charon in Diameter of Charon ~ 1200 km. Size estimates from brightness: If albedo is high and Charon like (0.35), diameter of P1 ~ 60 km. If albedo is low and comet like (0.04), diameter of P1 ~ 170 km. P2 is ~ 20% smaller.

7 Buie et al. (2006) detected Charon, P2 and P1 in a set of images taken with HST between 6/2002 and 6/2003. Assuming Keplerian orbits, fit by Buie et al. shows that the orbits of P2 and P1 are nearly circular and nearly coplanar with that of Pluto Charon. Orbital periods P 25 days for P2 P 38 days for P1

8 Unperturbed Keplerian orbits are not good assumptions for orbits of P2 and P1. Mass ratio of Charon Pluto m c /m p = Orbital periods of Charon, P2 and P1 nearly in the ratio 1:4:6. Strongest effects from proximity of P2 and P1 to 3:2 commensurability. Prospects for detecting non Keplerian behaviors and constraining the masses of P2 and P1 with existing and future observations. (Lee & Peale 2006)

9 Keplerian Orbital Elements Semimajor axis a Eccentricity e Longitude of Periapse ϖ Mean Motion n = 2π/P Mean Longitude λ = n (t T peri ) + ϖ = ϖ at periapse = ϖ o at apoapse

10 Resonance Variables At the 2:1 commensurability n 1 2 n 2 λ 1 2 λ 2 const But since the periapses precess due to interactions, there are two dynamically significant combinations of frequencies for coplanar orbits: n 1 2 n 2 + dϖ 1,2 /dt 0 Eccentricity type mean motion resonance variables θ 1 = λ 1 2 λ 2 + ϖ 1 const, θ 2 = λ 1 2 λ 2 + ϖ 2 const

11 θ i is in resonance if it librates about a fixed value.

12 GJ 876 (Marcy et al. 2001) Two planets with P 30 and 60 days. Because of the short orbital periods and large planetary masses relative to the stellar mass, a dynamical fit to radial velocity data that accounts for the gravitational interaction between the planets is essential (Laughlin & Chambers 2001; Rivera & Lissauer 2001; Laughlin et al. 2005; Rivera et al. 2005; Lee & Peale 2002).

13 Retrograde apsidal precession of orbits induced by the 2:1 resonances has now been observed for more than one full period (3200 days or only 50 outer planet orbits).

14 Both θ 1 = λ 1 2λ 2 + ϖ 1 and θ 2 = λ 1 2λ 2 + ϖ 2 librate about 0 with small amplitudes.

15 The librations of θ 1 = λ 1 2 λ 2 + ϖ 1 and θ 2 = λ 1 2 λ 2 + ϖ 2 about 0 ο mean that Periapses are nearly aligned Conjunctions occur when both planets are near periapse.

16 Two planets with P 220 and 440 days (Mayor et al. 2004). The HD System Longer orbital periods and smaller relative planetary masses (compared to GJ 876) mean that a double Keplerian fit is likely adequate.

17 All 3 body integrations of the best fit double Keplerian model of Mayor et al. for different starting epochs and coplanar sin i are unstable. Mayor et al. noted that there are fits with very different argument of periapse of the outer orbit ω 2 (= ϖ 2 ) that have nearly the same RMS as the best fit, but it was unknown whether such fits would be stable or in 2:1 resonance.

18 Double Keplerian Fits for HD Radial velocity data set Keck observations by the California & Carnegie group + CORALIE data from Figure 6 of Mayor et al. (2004) 165 points spanning 6.1 years. Search for best fit double Keplerian model as a function of the poorly constrained e 2 and ω 2.

19 Parameters of best fit double Keplerian models for HD 82943

20

21 Dynamical Analysis of Double Keplerian Fits 3 body integrations of the best fit models up to yr Use dynamical stability to narrow the range of reasonable fits Examine dynamical properties of the stable fits.

22 sin i = 1: Stability requires at least θ 1 to be librating about 0

23 Fit I: Unstable fit at minimum of χ ν 2

24 Fit II: Stable fit with the smallest libration amplitudes of both θ 1 and θ 2 about 0

25 Fit III: Stable fit with large amplitude librations of both θ 1 and θ 2

26 Fit IV: Stable fit with only θ 1 librating

27 sin i = 0.5: Stability requires both θ 1 and θ 2 to be librating about 0

28 Fit II: Stable fit with the smallest libration amplitudes of both θ 1 and θ 2

29 Origin of the Resonances Mean motion resonances can be easily established during planet formation by convergent migration of planets due to interactions with the protoplanetary disk. BUT continued migration while trapped in resonances can lead to rapid growth of eccentricities, unless there is significant ecc. damping from planet disk interactions.

30 GJ 876 The observed resonance geometry (with both θ 1 and θ 2 about 0 ) can be easily established by convergent migration. But the small observational upper limits of the eccentricities are a puzzle. (Lee & Peale 2002; Papaloizou 2003; Kley, Lee, Murray, & Peale 2005)

31 Lee & Peale (2002) updated

32 Kley, Lee, Murray, & Peale (2005) K = (e 1 de/dt)/(a 1 da/dt)

33 Hydrodynamical Simulations m 1 /m 0 = and m 2 /m 0 = without disk dispersal with disk dispersal Kley, Lee, Murray, & Peale (2005)

34 Hydrodynamical simulations of the GJ 876 system do not show significant eccentricity damping from planet disk interaction and the eccentricities quickly exceed the observational upper limits, unless the disk is dispersed shortly after resonance capture. HD Fit II has e and e

35 Without ecc. damping, observed ecc. not exceeded until orbital radii shrink by 20% (compared to 10% for GJ 876). Observed ecc. would persist during migration if ratio of ecc. damping rate to migration rate K 8 (compared to K > 40 for GJ 876).

36 Ecc. damping is not as large as K 8, but it is sufficient to delay ecc. growth so that the observed ecc. are not exceeded until orbits shrink by 35% after resonance capture.

37 Conclusions: HD The two planets about HD are almost certainly in 2:1 mean motion resonance. Dynamical stability requires at least θ 1 to be librating about 0 if sin i 1.0. both θ 1 and θ 2 to be librating about 0 if sin i 0.5. The HD system is consistent with small amplitude librations (as small as 6 for θ 1 and 10 for θ 2 ) of both θ 1 and θ 2 about 0.

38 The 2:1 resonances in HD can be established during planet formation by convergent migration due to planet disk interactions without requiring excessive eccentricity damping or the near coincidence of time of resonance capture and disk dispersal time.

39 The Pluto Satellite System Orbits of S/2005 P2 and S/2005 P1 nearly circular and nearly coplanar with that of Pluto Charon. Orbital periods Charon: P 6.4 days P2: P 25 days P1: P 38 days Mass ratio of Charon Pluto m c /m p = 0.12.

40 Analytic Theory for Orbits of P2 and P1 P2 and P1 test particles Orbit of Charon relative to Pluto: Keplerian and circular semimajor axis a pc mean motion n pc = [G(m p +m c )/a pc3 ] 1/2 r c = (a pc m p /(m p +m c ), φ c ) r p = (a pc m c /(m p +m c ), φ c +π) φ c = n pc t + pc

41 The gravitational potential at r = (R, φ) where The axisymmetric k = 0 component identical to that due to two rings: one of mass m p and radius a pc m c /(m p +m c ), and another of mass m c and radius a pc m p /(m p +m c ).

42 Deviations from point mass potential of mass (m p +m c ) at the origin are of order (m c /m p )(a pc /R) 2 and higher (~0.02 for P2 and 0.01 for P1). Represent orbits as small deviations from circular motion of a guiding center at R 0 : At zeroth order where the mean motion n 0 is given by

43 At the first order where and epicyclic frequency κ 0 is given by

44 The solution is Motion described by Circular motion of guiding center at R 0 at mean motion n 0 Epicyclic motion with eccentricity e at frequency κ 0 Forced oscillations of fractional amplitude C k at frequencies k (n 0 n pc ).

45 With n 0 > n K > κ 0, where n K = [G(m p +m c )/R 03 ] 1/2 is the Keplerian mean motion at R 0 Deviation from Kepler s third law Azimuthal period P 0 = 2π/n 0 is shorter than the Keplerian orbital period P K = 2π/n K. Prograde precession of periapse with period 2π/ n 0 κ days for P2 and 5300 days for P1.

46 Deviation from Kepler s third law

47 Numerical Orbit Integrations Size estimates from brightness: If albedo is high and Charon like (0.35), diameter of P1 ~ 60 km. If albedo is low and comet like (0.04), diameter of P1 ~ 170 km. P2 is ~ 20% smaller.

48 Vairation in orbital radius of P2 is dominated by forced oscillations. No evidence that P2 has any significant epicyclic ecc. Orbit of P1 has significant epicyclic ecc. Small periodic variations in e 2 (400 days) and e 1 (450 days).

49 Long term prograde precession of periapse in agreement with analytic result. Short term periodic variations on the same timescales as ecc. Timescales are the circulation periods of θ 2 = 2 λ 2 3 λ 1 + ϖ 2 and θ 1 = 2 λ 2 3 λ 1 + ϖ 1.

50 If masses do not exceed about 1/2 the low albedo ones, amplitudes of short term variations increase for both P2 and P1 with increasing masses. Long term prograde precessions of both ϖ 2 and ϖ 1.

51 For low albedo masses, smaller variation in e 1 but retrograde precession of ϖ 1 with a period of only 500 days.

52 θ 2 = 2 λ 2 3 λ 1 + ϖ 2 circulates, but θ 1 = 2 λ 2 3 λ 1 + ϖ 1 is in resonance and librates about 180.

53 Since existing data can be reasonably fitted by unperturbed Keplerian orbits, they may already be inconsistent with masses of P2 and P1 near the upper end of the ranges allowed by albedo uncertainties. Also produce variation in Charon s ecc. significantly larger than the best fit 0.0 ±

54 Conclusions: Pluto Satellites Orbits of P2 and P1 significantly non Keplerian due to large mass ratio of Charon Pluto proximity of P2 and P1 to 3:2 commensurability Deviation from Kepler s third law already detected. Effects of proximity to 3:2 commensurability increase with increasing masses for masses within the ranges allowed by the albedo uncertainties. Observations that sample the orbits of P2 and P1 well on the day timescales should provide strong constraints on masses of P2 and P1 in the near future.

Extra-solar massive planets with small semi-major axes?

Extra-solar massive planets with small semi-major axes? Monografías de la Real Academia de Ciencias de Zaragoza. 25: 115 120, (2004). Extra-solar massive planets with small semi-major axes? S. Fernández, D. Giuliodori and M. A. Nicotra Observatorio Astronómico.

More information

A Dynamical Analysis of the 47 UMa Planetary System 1

A Dynamical Analysis of the 47 UMa Planetary System 1 A Dynamical Analysis of the 47 UMa Planetary System 1 Gregory Laughlin 1,2,JohnChambers 2,DebraFischer 3 Received ; accepted Submitted to ApJ: 12, Nov. 2001 1 Department of Astronomy, UCO/Lick Observatory,

More information

ASTR 405: Exoplanetary Science. Stephen Kane

ASTR 405: Exoplanetary Science. Stephen Kane ASTR 405: Exoplanetary Science Stephen Kane Transiting planets discovered via radial velocity HD 209458 b HD 149026 b HD 189733 b GJ 436 b 55 Cancri e GJ 3470 b HD 17156 b (P = 21 days) HD 80606 b (P =

More information

Planetesimal Dynamics Formation of Terrestrial Planets from Planetesimals

Planetesimal Dynamics Formation of Terrestrial Planets from Planetesimals Planetesimal Dynamics Formation of Terrestrial Planets from Planetesimals Protoplanetary disk Gas/Dust Planetesimals...... 10 6 yr 10 5-6 yr Protoplanets 10 7-8 yr Terrestrial planets Eiichiro Kokubo National

More information

Orbital Dynamics with Maple (sll --- v1.0, February 2012)

Orbital Dynamics with Maple (sll --- v1.0, February 2012) Orbital Dynamics with Maple (sll --- v1.0, February 2012) Kepler s Laws of Orbital Motion Orbital theory is one of the great triumphs mathematical astronomy. The first understanding of orbits was published

More information

DYNAMICS OF GALAXIES

DYNAMICS OF GALAXIES DYNAMICS OF GALAXIES 2. and stellar orbits Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Winter 2008/9 and stellar orbits Contents Range of timescales Two-body

More information

The long-term stability of planetary systems

The long-term stability of planetary systems The long-term stability of planetary systems Long-term stability of planetary systems The problem: A point mass is surrounded by N > 1 much smaller masses on nearly circular, nearly coplanar orbits. Is

More information

Orbital Mechanics and Space Geometry

Orbital Mechanics and Space Geometry Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit

More information

Census of Exoplanets (w/ Doppler observations) NASA

Census of Exoplanets (w/ Doppler observations) NASA Planetary Dynamics in the Kepler Era Eric B. Ford UF Frontiers September 2, 2011 w/ results from UF students/postdocs (Althea Moorhead, Robert Morehead, Benjamin Nelson, Matthew Payne), Kepler Follow-Up

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Impact of Multi-Planet Systems on Exoplanet Searches

Impact of Multi-Planet Systems on Exoplanet Searches Impact of Multi-Planet Systems on Exoplanet Searches Eric B. Ford University of Florida Towards Other Earths: Perspectives and Limitations in the ELT Era Porto, Portugal October 21, 2009 Multi-Planet Systems

More information

Binary Stars. Kepler s Laws of Orbital Motion

Binary Stars. Kepler s Laws of Orbital Motion Binary Stars Kepler s Laws of Orbital Motion Kepler s Three Laws of orbital motion result from the solution to the equation of motion for bodies moving under the influence of a central 1/r 2 force gravity.

More information

Orbital Mechanics. Orbital Mechanics. Principles of Space Systems Design. 2001 David L. Akin - All rights reserved

Orbital Mechanics. Orbital Mechanics. Principles of Space Systems Design. 2001 David L. Akin - All rights reserved Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time and flight path angle as a function of orbital position Relative orbital

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers

More information

Explorations of the Outer Solar System. B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics

Explorations of the Outer Solar System. B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics The Known Solar System How big is the solar system? a tidal R 0 M Sun M Galaxy 1/3 200,000AU How big is

More information

A STUDY OF THE ORBITAL DYNAMICS OF THE ASTEROID 2001 SN263.

A STUDY OF THE ORBITAL DYNAMICS OF THE ASTEROID 2001 SN263. O.C.Winter,2, R.A.N.Araujo, A.F.B.A.Prado, A.Sukhanov INPE- National Institute for Space Research, São José dos Campos,Brazil. 2 Sao Paulo State University, Guaratinguetá, Brazil. Abstract: The asteroid

More information

The dynamical structure of the Solar System

The dynamical structure of the Solar System The dynamical structure of the Solar System Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015 8. Solar System: Organisation Lecture overview:

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

From Aristotle to Newton

From Aristotle to Newton From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers

More information

Gravitational instabilities in protostellar discs and the formation of planetesimals

Gravitational instabilities in protostellar discs and the formation of planetesimals Gravitational instabilities in protostellar discs and the formation of planetesimals Giuseppe Lodato - Università degli Studi di Milano 17 February 2011 - Bologna Gravitational instabilities in protostellar

More information

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00 Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

More information

Orbital Dynamics. Orbital Dynamics 1/29/15

Orbital Dynamics. Orbital Dynamics 1/29/15 Orbital Dynamics Orbital Dynamics 1/29/15 Announcements Reading for next class Chapter 5: Sections 5.1-5.4 Homework #2 due next class (Tuesday, Feb. 3) Project #1 topic ideas due next Tuesday (Feb. 3)

More information

Planetary Orbit Simulator Student Guide

Planetary Orbit Simulator Student Guide Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.

More information

Debris disks at high resolution. Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge

Debris disks at high resolution. Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge Debris disks at high resolution Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge Debris disk overview Debris disks are remnants of planet formation, planetesimals which failed to grow into planets;

More information

Penn State University Physics 211 ORBITAL MECHANICS 1

Penn State University Physics 211 ORBITAL MECHANICS 1 ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

TRANSITING EXOPLANETS

TRANSITING EXOPLANETS TRANSITING EXOPLANETS Introduction 11 Chapter 1 Our Solar System from afar 13 Introduction 13 1.1 Direct imaging 20 1.1.1 Coronagraphy 24 1.1.2 Angular difference imaging 25 1.2 Astrometry 26 1.3 Radial

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 6. Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Course Outline THEMATIC UNIT 1: ORBITAL DYNAMICS Lecture 02: The Two-Body Problem Lecture 03:

More information

Orbital Dynamics: Formulary

Orbital Dynamics: Formulary Orbital Dynamics: Formulary 1 Introduction Prof. Dr. D. Stoffer Department of Mathematics, ETH Zurich Newton s law of motion: The net force on an object is equal to the mass of the object multiplied by

More information

arxiv:astro-ph/0101553v1 31 Jan 2001

arxiv:astro-ph/0101553v1 31 Jan 2001 Evidence for Large Stellar Disks in Elliptical Galaxies. Andreas Burkert and Thorsten Naab Max-Planck-Institut für Astronomie, D-69242 Heidelberg, Germany arxiv:astro-ph/0101553v1 31 Jan 2001 Abstract.

More information

Forward: Final Version 2007 January 31. Forward to the University of Arizona Kuiper Belt Book

Forward: Final Version 2007 January 31. Forward to the University of Arizona Kuiper Belt Book Forward: Final Version 2007 January 31 Forward to the University of Arizona Kuiper Belt Book Only rarely are we, as scientists and as people, able to witness a whole new research tree grow and blossom

More information

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Solar Nebula Theory. Basic properties of the Solar System that need to be explained: Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the

More information

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Lecture 5: Satellite Orbits Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

PLANETARY RING DYNAMICS

PLANETARY RING DYNAMICS PLANETARY RING DYNAMICS Matthew Hedman Cornell University, Ithaca, New York, U.S.A. Keywords: celestial mechanics, disks, dust, orbits, perturbations, planets, resonances, rings, solar system dynamics

More information

ON THE SEARCH FOR TRANSITS OF THE PLANETS ORBITING GLIESE 876

ON THE SEARCH FOR TRANSITS OF THE PLANETS ORBITING GLIESE 876 The Astrophysical Journal, 653:700Y707, 2006 December 10 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. ON THE SEARCH FOR TRANSITS OF THE PLANETS ORBITING GLIESE 876

More information

Tidal Forces and their Effects in the Solar System

Tidal Forces and their Effects in the Solar System Tidal Forces and their Effects in the Solar System Richard McDonald September 10, 2005 Introduction For most residents of Earth, tides are synonymous with the daily rise and fall of sea levels, and there

More information

Planet Detection Techniques and Results (outline of lectures)

Planet Detection Techniques and Results (outline of lectures) Planet Detection Techniques and Results (outline of lectures) These notes are meant to be read in conjunction with the lecture presentation. A pdf of the powerpoint presentation containing all the illustrations

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Dynamics of Celestial Bodies, 103-107 PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY

Dynamics of Celestial Bodies, 103-107 PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY Dynamics of Celestial Bodies, 103-107 Contributed paper PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY J. DUFEY 1, N. RAMBAUX 1,2, B. NOYELLES 1,2 and A. LEMAITRE 1 1 University of Namur, Rempart de

More information

Supplementary Material

Supplementary Material Supplementary Material Contents 1. Alternative designations, celestial coordinates and apparent magnitudes 2. Stellar properties 3. Data preparation and transit modeling 4. Kepler data validation 5. Follow

More information

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

More information

Pluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 14-5)

Pluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 14-5) 14b. Pluto, Kuiper Belt & Oort Cloud Pluto Pluto s moons The Kuiper Belt Resonant Kuiper Belt objects Classical Kuiper Belt objects Pluto Data: Numbers Diameter: 2,290.km 0.18. Earth Mass: 1.0. 10 22 kg

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

How Do Galeries Form?

How Do Galeries Form? 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-1 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-2 Galaxy Formation Leading questions for today How do

More information

L3: The formation of the Solar System

L3: The formation of the Solar System credit: NASA L3: The formation of the Solar System UCL Certificate of astronomy Dr. Ingo Waldmann A stable home The presence of life forms elsewhere in the Universe requires a stable environment where

More information

Very early collisional evolution in the asteroid belt

Very early collisional evolution in the asteroid belt Earth Planets Space, 53, 1093 1097, 2001 Very early collisional evolution in the asteroid belt Stuart J. Weidenschilling 1, Donald R. Davis 1, and Francesco Marzari 2 1 Planetary Science Institute, 620

More information

Lecture 19: Planet Formation I. Clues from the Solar System

Lecture 19: Planet Formation I. Clues from the Solar System Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

QUANTIFYING ORBITAL MIGRATION FROM EXOPLANET STATISTICS AND HOST METALLICITIES

QUANTIFYING ORBITAL MIGRATION FROM EXOPLANET STATISTICS AND HOST METALLICITIES The Astrophysical Journal, 630:1107 1113, 2005 September 10 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. QUANTIFYING ORBITAL MIGRATION FROM EXOPLANET STATISTICS AND

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Planets beyond the solar system

Planets beyond the solar system Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

More information

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies Elliptical Galaxies Houjun Mo April 19, 2004 Basic properties of elliptical galaxies Formation of elliptical galaxies Photometric Properties Isophotes of elliptical galaxies are usually fitted by ellipses:

More information

Solution of the Gaussian Transfer Orbit Equations of Motion

Solution of the Gaussian Transfer Orbit Equations of Motion Mechanics and Mechanical Engineering Vol. 15, No. 1 (011) 39 46 c Technical University of Lodz Solution of the Gaussian Transfer Orbit Equations of Motion Osman M. Kamel Astronomy and Space Science Dept.

More information

(Long-Baseline) Interferometric Measurements of Binary Stars

(Long-Baseline) Interferometric Measurements of Binary Stars (Long-Baseline) Interferometric Measurements of Binary Stars A. Boden MSC/Caltech & GSU C. Hummel USNO/ESO G. Torres & D. Latham CfA H. McAlister CHARA/GSU Outline Introduction: Why study binary stars

More information

Astromechanics Two-Body Problem (Cont)

Astromechanics Two-Body Problem (Cont) 5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the

More information

The Kuiper Belt and the Primordial Evolution of the Solar System

The Kuiper Belt and the Primordial Evolution of the Solar System Morbidelli and Brown: Kuiper Belt and Evolution of Solar System 175 The Kuiper Belt and the Primordial Evolution of the Solar System A. Morbidelli Observatoire de la Côte d Azur M. E. Brown California

More information

= = GM. v 1 = Ωa 1 sin i.

= = GM. v 1 = Ωa 1 sin i. 1 Binary Stars Consider a binary composed of two stars of masses M 1 and We define M = M 1 + and µ = M 1 /M If a 1 and a 2 are the mean distances of the stars from the center of mass, then M 1 a 1 = a

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Can Hubble be Moved to the International Space Station? 1

Can Hubble be Moved to the International Space Station? 1 Can Hubble be Moved to the International Space Station? 1 On January 16, NASA Administrator Sean O Keefe informed scientists and engineers at the Goddard Space Flight Center (GSFC) that plans to service

More information

Orbital Dynamics of Planetary Systems. Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University

Orbital Dynamics of Planetary Systems. Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University Orbital Dynamics of Planetary Systems Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University How do planetary systems evolve? Planetary systems evolve due to the exchange of angular

More information

The Sun. Solar radiation (Sun Earth-Relationships) The Sun. The Sun. Our Sun

The Sun. Solar radiation (Sun Earth-Relationships) The Sun. The Sun. Our Sun The Sun Solar Factoids (I) The sun, a medium-size star in the milky way galaxy, consisting of about 300 billion stars. (Sun Earth-Relationships) A gaseous sphere of radius about 695 500 km (about 109 times

More information

Lecture L17 - Orbit Transfers and Interplanetary Trajectories

Lecture L17 - Orbit Transfers and Interplanetary Trajectories S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

More information

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond Chapter 6 Formation of Planetary Systems Our Solar System and Beyond The solar system exhibits clear patterns of composition and motion. Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma)

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

The Scattered Disk: Origins, Dynamics and End States

The Scattered Disk: Origins, Dynamics and End States The Scattered Disk: Origins, Dynamics and End States Rodney S. Gomes Observatório Nacional, Rua General José Cristino 77, CEP 921-, Rio de Janeiro, RJ, Brazil Julio A. Fernández, Tabaré Gallardo Departamento

More information

RETURN TO THE MOON. Lesson Plan

RETURN TO THE MOON. Lesson Plan RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 9-12 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 2-4 students Preparation time: 1 hour

More information

Uniform Modeling of KOIs

Uniform Modeling of KOIs Uniform Modeling of KOIs MCMC Data Release Notes KSCI-19084-002 Jason F. Rowe and Susan E. Thompson 4 June 2015 NASA Ames Research Center Moffett Field, CA 94035 Prepared by: Date 6/04/15 Jason Rowe, Transit

More information

ADVANCED TOPICS IN ASTRODYNAMICS GRAVITATIONAL ASSISTED TRAJECTORIES

ADVANCED TOPICS IN ASTRODYNAMICS GRAVITATIONAL ASSISTED TRAJECTORIES ADVANCED TOPICS IN ASTRODYNAMICS SUMMER COURSE BARCELONA, JULY 2004 NOTES FOR THE GRAVITATIONAL ASSISTED TRAJECTORIES LECTURES E. Barrabés, G. Gómez and J. Rodríguez-Canabal Contents 1 Introduction 3 1.1

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

What Can We Learn From Simulations of Tilted Black Hole Accretion Disks?

What Can We Learn From Simulations of Tilted Black Hole Accretion Disks? What Can We Learn From Simulations of Tilted Black Hole? Dr. P. Chris Fragile College of Charleston, SC Collaborators: Omer Blaes (UCSB), Ken Henisey (UCSB), Bárbara Ferreira (Cambridge), Chris Done (Durham),

More information

Notes 1: Introduction to the Planets and other solar system objects. 1.1 Introduction

Notes 1: Introduction to the Planets and other solar system objects. 1.1 Introduction Notes 1: Introduction to the Planets and other solar system objects 1.1 Introduction The study of planets could be rather mundane if one were to go from one planet to the next and describe them each in

More information

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great. Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Mission Spacecraft and Operations Overview MAVEN Science Community Workshop December 2, 2012

Mission Spacecraft and Operations Overview MAVEN Science Community Workshop December 2, 2012 Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Mission Spacecraft and Operations Overview MAVEN Science Community Workshop December 2, 2012 Chris Waters Spacecraft Design Lead Lockheed Martin MAVEN

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

Debris Disk Imaging with WFIRST-AFTA. Geoff Bryden Jet Propulsion Laboratory, California Institute of Technology

Debris Disk Imaging with WFIRST-AFTA. Geoff Bryden Jet Propulsion Laboratory, California Institute of Technology Debris Disk Imaging with WFIRST-AFTA Geoff Bryden Jet Propulsion Laboratory, California Institute of Technology What & Why What are debris disks? Remnants of planet formation Direct: Second-generation

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

Meteors and their streams Seminar

Meteors and their streams Seminar University of Ljubljana Faculty of Mathematics and Physics Meteors and their streams Seminar Figure 1: Leonid meteor storm in 001. [6] Author: Aleš Česen Adviser: prof. Tomaž Zwitter Kranj, October 007

More information

SUPPLEMENT 2. ESTIMATING THE EPOCHS OF THE GCC AND GA

SUPPLEMENT 2. ESTIMATING THE EPOCHS OF THE GCC AND GA Crucifying the Earth on the Galactic Cross. upplement 2 1 UPPLEMENT 2. ETIMATING THE EPOCH OF THE GCC AND GA 2.1. OLAR YTEM AND GALACTIC PARAMETER Coordinate ystems. In the Equatorial and al coordinate

More information

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer Recent Solar System science with the IRAM Plateau de Bure interferometer J. Boissier (Institut de radioastronomie millimétrique) Contact: boissier@iram.fr Outline Planet moons Io Titan Planets Mars Comets

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

More information

RESONANCE DYNAMICS IN THE KUIPER BELT

RESONANCE DYNAMICS IN THE KUIPER BELT ARTICLE DE FOND RESONANCE DYNAMICS IN THE KUIPER BELT BY BRETT GLADMAN AND J.J. KAVELAARS Celestial mechanics is the queen of physics, being the longest-studied quantitative subject. The desire to predict

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun) Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Section 2. Satellite Orbits

Section 2. Satellite Orbits Section 2. Satellite Orbits References Kidder and Vonder Haar: chapter 2 Stephens: chapter 1, pp. 25-30 Rees: chapter 9, pp. 174-192 In order to understand satellites and the remote sounding data obtained

More information

Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3

More information

arxiv:1605.06769v1 [astro-ph.ep] 22 May 2016

arxiv:1605.06769v1 [astro-ph.ep] 22 May 2016 The impact of secular resonances on habitable zones in circumstellar planetary systems of known binary stars arxiv:1605.06769v1 [astro-ph.ep] 22 May 2016 Ákos Bazsó Institute for Astrophysics, University

More information

Celestial mechanics: The perturbed Kepler problem.

Celestial mechanics: The perturbed Kepler problem. Celestial mechanics: The perturbed Kepler problem. László Árpád Gergely1,2 1 Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720, Hungary 2 Department of Experimental

More information

Physics Competitions Vol 13 No 2 2011 & Vol.14 No 1 2012. A few good orbits. 400 088. # Corresponding author: anikets@hbcse.tifr.res.

Physics Competitions Vol 13 No 2 2011 & Vol.14 No 1 2012. A few good orbits. 400 088. # Corresponding author: anikets@hbcse.tifr.res. A few good orbits Chiraag Juvekar 1, Mehul Jain 1 and Aniket Sule 2,# 1 Indian Institute of Technology (Bombay), Mumbai, Maharashtra, India - 400 076. 2 Homi Bhabha Centre for Science Education (HBCSE).

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Gravitational waves from neutron stars binaries: accuracy and tidal effects in the late inspiral S. Bernuzzi TPI-PAF FSU Jena / SFB-TR7

Gravitational waves from neutron stars binaries: accuracy and tidal effects in the late inspiral S. Bernuzzi TPI-PAF FSU Jena / SFB-TR7 Gravitational waves from neutron stars binaries: accuracy and tidal effects in the late inspiral S. Bernuzzi TPI-PAF FSU Jena / SFB-TR7 M. Thierfelder, SB, & B.Bruegmann, PRD 84 044012 (2011) SB, MT, &

More information