DNS Big Data
|
|
|
- Brittany McCoy
- 10 years ago
- Views:
Transcription
1 Klik om de s+jl te bewerken Klik om de models+jlen te bewerken! Tweede niveau! Derde niveau! Vierde niveau DNS Big Data Vijfde niveau DNS- OARC Fall 2015 Workshop October 4th 2015 Maarten Wullink, SIDN Wie zijn wij? Mijlpalen Het huidige internet Missie - Visie Diensten Referen@es SamenvaJng 1
2 SIDN Domain name registry for.nl cctld > 5,6 million domain names 2,45 million domain names secured with DNSSEC SIDN Labs is the R&D team of SIDN
3 DNS > 3.1 million resolvers > 1.3 billion query's daily > 300 GB of PCAP data daily
4 ENTRADA ENhanced Top- Level Domain Resilience through Advanced Data Analysis Goal: data- driven improved security & stability of.nl Problem: for analyzing network data do not work well with large datasets and have limited Main requirement: high- performance, near data warehouse Approach: avoid expensive pcap analysis: Convert pcap data to a performance- op@mized format (key) Perform analysis with tools/engines that leverage that
5 Requirements SQL support Scalability High performance Capacity for >1 year of DNS data Extensibility Stability Don t spend too much money!
6 Query Engine Engines galore! Evaluated SQL and NoSQL soluions SQL (PostgreSQL) MongoDB Cassandra Hadoop (HBASE + Apache Phoenix or Hive) SQL on Hadoop (HDFS + Impala + Parquet)
7 SQL on Hadoop Best fit for our requirements Hadoop Node N IMPALA Hadoop Node N+1 IMPALA Hadoop Node N+2 IMPALA PARQUET PARQUET PARQUET HDFS
8 HDFS Distributed file system for storing large volumes of data High availability through of data blocks Scalable to hundreds of PB s and thousands of servers
9 Impala query engine MPP (massively parallel processing) Inspired by Google Dremel paper Provides low latency and high concurrency for queries on Hadoop Excellent performance when compared to other Hadoop based query engines.
10 Impala (2) Data formats Text Hadoop formats Apache Avro Apache Parquet Interfaces Web- based GUI Command line (impala- shell) Python (Impyla) JDBC
11 Apache Parquet Why not just use the PCAP files? Reading (compressed) PCAP data is just too slow engines cannot read PCAP files Columnar storage format data! row oriented! column oriented!
12 Apache Parquet (2) Columnar storage allows for efficient encoding/compression encoding schemes support for Snappy compression data (e.g. by year, month, day and server) pruning allows Impala to skip data we are not interested in Other engines such as Apache Spark can use the same Parquet data.
13 ENTRADA Architecture DNS big data system Goal: develop and services that further enhance the security and stability of.nl, the DNS, and the Internet at large ENTRADA main components and services Planorm Data sources Privacy framework
14 ENTRADA Privacy Framework Legal and organisational ENTRADA data platform (technical) R&D licence ENTRADA privacy framework PEP- U Security and stability services and dashboards Adjustments Template Author (Application Developer) Draft Policy Privacy Board Policy PEP- A PEP- S PEP- C Data analysis algorithms Database queries Storage DNS packets (PCAP) Collection.nl name servers DNS queries and responses Resolvers Download paper: hnp://goo.gl/gvsfzq Policy elements: Purpose Data that is used Filters on the data Reten@on period Access to the data Type of applica@on (Research vs. Produc@on)
15 Cluster Design nano sized I II III management node data nodes data nodes 2Gb/s network
16 Hardware Management node! HP ProLiant DL380 Xeon 1.9 GHz 12 core CPU 64GB RAM 3 TB storage Data node! HP ProLiant DL380 Xeon 1.9 GHz 12 core CPU 64GB RAM 6 TB storage Scaling! Ver@cal by adding more resources Horizontal by adding more data nodes
17 Workflow name server PCAP staging PCAP decode Join Filter Hadoop Impala Analyst Enrich Parquet Monitoring Metrics Import Query data available for analysis within 10 minutes
18 Performance Example query, count # ipv4 queries per day. select concat_ws( -,day,month,year), count(1) from dns.queries where ipv=4 group by concat_ws( -,day,month,year) Query 1 Year of data is 2.2TB Parquet ~ 52TB of PCAP
19 ENTRADA Status Name server feeds Queries per day Daily PCAP volume(gzipped) Daily Parquet volume Months Total # queries stored Total Parquet volume HDFS (3x replica@on) Cluster capacity 1 ~150M ~33GB ~6GB 18 > 71B > 3TB > 9TB ~150B- 200B tuples
20 Use Cases Focussed on increasing the security and stability of.nl Visualize DNS paxerns (visualize traffic paxerns for phishing domain names) Detect botnet Phishing (stats.sidnlabs.nl) research with Dutch support for DNS operators
21 Example DNS security scoreboard Resolver
22 DNS Security Dcoreboard Goal: Visualize DNS paxerns for malicious How: Combine external phishing feeds with DNS data
23 Architecture Security feed I new event Security feed II new event Hadoop Event Analyzer save enriched event PostgreSQL REST API Web UI retrieve event data
24 Traffic
25 Resolver (RESREP) Goal: Try to detect malicious by assigning scores to resolvers How: resolver behaviour
26 RESREP Concept ISP Resolvers.nl Registry DNS.nl Malicious Spam- runs Botnets like Cutwail DNS- axacks DNS and responses
27 RESREP Architecture Root operator.nl Privacy Board ISP network $ RESREP Privacy Policy Resolvers & RESREP service # " % "% ENTRADA Planorm AbuseHUB Abusedesk ) ' User * HTTP ( Child operator (example.nl)
28 Conclusions Technical: Hadoop HDFS + Parquet + Impala is a winning combina@on! Contribu@ons: Research by SIDN Labs and universi@es Iden@fied malicious domain names and botnets External data feed to the Abuse Informa@on Exchange Insight into DNS query data
29 Future Work Combine data from.nl name server with scans of the complete.nl zone and ISP data. Get data from more name servers and resolvers Expand Open Data program
30 and Feedback Maarten Wullink Senior Research hxps://stats.sidnlabs.nl
.nl ENTRADA. CENTR-tech 33. November 2015 Marco Davids, SIDN Labs. Klik om de s+jl te bewerken
Klik om de s+jl te bewerken Klik om de models+jlen te bewerken Tweede niveau Derde niveau Vierde niveau.nl ENTRADA Vijfde niveau CENTR-tech 33 November 2015 Marco Davids, SIDN Labs Wie zijn wij? Mijlpalen
TLD Data Analysis. ICANN Tech Day, Dublin. October 19th 2015 Maarten Wullink, SIDN. Klik om de s+jl te bewerken
Klik om de s+jl te bewerken Klik om de models+jlen te bewerken Tweede niveau Derde niveau Vierde niveau TLD Data Analysis Vijfde niveau ICANN Tech Day, Dublin October 19th 2015 Maarten Wullink, SIDN Wie
Big data security on.nl: infrastructure and one application
Big data security on.nl: infrastructure and one application Giovane C. M. Moura, Maarten Wullink, Moritz Mueller, and Cristian Hesselman SIDN Labs [email protected] IEPG Meeting IETF 94 Yokohama,
Using RDBMS, NoSQL or Hadoop?
Using RDBMS, NoSQL or Hadoop? DOAG Conference 2015 Jean- Pierre Dijcks Big Data Product Management Server Technologies Copyright 2014 Oracle and/or its affiliates. All rights reserved. Data Ingest 2 Ingest
A Privacy framework for DNS big data. November 28, 2014 Jelte Jansen
A Privacy framework for DNS big data November 28, 2014 Jelte Jansen SIDN.nl (Registry voor Nederland) 5.5M domain names, >1.600 registrars > 1.300.000.000 DNS queries per day Private foundation with public
Performance Management in Big Data Applica6ons. Michael Kopp, Technology Strategist @mikopp
Performance Management in Big Data Applica6ons Michael Kopp, Technology Strategist NoSQL: High Volume/Low Latency DBs Web Java Key Challenges 1) Even Distribu6on 2) Correct Schema and Access paperns 3)
ENTRADA: Enabling DNS Big Data Applications
ENTRADA: Enabling DNS Big Data Applications Maarten Wullink - SIDN APWG ecrime 2016 June 2 nd 2016 - Toronto What if You have many TB s of network data? And you want to: 1. Store it efficiently 2. Query
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Malicious domains: Automatic Detection with DNS traffic analysis
Malicious domains: Automatic Detection with DNS traffic analysis Giovane C. M. Moura, Maarten Wullink, Moritz Müller, and Cristian Hesselman SIDN Labs {first.lastname}@sidn.nl Network Machine Learning
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Decoding DNS data. Using DNS traffic analysis to identify cyber security threats, server misconfigurations and software bugs
Decoding DNS data Using DNS traffic analysis to identify cyber security threats, server misconfigurations and software bugs The Domain Name System (DNS) is a core component of the Internet infrastructure,
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
SQream Technologies Ltd - Confiden7al
SQream Technologies Ltd - Confiden7al 1 Ge#ng Big Data Done On a GPU- Based Database Ori Netzer VP Product 26- Mar- 14 Analy7cs Performance - 3 TB, 18 Billion records SQream Database 400x More Cost Efficient!
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
A very short talk about Apache Kylin Business Intelligence meets Big Data. Fabian Wilckens EMEA Solutions Architect
A very short talk about Apache Kylin Business Intelligence meets Big Data Fabian Wilckens EMEA Solutions Architect 1 The challenge today 2 Very quickly: OLAP Online Analytical Processing How many beers
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
Big Data. The Big Picture. Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas
Big Data The Big Picture Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas What is Big Data? Big Data gets its name because that s what it is data that
HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics
HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics ESSENTIALS EMC ISILON Use the industry's first and only scale-out NAS solution with native Hadoop
Data Management in the Cloud: Limitations and Opportunities. Annies Ductan
Data Management in the Cloud: Limitations and Opportunities Annies Ductan Discussion Outline: Introduc)on Overview Vision of Cloud Compu8ng Managing Data in The Cloud Cloud Characteris8cs Data Management
Texas Digital Government Summit. Data Analysis Structured vs. Unstructured Data. Presented By: Dave Larson
Texas Digital Government Summit Data Analysis Structured vs. Unstructured Data Presented By: Dave Larson Speaker Bio Dave Larson Solu6ons Architect with Freeit Data Solu6ons In the IT industry for over
Big Data Use Case. How Rackspace is using Private Cloud for Big Data. Bryan Thompson. May 8th, 2013
Big Data Use Case How Rackspace is using Private Cloud for Big Data Bryan Thompson May 8th, 2013 Our Big Data Problem Consolidate all monitoring data for reporting and analytical purposes. Every device
Cost-Effective Business Intelligence with Red Hat and Open Source
Cost-Effective Business Intelligence with Red Hat and Open Source Sherman Wood Director, Business Intelligence, Jaspersoft September 3, 2009 1 Agenda Introductions Quick survey What is BI?: reporting,
Ibis: Scaling Python Analy=cs on Hadoop and Impala
Ibis: Scaling Python Analy=cs on Hadoop and Impala Wes McKinney, Budapest BI Forum 2015-10- 14 @wesmckinn 1 Me R&D at Cloudera Serial creator of structured data tools / user interfaces Mathema=cian MIT
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet Ema Iancuta [email protected] Radu Chilom [email protected] Buzzwords Berlin - 2015 Big data analytics / machine
The 3 questions to ask yourself about BIG DATA
The 3 questions to ask yourself about BIG DATA Do you have a big data problem? Companies looking to tackle big data problems are embarking on a journey that is full of hype, buzz, confusion, and misinformation.
A Performance Analysis of Distributed Indexing using Terrier
A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search
SQL Server 2012 PDW. Ryan Simpson Technical Solution Professional PDW Microsoft. Microsoft SQL Server 2012 Parallel Data Warehouse
SQL Server 2012 PDW Ryan Simpson Technical Solution Professional PDW Microsoft Microsoft SQL Server 2012 Parallel Data Warehouse Massively Parallel Processing Platform Delivers Big Data HDFS Delivers Scale
Big Data Analytics Platform @ Nokia
Big Data Analytics Platform @ Nokia 1 Selecting the Right Tool for the Right Workload Yekesa Kosuru Nokia Location & Commerce Strata + Hadoop World NY - Oct 25, 2012 Agenda Big Data Analytics Platform
Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth
MAKING BIG DATA COME ALIVE Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth Steve Gonzales, Principal Manager [email protected]
Parquet. Columnar storage for the people
Parquet Columnar storage for the people Julien Le Dem @J_ Processing tools lead, analytics infrastructure at Twitter Nong Li [email protected] Software engineer, Cloudera Impala Outline Context from various
Hortonworks & SAS. Analytics everywhere. Page 1. Hortonworks Inc. 2011 2014. All Rights Reserved
Hortonworks & SAS Analytics everywhere. Page 1 A change in focus. A shift in Advertising From mass branding A shift in Financial Services From Educated Investing A shift in Healthcare From mass treatment
An Introduc@on to Big Data, Apache Hadoop, and Cloudera
An Introduc@on to Big Data, Apache Hadoop, and Cloudera Ian Wrigley, Curriculum Manager, Cloudera 1 The Mo@va@on for Hadoop 2 Tradi@onal Large- Scale Computa@on Tradi*onally, computa*on has been processor-
Amazon Redshift & Amazon DynamoDB Michael Hanisch, Amazon Web Services Erez Hadas-Sonnenschein, clipkit GmbH Witali Stohler, clipkit GmbH 2014-05-15
Amazon Redshift & Amazon DynamoDB Michael Hanisch, Amazon Web Services Erez Hadas-Sonnenschein, clipkit GmbH Witali Stohler, clipkit GmbH 2014-05-15 2014 Amazon.com, Inc. and its affiliates. All rights
Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA. by Christian Tzolov @christzolov
Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA by Christian Tzolov @christzolov Whoami Christian Tzolov Technical Architect at Pivotal, BigData, Hadoop, SpringXD,
Apache Hadoop: The Pla/orm for Big Data. Amr Awadallah CTO, Founder, Cloudera, Inc. [email protected], twicer: @awadallah
Apache Hadoop: The Pla/orm for Big Data Amr Awadallah CTO, Founder, Cloudera, Inc. [email protected], twicer: @awadallah 1 The Problems with Current Data Systems BI Reports + Interac7ve Apps RDBMS (aggregated
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Hunk & Elas=c MapReduce: Big Data Analy=cs on AWS
Copyright 2014 Splunk Inc. Hunk & Elas=c MapReduce: Big Data Analy=cs on AWS Dritan Bi=ncka BD Solu=ons Architecture Disclaimer During the course of this presenta=on, we may make forward looking statements
Native Connectivity to Big Data Sources in MSTR 10
Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Database Scalability and Oracle 12c
Database Scalability and Oracle 12c Marcelle Kratochvil CTO Piction ACE Director All Data/Any Data [email protected] Warning I will be covering topics and saying things that will cause a rethink in
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES Vincent Garonne, Mario Lassnig, Martin Barisits, Thomas Beermann, Ralph Vigne, Cedric Serfon [email protected] [email protected] XLDB
NERSC Data Efforts Update Prabhat Data and Analytics Group Lead February 23, 2015
NERSC Data Efforts Update Prabhat Data and Analytics Group Lead February 23, 2015-1 - A little bit about myself Computer Scien.st Brown, IIT Delhi Real- 3me Graphics, Virtual Reality, HCI Computa3onal
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
Introduc8on to Apache Spark
Introduc8on to Apache Spark Jordan Volz, Systems Engineer @ Cloudera 1 Analyzing Data on Large Data Sets Python, R, etc. are popular tools among data scien8sts/analysts, sta8s8cians, etc. Why are these
Luncheon Webinar Series May 13, 2013
Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration
Big Data for Investment Research Management
IDT Partners www.idtpartners.com Big Data for Investment Research Management Discover how IDT Partners helps Financial Services, Market Research, and Investment Management firms turn big data into actionable
Linux Clusters Ins.tute: Turning HPC cluster into a Big Data Cluster. A Partnership for an Advanced Compu@ng Environment (PACE) OIT/ART, Georgia Tech
Linux Clusters Ins.tute: Turning HPC cluster into a Big Data Cluster Fang (Cherry) Liu, PhD [email protected] A Partnership for an Advanced Compu@ng Environment (PACE) OIT/ART, Georgia Tech Targets
Data Analytics Infrastructure
Data Analytics Infrastructure Data Science SG Nov 2015 Meetup Le Nguyen The Dat @lenguyenthedat Backgrounds ZALORA Group (2013 2014) o Biggest online fashion retails in South East Asia o Data Infrastructure
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com Legacy ETL platforms & conventional Data Integration approach Unable to meet latency & data throughput demands of Big Data integration challenges Based
Cloudera Impala: A Modern SQL Engine for Hadoop Headline Goes Here
Cloudera Impala: A Modern SQL Engine for Hadoop Headline Goes Here JusIn Erickson Senior Product Manager, Cloudera Speaker Name or Subhead Goes Here May 2013 DO NOT USE PUBLICLY PRIOR TO 10/23/12 Agenda
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
Introduction to Big Data Training
Introduction to Big Data Training The quickest way to be introduce with NOSQL/BIG DATA offerings Learn and experience Big Data Solutions including Hadoop HDFS, Map Reduce, NoSQL DBs: Document Based DB
CitusDB Architecture for Real-Time Big Data
CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing
An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database
An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct
Beyond Web Application Log Analysis using Apache TM Hadoop. A Whitepaper by Orzota, Inc.
Beyond Web Application Log Analysis using Apache TM Hadoop A Whitepaper by Orzota, Inc. 1 Web Applications As more and more software moves to a Software as a Service (SaaS) model, the web application has
Big Data and Market Surveillance. April 28, 2014
Big Data and Market Surveillance April 28, 2014 Copyright 2014 Scila AB. All rights reserved. Scila AB reserves the right to make changes to the information contained herein without prior notice. No part
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014 Ralph Kimball Associates 2014 The Data Warehouse Mission Identify all possible enterprise data assets Select those assets
Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect
Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate
The Internet of Things and Big Data: Intro
The Internet of Things and Big Data: Intro John Berns, Solutions Architect, APAC - MapR Technologies April 22 nd, 2014 1 What This Is; What This Is Not It s not specific to IoT It s not about any specific
Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo
Sensor Network Messaging Service Hive/Hadoop Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo Contents 1 Introduction 2 What & Why Sensor Network
Cisco IT Hadoop Journey
Cisco IT Hadoop Journey Alex Garbarini, IT Engineer, Cisco 2015 MapR Technologies 1 Agenda Hadoop Platform Timeline Key Decisions / Lessons Learnt Data Lake Hadoop s place in IT Data Platforms Use Cases
Unlocking Hadoop for Your Rela4onal DB. Kathleen Ting @kate_ting Technical Account Manager, Cloudera Sqoop PMC Member BigData.
Unlocking Hadoop for Your Rela4onal DB Kathleen Ting @kate_ting Technical Account Manager, Cloudera Sqoop PMC Member BigData.be April 4, 2014 Who Am I? Started 3 yr ago as 1 st Cloudera Support Eng Now
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Presenters: Luke Dougherty & Steve Crabb
Presenters: Luke Dougherty & Steve Crabb About Keylink Keylink Technology is Syncsort s partner for Australia & New Zealand. Our Customers: www.keylink.net.au 2 ETL is THE best use case for Hadoop. ShanH
Stream Deployments in the Real World: Enhance Opera?onal Intelligence Across Applica?on Delivery, IT Ops, Security, and More
Copyright 2015 Splunk Inc. Stream Deployments in the Real World: Enhance Opera?onal Intelligence Across Applica?on Delivery, IT Ops, Security, and More Stela Udovicic Sr. Product Marke?ng Manager Clayton
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
Apache Spark and the future of big data applica5ons. Eric Baldeschwieler
Apache Spark and the future of big data applica5ons Eric Baldeschwieler Who is Eric14? Big data veteran (since 1996) Databricks Tech Advisor Twitter handle: @jeric14 Previously CTO/CEO of Hortonworks Yahoo
Real-Time Data Analytics and Visualization
Real-Time Data Analytics and Visualization Making the leap to BI on Hadoop Predictive Analytics & Business Insights 2015 February 9, 2015 David P. Mariani CEO, AtScale, Inc. THE TRUTH ABOUT DATA We think
Hadoop & SAS Data Loader for Hadoop
Turning Data into Value Hadoop & SAS Data Loader for Hadoop Sebastiaan Schaap Frederik Vandenberghe Agenda What s Hadoop SAS Data management: Traditional In-Database In-Memory The Hadoop analytics lifecycle
Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes
Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes Highly competitive enterprises are increasingly finding ways to maximize and accelerate
How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5
Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark
Collaborative Big Data Analytics. Copyright 2012 EMC Corporation. All rights reserved.
Collaborative Big Data Analytics 1 Big Data Is Less About Size, And More About Freedom TechCrunch!!!!!!!!! Total data: bigger than big data 451 Group Findings: Big Data Is More Extreme Than Volume Gartner!!!!!!!!!!!!!!!
Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016
Big Data Approaches Making Sense of Big Data Ian Crosland Jan 2016 Accelerate Big Data ROI Even firms that are investing in Big Data are still struggling to get the most from it. Make Big Data Accessible
Application Development. A Paradigm Shift
Application Development for the Cloud: A Paradigm Shift Ramesh Rangachar Intelsat t 2012 by Intelsat. t Published by The Aerospace Corporation with permission. New 2007 Template - 1 Motivation for the
BITKOM& NIK - Big Data Wo liegen die Chancen für den Mittelstand?
BITKOM& NIK - Big Data Wo liegen die Chancen für den Mittelstand? The Big Data Buzz big data is a collection of data sets so large and complex that it becomes difficult to process using on-hand database
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
Lecture 10: HBase! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 10: HBase!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics platform. PENTAHO PERFORMANCE ENGINEERING
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP. Eva Andreasson Cloudera
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP Eva Andreasson Cloudera Most FAQ: Super-Quick Overview! The Apache Hadoop Ecosystem a Zoo! Oozie ZooKeeper Hue Impala Solr Hive Pig Mahout HBase MapReduce
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics Platform. Contents Pentaho Scalability and
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Jun Liu, Senior Software Engineer Bianny Bian, Engineering Manager SSG/STO/PAC
Jun Liu, Senior Software Engineer Bianny Bian, Engineering Manager SSG/STO/PAC Agenda Quick Overview of Impala Design Challenges of an Impala Deployment Case Study: Use Simulation-Based Approach to Design
