Texas Digital Government Summit. Data Analysis Structured vs. Unstructured Data. Presented By: Dave Larson
|
|
|
- Emil Roderick Snow
- 10 years ago
- Views:
Transcription
1 Texas Digital Government Summit Data Analysis Structured vs. Unstructured Data Presented By: Dave Larson
2 Speaker Bio Dave Larson Solu6ons Architect with Freeit Data Solu6ons In the IT industry for over 20 years. Specializing in Data and Storage Technologies Worked with IT Manager, SAN technology, ERP Applica6ons, Database Admin, UNIX Admin, Enterprise Architecture, Data Warehousing
3 Data & Informa>on What is Data? Raw, unorganized facts that need to be processed. What is Informa>on? Processed, organized, structured data that is useful. Data is plain facts that is processed, organized, structured or presented into useful informa>on
4 Facts about Data Data is growing at an incredible rate Gartner and IDC state that data is doubling every 18 months Current es6mate is that there is over 4 zesabytes of data in the world If the trend con6nues, by 2020 data will be over 40 zesabytes
5 What is a ZeFabyte? 1 zesabyte = 1 billion terabytes 1,000,000,000,000,000,000,000 bytes 4 zesabytes is equivalent to; 2 Quin6llion jpg images 456 Billion hours of digitally recorded music 1 Trillion HD Digital Movies 166 Billion 32GB ipad s
6 4 ZeFabytes visualized 1 Million 4TB Hard Drives 250 Billion DVD s stacked on top of one another would reach the moon - 3 >mes All data printed on 8 x 10 paper and laid end to end is 210 Trillion Miles or 35.8 Light years All data printed would require 16.4 Trillion Tree s NASA es'mates there is 400 Billion tree s on Earth
7 Imagine what 40 ZeFabytes would look like
8 What is causing Data Explosion? Internet Connec6ng everything to everyone Billions of people to Billions of devices Online Shopping (Amazon, Wal- Mart, ebay, BestBuy) File Sharing (Drop box, Google Drive, icloud, SkyDrive) Social Media Facebook Google+ TwiSer YouTube Store Everything, Delete nothing, mul>ple copies of it all
9 Structured vs. Unstructured Structured informa6on with a degree of organiza6on that is readily searchable and quickly consolidate into facts. Examples: RDMBS, spreadsheet Unstructured informa6on with a lack of structure that is 6me and energy consuming to search and find and consolidate into facts Examples: , documents, images, reports
10 Expansion of data? Structured Data (databases) Produc6on DB, Test DB, Dev DB, Repor6ng DB Mul6ple backups of data Genera6ons of DB backups Replicated copies of DB Every Produc6on database has between 3-12 copies Unstructured Data (Files, media, images) Desktop, Network share, , mobile device, Cloud Copies sent to other people Backup copies
11 Current controls of data expansion Data Compression Data Deduplica6on Data Cloning Data Archiving
12 How to control data growth? Change data management policies Create data reten6on procedures Store data more efficiently Purge data that is no longer needed Backup data less ojen Archive Data Develop more efficient backup policies
13 Analyzing Structured Data (RDBMS) Challenges DB growth impacts data analysis Too much data to analyze Analyze only relevant data (current) Improvements Purge data that is no longer relevant Historical data should be summarized Compress data to store less on disk Improve DB performance with Caching technologies and Flash Storage
14 Improved Analysis of Structured Data Normalize Databases to minimize redundancy & dependency Divide large tables into smaller tables Par66on data Move data into a third normal form (3NF) generally used in a data warehouse U6lize and leverage Business Intelligence applica6ons on Normalized data Remove Source data once Normalized
15 Trends in Structured Data Structured data is gelng too big for tradi6onal RDBMS requiring BIG DATA solu6ons Big Data is handled with applica6ons like Hadoop Big Data is leveraging new technologies such as MongoDB CouchDB Oracle NoSQL Database Apache Cassandra New systems some6mes referred as document- oriented database system or distributed key- value databases
16 What is Big Data? Tradi>onal Data Gigabytes to Terabytes Centralized Structured Stable data model Known complex interrela6onships BIG DATA Petabytes to Exabytes Distributed Semi- Structured and Unstructured Flat schemas Few Complex interrela6onships Real- >me transac6onal, online, low latency data Analy>cal aggregated data from real- 6me feeds or other sources Search suppor6ng data, both external and internal, used for loca6ng desired informa6on and/or objects
17 Technology for Structured Data SSD / Flash Technology All Flash arrays Hybrid Storage arrays SSD / Flash is gelng cheaper, more reliable, & larger capaci6es Incredible performance 10 s to 100 s of thousands of IOPS Inline Compression and/or Deduplica6on Store more data in less space Snapshots = reduced RTO/RPO s and less Cloning = less data consumed for Development and test Energy efficient SSD uses less than ¼ the power as hard drives SSD requires less cooling Hard Drives, how much longer un6l we remember it as fondly as floppy drives, dot- matrix printers, Betamax and 8- track?
18 Unstructured Data Challenges How do you storage Billions of Files? How do you store 100s of TBs or PBs of data? How long does it take to migrate 100 s of TB s or data every 3-5 years No structure to data Legacy File System approach to file organiza6on Resource limita6ons Data has lots of duplica6on How do you find data that isn t organized or searchable? Lack of reten6on policies adds to massive data explosion Data is gelng too big to backup How do you backup PBs of unstructured data?
19 Unstructured Data Current Improvements External search engines (MS Enterprise Search or Google Search appliance) Archive data into cheaper solu6ons Backup data less frequently Implement deduplica6on technologies Purge data using reten6on policies
20 Trends in Unstructured Data Object Storage Trea6ng files as Objects Crea6ng data describing unstructured data Metadata data about data Crea6on date, owner, subject, reten6on period, importance, Leverage Commodity hardware to create clusters to store data Store replicas of objects for data protec6on Store replicas between mul6ple sites for DR / BC Store revisions of data Reten6on can allow for automa6c purging of old data Backup data less frequently if at all.
21 Object Storage
22 Tradi>onal vs.. Object storage
23 Sharing Objects
24 Structure to Unstructured Data Object storage has data to describe the data Object storage is searchable Object storage is shareable Object storage can be stored once Object storage doesn t need to be migrated Object storage doesn t need to be backed up
25 What can you do? Data isn t going away, growth in inevitable Implement energy efficient storage that u6lized data reduc6on technology (compression & deduplica6on) Summarize data into useful informa6on Implement ways to reduce data cluser Implement more efficient methods of storing data Bring structure to unstructured data Archive and purge data over 6me
26 Dave Larson Solu>ons Architect PH: (800) x104 Thank You.
Cloudian The Storage Evolution to the Cloud.. Cloudian Inc. Pre Sales Engineering
Cloudian The Storage Evolution to the Cloud.. Cloudian Inc. Pre Sales Engineering Agenda Industry Trends Cloud Storage Evolu4on of Storage Architectures Storage Connec4vity redefined S3 Cloud Storage Use
Big Data. The Big Picture. Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas
Big Data The Big Picture Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas What is Big Data? Big Data gets its name because that s what it is data that
NextGen Infrastructure for Big DATA Analytics.
NextGen Infrastructure for Big DATA Analytics. So What is Big Data? Data that exceeds the processing capacity of conven4onal database systems. The data is too big, moves too fast, or doesn t fit the structures
Data Management in the Cloud: Limitations and Opportunities. Annies Ductan
Data Management in the Cloud: Limitations and Opportunities Annies Ductan Discussion Outline: Introduc)on Overview Vision of Cloud Compu8ng Managing Data in The Cloud Cloud Characteris8cs Data Management
A Big Data Storage Architecture for the Second Wave David Sunny Sundstrom Principle Product Director, Storage Oracle
A Big Data Storage Architecture for the Second Wave David Sunny Sundstrom Principle Product Director, Storage Oracle Growth in Data Diversity and Usage 1.8 Zettabytes of Data in 2011, 20x Growth by 2020
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
So What s the Big Deal?
So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data
The 3 questions to ask yourself about BIG DATA
The 3 questions to ask yourself about BIG DATA Do you have a big data problem? Companies looking to tackle big data problems are embarking on a journey that is full of hype, buzz, confusion, and misinformation.
Can Flash help you ride the Big Data Wave? Steve Fingerhut Vice President, Marketing Enterprise Storage Solutions Corporation
Can Flash help you ride the Big Data Wave? Steve Fingerhut Vice President, Marketing Enterprise Storage Solutions Corporation Forward-Looking Statements During our meeting today we may make forward-looking
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics
Flash Use Cases Traditional Infrastructure vs Hyperscale
Flash Use Cases Traditional Infrastructure vs Hyperscale Steve Knipple, CTO / VP Engineering Atmosera : Global Hybrid Managed Services Provider Agenda Speaker Perspective The Infrastructure Market Traditional
Big Data Technologies Compared June 2014
Big Data Technologies Compared June 2014 Agenda What is Big Data Big Data Technology Comparison Summary Other Big Data Technologies Questions 2 What is Big Data by Example The SKA Telescope is a new development
Using RDBMS, NoSQL or Hadoop?
Using RDBMS, NoSQL or Hadoop? DOAG Conference 2015 Jean- Pierre Dijcks Big Data Product Management Server Technologies Copyright 2014 Oracle and/or its affiliates. All rights reserved. Data Ingest 2 Ingest
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Neil Stobart Cloudian Inc. CLOUDIAN HYPERSTORE Smart Data Storage
Neil Stobart Cloudian Inc. CLOUDIAN HYPERSTORE Smart Data Storage Storage is changing forever Scale Up / Terabytes Flash host/array Tradi/onal SAN/NAS Scalability / Big Data Object Storage Scale Out /
Analyzing Big Data with Splunk A Cost Effective Storage Architecture and Solution
Analyzing Big Data with Splunk A Cost Effective Storage Architecture and Solution Jonathan Halstuch, COO, RackTop Systems [email protected] Big Data Invasion We hear so much on Big Data and
INTRODUCTION TO CASSANDRA
INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open
Clodoaldo Barrera Chief Technical Strategist IBM System Storage. Making a successful transition to Software Defined Storage
Clodoaldo Barrera Chief Technical Strategist IBM System Storage Making a successful transition to Software Defined Storage Open Server Summit Santa Clara Nov 2014 Data at the core of everything Data is
MaxDeploy Ready. Hyper- Converged Virtualization Solution. With SanDisk Fusion iomemory products
MaxDeploy Ready Hyper- Converged Virtualization Solution With SanDisk Fusion iomemory products MaxDeploy Ready products are configured and tested for support with Maxta software- defined storage and with
Simplifying Storage Operations By David Strom (published 3.15 by VMware) Introduction
Simplifying Storage Operations By David Strom (published 3.15 by VMware) Introduction There are tectonic changes to storage technology that the IT industry hasn t seen for many years. Storage has been
Understanding Object Storage and How to Use It
SWIFTSTACK WHITEPAPER An IT Expert Guide: Understanding Object Storage and How to Use It November 2014 The explosion of unstructured data is creating a groundswell of interest in object storage, certainly
DNS Big Data Analy@cs
Klik om de s+jl te bewerken Klik om de models+jlen te bewerken! Tweede niveau! Derde niveau! Vierde niveau DNS Big Data Analy@cs Vijfde niveau DNS- OARC Fall 2015 Workshop October 4th 2015 Maarten Wullink,
AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW
AGENDA What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story Hadoop PDW Our BIG DATA Roadmap BIG DATA? Volume 59% growth in annual WW information 1.2M Zetabytes (10 21 bytes) this
SCALABLE FILE SHARING AND DATA MANAGEMENT FOR INTERNET OF THINGS
Sean Lee Solution Architect, SDI, IBM Systems SCALABLE FILE SHARING AND DATA MANAGEMENT FOR INTERNET OF THINGS Agenda Converging Technology Forces New Generation Applications Data Management Challenges
Breaking the Storage Array Lifecycle with Cloud Storage
Breaking the Storage Array Lifecycle with Cloud Storage 2011 TwinStrata, Inc. The Storage Array Lifecycle Anyone who purchases storage arrays is familiar with the many advantages of modular storage systems
Arif Goelmhd Goelammohamed Solutions Architect. @agoelammohamed. Hyperconverged Infrastructure: The How-To and Why Now?
Arif Goelmhd Goelammohamed Solutions Architect @agoelammohamed Hyperconverged Infrastructure: The How-To and Why Now? Agenda: 1. SimpliVity Overview 2. The Problem 3. The Solution 4. Demo Simplify IT with
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES AWS GLOBAL INFRASTRUCTURE 10 Regions 25 Availability Zones 51 Edge locations WHAT
Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth
MAKING BIG DATA COME ALIVE Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth Steve Gonzales, Principal Manager [email protected]
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Driving MySQL to Big Data Scale. Thomas Hazel Founder, Chief Scien@st [email protected]
Driving MySQL to Big Data Scale Thomas Hazel Founder, Chief Scien@st [email protected] Millions to Billions to Trillions Agenda Driving MySQL to Big Data Scale Market Trends Hardware Trends Current Computer
Performance Management in Big Data Applica6ons. Michael Kopp, Technology Strategist @mikopp
Performance Management in Big Data Applica6ons Michael Kopp, Technology Strategist NoSQL: High Volume/Low Latency DBs Web Java Key Challenges 1) Even Distribu6on 2) Correct Schema and Access paperns 3)
Big Data Realities Hadoop in the Enterprise Architecture
Big Data Realities Hadoop in the Enterprise Architecture Paul Phillips Director, EMEA, Hortonworks [email protected] +44 (0)777 444 3857 Hortonworks Inc. 2012 Page 1 Agenda The Growth of Enterprise
SOLUTION BRIEF KEY CONSIDERATIONS FOR LONG-TERM, BULK STORAGE
SOLUTION BRIEF KEY CONSIDERATIONS FOR LONG-TERM, BULK STORAGE IT organizations must store exponentially increasing amounts of data for long periods while ensuring its accessibility. The expense of keeping
NoSQL Data Base Basics
NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS
Lecture Data Warehouse Systems
Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores
The Flash-Transformed Financial Data Center. Jean S. Bozman Enterprise Solutions Manager, Enterprise Storage Solutions Corporation August 6, 2014
The Flash-Transformed Financial Data Center Jean S. Bozman Enterprise Solutions Manager, Enterprise Storage Solutions Corporation August 6, 2014 Forward-Looking Statements During our meeting today we will
FLASH ARRAY MARKET TRENDS
1 FLASH ARRAY MARKET TRENDS EHUD ROKACH, CO-FOUNDER, XTREMIO DAVID FLOYER, CTO & CO-FOUNDER, WIKIBON 2 >$1B ANNUALIZED Q4 RUN RATE Achieved in One Year Copyright 2015 2014 EMC Corporation. All rights reserved.
THE SUMMARY. ARKSERIES - pg. 3. ULTRASERIES - pg. 5. EXTREMESERIES - pg. 9
PRODUCT CATALOG THE SUMMARY ARKSERIES - pg. 3 ULTRASERIES - pg. 5 EXTREMESERIES - pg. 9 ARK SERIES THE HIGH DENSITY STORAGE FOR ARCHIVE AND BACKUP Unlimited scalability Painless Disaster Recovery The ARK
Big Data; Old News or New Hype? Marcel den Hartog, June 2012
Big Data; Old News or New Hype? Marcel den Hartog, June 2012 One of the first Big Data projects in 1964 The Ranger series of spacecraft were designed solely to take high-quality pictures of the Moon and
[Hadoop, Storm and Couchbase: Faster Big Data]
[Hadoop, Storm and Couchbase: Faster Big Data] With over 8,500 clients, LivePerson is the global leader in intelligent online customer engagement. With an increasing amount of agent/customer engagements,
BIG DATA CHALLENGES AND PERSPECTIVES
BIG DATA CHALLENGES AND PERSPECTIVES Meenakshi Sharma 1, Keshav Kishore 2 1 Student of Master of Technology, 2 Head of Department, Department of Computer Science and Engineering, A P Goyal Shimla University,
Using Ultra-Large Data Sets in Healthcare New Questions-New Answers
Using Ultra-Large Data Sets in Healthcare New Questions-New Answers David Hartzband, D.Sc.. Director, Technology Research, RCHN Community Health Foundation & Lecturer, Engineering Systems Division Massachusetts
StorReduce Technical White Paper Cloud-based Data Deduplication
StorReduce Technical White Paper Cloud-based Data Deduplication See also at storreduce.com/docs StorReduce Quick Start Guide StorReduce FAQ StorReduce Solution Brief, and StorReduce Blog at storreduce.com/blog
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
An Introduc@on to Big Data, Apache Hadoop, and Cloudera
An Introduc@on to Big Data, Apache Hadoop, and Cloudera Ian Wrigley, Curriculum Manager, Cloudera 1 The Mo@va@on for Hadoop 2 Tradi@onal Large- Scale Computa@on Tradi*onally, computa*on has been processor-
Red Hat Storage Server
Red Hat Storage Server Marcel Hergaarden Solution Architect, Red Hat [email protected] May 23, 2013 Unstoppable, OpenSource Software-based Storage Solution The Foundation for the Modern Hybrid
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Hyper-converged IT drives: - TCO cost savings - data protection - amazing operational excellence
Hyper-converged IT drives: - TCO cost savings - data protection - amazing operational excellence Sebastian Nowicki SimpliVity is one of the biggest innovations in enterprise computing since ware. ~John
Journey to the All-Flash Data Center
Journey to the All-Flash Data Center David Abbott, IT Manager, TripPak SERVICES -- Vaughn Stewart, Chief Technical Evangelist Pure Storage Flash Memory Summit 2014 Santa Clara, CA 1 Introduction A leader
Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1
Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots
Four Orders of Magnitude: Running Large Scale Accumulo Clusters. Aaron Cordova Accumulo Summit, June 2014
Four Orders of Magnitude: Running Large Scale Accumulo Clusters Aaron Cordova Accumulo Summit, June 2014 Scale, Security, Schema Scale to scale 1 - (vt) to change the size of something let s scale the
The Flash Transformed Data Center & the Unlimited Future of Flash John Scaramuzzo Sr. Vice President & General Manager, Enterprise Storage Solutions
The Flash Transformed Data Center & the Unlimited Future of Flash John Scaramuzzo Sr. Vice President & General Manager, Enterprise Storage Solutions Flash Memory Summit 5-7 August 2014 1 Forward-Looking
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
Introduction to NetApp Infinite Volume
Technical Report Introduction to NetApp Infinite Volume Sandra Moulton, Reena Gupta, NetApp April 2013 TR-4037 Summary This document provides an overview of NetApp Infinite Volume, a new innovation in
Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012
Big Data Buzzwords From A to Z By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords Big data is one of the, well, biggest trends in IT today, and it has spawned a whole new generation
Forecast of Big Data Trends. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014
Forecast of Big Data Trends Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014 Big Data transforms Business 2 Data created every minute Source http://mashable.com/2012/06/22/data-created-every-minute/
EMC - XtremIO. All-Flash Array evolution - Much more than high speed. Systems Engineer Team Lead EMC SouthCone. Carlos Marconi.
EMC - XtremIO All-Flash Array evolution - Much more than high speed Carlos Marconi Systems Engineer Team Lead EMC SouthCone August 2015 Evolution of High End Systems and Storage Centralized Single servers
NoSQL for SQL Professionals William McKnight
NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to
Hunk & Elas=c MapReduce: Big Data Analy=cs on AWS
Copyright 2014 Splunk Inc. Hunk & Elas=c MapReduce: Big Data Analy=cs on AWS Dritan Bi=ncka BD Solu=ons Architecture Disclaimer During the course of this presenta=on, we may make forward looking statements
The Rembrandt Group Strategies for BIG DATA 2015-2016
The Rembrandt Group Strategies for BIG DATA 2015-2016 Big Data Interesting applications are data hungry Increased number & variety of sources Realization that delete is not an option The data grows over
Deploying Flash in the Enterprise Choices to Optimize Performance and Cost
White Paper Deploying Flash in the Enterprise Choices to Optimize Performance and Cost Paul Feresten, Mohit Bhatnagar, Manish Agarwal, and Rip Wilson, NetApp April 2013 WP-7182 Executive Summary Flash
EMC BACKUP MEETS BIG DATA
EMC BACKUP MEETS BIG DATA Strategies To Protect Greenplum, Isilon And Teradata Systems 1 Agenda Big Data: Overview, Backup and Recovery EMC Big Data Backup Strategy EMC Backup and Recovery Solutions for
Data Warehousing. Jens Teubner, TU Dortmund [email protected]. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1
Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund [email protected] Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 13 Part II Overview
Intro to AWS: Storage Services
Intro to AWS: Storage Services Matt McClean, AWS Solutions Architect 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved AWS storage options Scalable object storage Inexpensive archive
The Enterprise Data Hub and The Modern Information Architecture
The Enterprise Data Hub and The Modern Information Architecture Dr. Amr Awadallah CTO & Co-Founder, Cloudera Twitter: @awadallah 1 2013 Cloudera, Inc. All rights reserved. Cloudera Overview The Leader
HADOOP ON ORACLE ZFS STORAGE A TECHNICAL OVERVIEW
HADOOP ON ORACLE ZFS STORAGE A TECHNICAL OVERVIEW 757 Maleta Lane, Suite 201 Castle Rock, CO 80108 Brett Weninger, Managing Director [email protected] Dave Smelker, Managing Principal [email protected]
Time Value of Data. Creating an active archive strategy to address both archive and backup in the midst of data explosion.
W H I T E P A P E R Time Value of Data Creating an active archive strategy to address both archive and backup in the midst of data explosion April, 2014 By Floyd Christofferson, SGI TABLE OF CONTENTS 1.0
Introduction to Predictive Analytics. Dr. Ronen Meiri [email protected]
Introduction to Predictive Analytics Dr. Ronen Meiri Outline From big data to predictive analytics Predictive Analytics vs. BI Intelligent platforms What can we do with it. The modeling process. Example
Direct NFS - Design considerations for next-gen NAS appliances optimized for database workloads Akshay Shah Gurmeet Goindi Oracle
Direct NFS - Design considerations for next-gen NAS appliances optimized for database workloads Akshay Shah Gurmeet Goindi Oracle Agenda Introduction Database Architecture Direct NFS Client NFS Server
Moving Virtual Storage to the Cloud
Moving Virtual Storage to the Cloud White Paper Guidelines for Hosters Who Want to Enhance Their Cloud Offerings with Cloud Storage www.parallels.com Table of Contents Overview... 3 Understanding the Storage
Nimble Storage Replication
Nimble Storage Replication Nimble Storage Replication Our service provides Disaster Recovery for customers who are using Nimble Storage for their environment. Webhosting.net leverages Nimble's volume replication
Chapter 1. Contrasting traditional and visual analytics approaches
Chapter 1 Understanding Big Data Analytics In This Chapter Defining Big Data Understanding Big Data Analytics Contrasting traditional and visual analytics approaches The era of Big Data is upon us. The
<Insert Picture Here> Oracle and/or Hadoop And what you need to know
Oracle and/or Hadoop And what you need to know Jean-Pierre Dijcks Data Warehouse Product Management Agenda Business Context An overview of Hadoop and/or MapReduce Choices, choices,
TCO Case Study Enterprise Mass Storage: Less Than A Penny Per GB Per Year
TCO Case Study Enterprise Mass Storage: Less Than A Penny Per GB Per Year Featured Products Amazon Glacier Dot Hill Ultra56 EMC VNXe 3200 NEC M110 NetApp E2700 SUSE Enterprise Storage Copyright 2015 IT
X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
General announcements In-Memory is available next month http://www.oracle.com/us/corporate/events/dbim/index.html X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
Big Data Technology ดร.ช ชาต หฤไชยะศ กด. Choochart Haruechaiyasak, Ph.D.
Big Data Technology ดร.ช ชาต หฤไชยะศ กด Choochart Haruechaiyasak, Ph.D. Speech and Audio Technology Laboratory (SPT) National Electronics and Computer Technology Center (NECTEC) National Science and Technology
The Flash Based Array Market
The Flash Based Array Market April 2015 Eric Burgener, Research Director IDC Storage Practice About the Analyst Eric Burgener serves as a Research Director for IDC's Storage Practice, and his areas of
TUT NoSQL Seminar (Oracle) Big Data
Timo Raitalaakso +358 40 848 0148 [email protected] TUT NoSQL Seminar (Oracle) Big Data 11.12.2012 Timo Raitalaakso MSc 2000 Work: Solita since 2001 Senior Database Specialist Oracle ACE 2012 Blog: http://rafudb.blogspot.com
