Fault Tolerant Matrix-Matrix Multiplication: Correcting Soft Errors On-Line.
|
|
|
- Louisa Washington
- 10 years ago
- Views:
Transcription
1 Fault Tolerant Matrix-Matrix Multiplication: Correcting Soft Errors On-Line Panruo Wu, Chong Ding, Longxiang Chen, Teresa Davies, Christer Karlsson, and Zizhong Chen Colorado School of Mines November 13, 2011 of 13, Mines) / 1
2 Errors Soft errors We focus on fail-continue soft errors Soft errors have already been reported in tera-scale systems How to tolerate errors Triple Modular Redundancy(TMR) Algorithm Based Fault Tolerance(ABFT) We designed a novel ABFT alogrithm for DGEMM on-line: meaning that our algorithm checks the validity of the partial results during computation low overhead: compared with high performance non-fault-tolerant DGEMM of 13, Mines) / 1
3 Related Work Triple Modular Redundancy(TMR) General technique; Requires a factor of 2 or 3 additional hardware; big overhead traditional ABFT: Specific algorithm for every operation Very little overhead; Offline, checks only at the end of computation thus cannot prevent errors from propagating online ABFT Extention to traditional ABFT; very little overhead; online, checks validity of computation in the middle of the computation; more flexible and reliable of 13, Mines) / 1
4 Traditional ABFT mm(matrix multiplication) In 1984 Huang & Abraham proposed the ABFT mm algorithm The idea is: To compute C = AB, encode A, B into checksum matrices A c, B r do mm on encoded matrices C f = A c B r verify the full checksum relationship of C f a 11 a 1n A c = n a n1 a nn i=1 a i1 n i=1 a in b 11 b n 1n j=1 B r b 1j = b n1 b n nn j=1 b nj of 13, Mines) / 1
5 It turns out that the result of C f = A c B r (whatever mm algorithm is used) is a full checksum matrix: c 11 c n 1n j=1 c 1j C f = c m1 c n mn j=1 c nj m i=1 c i1 m i=1 c n in j=1 c ij m i=1 If the full checksum relationship does not maintain then the mm procedure is faulty If only one entry c ij is corrupted, then it can be recovered: c ij = n n c ij (is C f i,n+1 ) j=1 k=1,k j c f ik of 13, Mines) / 1
6 Online ABFT MM: Motivation The traditional ABFT only checks the result at the end of the whole computation What if we can check some partial results in the middle? Handle faults in time More reliable and flexible the key problem: does the checksum relationship maintain in the middle of the mm computation? for most MM algorithms, NO for Outer Product MM, YES of 13, Mines) / 1
7 Outer product mm algorithm(rank-1 update each iteration) for s = 1 to k do C = C + A(:, s) B(s, :) end for AB = [ ] A 1 A 2 A n B 1 B 2 B n = A 1B A n B n of 13, Mines) / 1
8 Theorem If outer product version of mm is used to compute A c B f, and we denote the partial result C at the end of iteration s by Cs f, then Cs f (s = 1,, k) preserve the full checksum relationship Proof: Let A s := A(1 : n, 1 : s) and B s := B(1 : s, 1 : n) then C s = A c s Bs r [ ] As = e T [ B A s B s e ] s = (A s B s ) f We now have at most n oppurtunities to tolerate faults during one mm execution In practice, we can do the FT routine every several iterations to achieve high performance of 13, Mines) / 1
9 Differentiate soft errors from roundoff errors Computers do floating point calculation in finite precision Therefore the checksum relationship cannot hold exactly due to roundoff errors We need a threshold to differentiate soft errors from roundoff errors How to choose the threshold? Too large a threshold may hide errors Too small one may interrupt correct computation of 13, Mines) / 1
10 A classic result from matrix analysis(from Matrix Computation) Theorem For outer product matrix multiplication C = AB, the floating point result f l(ab) satisfies: fl(ab) AB γ k A B =: λ where γ n = nu, and u is the unit roundoff error of the machine 1 nu We begin by assuming the computations are correct, ie C f = A c B r As a convention the floating point version of a variable has a hat over the corresponding name Then we have n ĉ ij ĉ i,n+1 fl(c f ) C f γ n A c B r =: λ j=1 13, of Mines) / 1
11 Performance Analysis The time complexity of generating row or column checksum for input matrices can be expressed as follow T encode = 4N 2 γ (1) Because of the matrix size increases the overhead of computation is T comp = 2(N + 1) N (N + 1) 2N 3 = (4N 2 + 2N)γ 4N 2 γ (2) If the program is to tolerate m errors, the overhead to detect a matrix is: T detect = 2mN 2 γ (3) 13, of Mines) / 1
12 Experimental Results Performance and overhead of on-line FTGEMM (Fault Tolerant General Matrix Multiply) Performance comparison between on-line FTGEMM, ABFT and TMR Performance comparison between on-line FTGEMM and ATLAS We show tests done on Alamode machines provided by CCIT in Colorado School of Mines The CPU one Alamode is Intel(R) Core(TM) i GHz and theoretical peak FLOPS is 1360 GFLOPS For simplicity we test on square matrix of size 10,000 and 15,000 13, of Mines) / 1
13 Special note The failure rate, or Number of failures/execution in the x-axis of all figures and texts in this section is a design parameter which refers to the maximum number of errors our implementation is able to tolerate during one matrix multiplication Be aware that this number does not indicate our implementation is guaranteed to tolerate that many errors; this parameter should be set higher than expected actual failure rate of applications to ensure reliability 13, of Mines) / 1
14 Approx DGEMM(by ATLAS) runtime: 147s Overhead of on line FTGEMM (matrix size: 10000) on ALAMODE 4 Overhead of Computation Error Reovery Error Detection 3 Build Checksum Matrix Runtime (Second) Number of failures/executions 13, of Mines) / 1
15 Approx DGEMM(by ATLAS) runtime: 147s Performance of different strategies (matrix size: 10000) on ALAMODE Runtime (Second) on line FTGEMM(D) ABFT TMR Number of failures/executions 13, of Mines) / 1
16 Approx DGEMM(by ATLAS) runtime: 147s Performance of different failure rate (matrix size: 10000) on ALAMODE 14 Performance (GFLOPS) ATLAS DGEMM on line FTGEMM(double precision) Number of failures/executions 13, of Mines) / 1
17 Conclusion In this paper we extended the traditional ABFT matrix multiplication technique from off-line to on-line In our approach, soft errors are detected, located, and corrected in the middle of the computation in a timely manner, before they propagate Experimental results demostrate that the proposed technique can correct one error per ten seconds with negligible performance penalty over ATLAS DGEMM() 13, of Mines) / 1
18 Thank you That s all, Thank you! 13, of Mines) / 1
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
Notes on Cholesky Factorization
Notes on Cholesky Factorization Robert A. van de Geijn Department of Computer Science Institute for Computational Engineering and Sciences The University of Texas at Austin Austin, TX 78712 [email protected]
Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
Matrix Multiplication
Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse
6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
Data Corruption In Storage Stack - Review
Theoretical Aspects of Storage Systems Autumn 2009 Chapter 2: Double Disk Failures André Brinkmann Data Corruption in the Storage Stack What are Latent Sector Errors What is Silent Data Corruption Checksum
Direct Methods for Solving Linear Systems. Matrix Factorization
Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
A numerically adaptive implementation of the simplex method
A numerically adaptive implementation of the simplex method József Smidla, Péter Tar, István Maros Department of Computer Science and Systems Technology University of Pannonia 17th of December 2014. 1
The Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Solution of Linear Systems
Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start
Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6
Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a
We shall turn our attention to solving linear systems of equations. Ax = b
59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system
POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078
21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 2nd Computer
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
Parallel Algorithm for Dense Matrix Multiplication
Parallel Algorithm for Dense Matrix Multiplication CSE633 Parallel Algorithms Fall 2012 Ortega, Patricia Outline Problem definition Assumptions Implementation Test Results Future work Conclusions Problem
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Algorithmic-Based Fault Tolerance for Matrix Multiplication on Amazon EC2
Algorithmic-Based Fault Tolerance for Matrix Multiplication on Amazon EC2 Grey Ballard, Erin Carson, Nick Knight CS 262a Fall 2009 December 21, 2009 1 Introduction Cloud computing presents a unique alternative
Math 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
Adaptive Stable Additive Methods for Linear Algebraic Calculations
Adaptive Stable Additive Methods for Linear Algebraic Calculations József Smidla, Péter Tar, István Maros University of Pannonia Veszprém, Hungary 4 th of July 204. / 2 József Smidla, Péter Tar, István
Load Distribution on a Linux Cluster using Load Balancing
Load Distribution on a Linux Cluster using Load Balancing Aravind Elango M. Mohammed Safiq Undergraduate Students of Engg. Dept. of Computer Science and Engg. PSG College of Technology India Abstract:
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
FAULT TOLERANCE FOR MULTIPROCESSOR SYSTEMS VIA TIME REDUNDANT TASK SCHEDULING
FAULT TOLERANCE FOR MULTIPROCESSOR SYSTEMS VIA TIME REDUNDANT TASK SCHEDULING Hussain Al-Asaad and Alireza Sarvi Department of Electrical & Computer Engineering University of California Davis, CA, U.S.A.
High Performance Matrix Inversion with Several GPUs
High Performance Matrix Inversion on a Multi-core Platform with Several GPUs Pablo Ezzatti 1, Enrique S. Quintana-Ortí 2 and Alfredo Remón 2 1 Centro de Cálculo-Instituto de Computación, Univ. de la República
FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM
International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT
Unit 18 Determinants
Unit 18 Determinants Every square matrix has a number associated with it, called its determinant. In this section, we determine how to calculate this number, and also look at some of the properties of
Systems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
Functional-Repair-by-Transfer Regenerating Codes
Functional-Repair-by-Transfer Regenerating Codes Kenneth W Shum and Yuchong Hu Abstract In a distributed storage system a data file is distributed to several storage nodes such that the original file can
7 Gaussian Elimination and LU Factorization
7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method
SIGMOD RWE Review Towards Proximity Pattern Mining in Large Graphs
SIGMOD RWE Review Towards Proximity Pattern Mining in Large Graphs Fabian Hueske, TU Berlin June 26, 21 1 Review This document is a review report on the paper Towards Proximity Pattern Mining in Large
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
1 Determinants and the Solvability of Linear Systems
1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal
Methods for Finding Bases
Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,
Solution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every
Practical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors
Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix
7. LU factorization EE103 (Fall 2011-12) factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization algorithm effect of rounding error sparse
1.2 Solving a System of Linear Equations
1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables
Fault Analysis in Software with the Data Interaction of Classes
, pp.189-196 http://dx.doi.org/10.14257/ijsia.2015.9.9.17 Fault Analysis in Software with the Data Interaction of Classes Yan Xiaobo 1 and Wang Yichen 2 1 Science & Technology on Reliability & Environmental
Solving Linear Systems of Equations. Gerald Recktenwald Portland State University Mechanical Engineering Department [email protected].
Solving Linear Systems of Equations Gerald Recktenwald Portland State University Mechanical Engineering Department [email protected] These slides are a supplement to the book Numerical Methods with Matlab:
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
CS3220 Lecture Notes: QR factorization and orthogonal transformations
CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss
A Constraint Programming based Column Generation Approach to Nurse Rostering Problems
Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,
Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances
Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances Jialin Zhang Tsinghua University [email protected] Wei Chen Microsoft Research Asia [email protected] Abstract
Aperiodic Task Scheduling
Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2014 年 11 月 19 日 These slides use Microsoft clip arts. Microsoft copyright
Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui
Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching
Categorical Data Visualization and Clustering Using Subjective Factors
Categorical Data Visualization and Clustering Using Subjective Factors Chia-Hui Chang and Zhi-Kai Ding Department of Computer Science and Information Engineering, National Central University, Chung-Li,
A Piggybacking Design Framework for Read-and Download-efficient Distributed Storage Codes
A Piggybacing Design Framewor for Read-and Download-efficient Distributed Storage Codes K V Rashmi, Nihar B Shah, Kannan Ramchandran, Fellow, IEEE Department of Electrical Engineering and Computer Sciences
Inner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
Typical Linear Equation Set and Corresponding Matrices
EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
FMA Implementations of the Compensated Horner Scheme
Reliable Implementation of Real Number Algorithms: Theory and Practice Dagstuhl Seminar 06021 January 08-13, 2006 FMA Implementations of the Compensated Horner Scheme Stef GRAILLAT, Philippe LANGLOIS and
MAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
Parallel and Distributed Computing Programming Assignment 1
Parallel and Distributed Computing Programming Assignment 1 Due Monday, February 7 For programming assignment 1, you should write two C programs. One should provide an estimate of the performance of ping-pong
Lecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
An On-Line Algorithm for Checkpoint Placement
An On-Line Algorithm for Checkpoint Placement Avi Ziv IBM Israel, Science and Technology Center MATAM - Advanced Technology Center Haifa 3905, Israel [email protected] Jehoshua Bruck California Institute
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
Introduction to Online Learning Theory
Introduction to Online Learning Theory Wojciech Kot lowski Institute of Computing Science, Poznań University of Technology IDSS, 04.06.2013 1 / 53 Outline 1 Example: Online (Stochastic) Gradient Descent
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.
Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that
Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
F Matrix Calculus F 1
F Matrix Calculus F 1 Appendix F: MATRIX CALCULUS TABLE OF CONTENTS Page F1 Introduction F 3 F2 The Derivatives of Vector Functions F 3 F21 Derivative of Vector with Respect to Vector F 3 F22 Derivative
Benchmark Study on Distributed XML Filtering Using Hadoop Distribution Environment. Sanjay Kulhari, Jian Wen UC Riverside
Benchmark Study on Distributed XML Filtering Using Hadoop Distribution Environment Sanjay Kulhari, Jian Wen UC Riverside Team Sanjay Kulhari M.S. student, CS U C Riverside Jian Wen Ph.D. student, CS U
Matrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
Elementary Matrices and The LU Factorization
lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three
4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms
MapReduce and the New Software Stack
20 Chapter 2 MapReduce and the New Software Stack Modern data-mining applications, often called big-data analysis, require us to manage immense amounts of data quickly. In many of these applications, the
Row Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation
K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013
Hill Cipher Project K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Directions: Answer all numbered questions completely. Show non-trivial work in the space provided. Non-computational
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column
Unit 10: Software Quality
Unit 10: Software Quality Objective Ð To introduce software quality management and assurance with particular reference to the requirements of ISO 9000 and associated standards. Ð To introduce QFD, a technique
Warshall s Algorithm: Transitive Closure
CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Lecture 9 - Message Authentication Codes
Lecture 9 - Message Authentication Codes Boaz Barak March 1, 2010 Reading: Boneh-Shoup chapter 6, Sections 9.1 9.3. Data integrity Until now we ve only been interested in protecting secrecy of data. However,
A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture
A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture Yangsuk Kee Department of Computer Engineering Seoul National University Seoul, 151-742, Korea Soonhoi
Impact of Boolean factorization as preprocessing methods for classification of Boolean data
Impact of Boolean factorization as preprocessing methods for classification of Boolean data Radim Belohlavek, Jan Outrata, Martin Trnecka Data Analysis and Modeling Lab (DAMOL) Dept. Computer Science,
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)
26. Determinants I. 1. Prehistory
26. Determinants I 26.1 Prehistory 26.2 Definitions 26.3 Uniqueness and other properties 26.4 Existence Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinate-independent
GENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
General Framework for an Iterative Solution of Ax b. Jacobi s Method
2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,
