Searching for space debris elements with the Pi of the Sky system
|
|
|
- Sophia Harrell
- 10 years ago
- Views:
Transcription
1 Searching for space debris elements with the Pi of the Sky system Marcin Sokołowski Soltan Institute for Nuclear Studies ( IPJ ) Warsaw, Poland 7th Integral / BART Workshop ( IBWS), April 2010, Karlovy Vary
2 Outline Space Situational Awareness (SSA) project ( ESA ) Pi of the Sky prototype and new detector Algorithms for automatic identification of optical transients and moving objects Observations of satellites by Pi of the Sky prototype Marcin Sokolowski, IBWS 2010, Karlovy Vary
3 Is it really so bad? Marcin Sokolowski, IBWS 2010, Karlovy Vary
4 It becomes a problem February 2009 crash of two satellites Iridium 33 and Cosmos 2251 over northern Siberia, ~800 km above the Earth with relative speed ~ 11 km/s, producing hundreds of new small and dangerous pieces of junk! COSMOS 2251 I r id iu m I r id iu m 3 3 COSMOS Marcin Sokolowski, IBWS 2010, Karlovy Vary
5 Junk in space must be monitored 13,000 of artificial objects larges than 10cm can be observed in space Only ~800 are active satellites, the rest ( > 12,000 ) are rocket upper stages, dead satellites, other pieces of junk Monitoring of these objects becomes a must! Space Situational Awareness (SSA) program the European project to monitor the Earth orbital population, the space environment and possible threats The first required stage is European Space Surveillance System for : - detection and orbit determination - tracking of objects from low to geostationary orbit - estimation of maneuvers - autonomous operation! GOAL : verify weather Pi of the Sky could be a part of such a system Marcin Sokolowski, IBWS 2010, Karlovy Vary
6 π of the Sky prototype 2 cameras CCD pixels Canon objectives f=85mm, d=f /1.2 Common Field of View Collects 10s images ( 2s readout time ) Collects ~ of images per night Equatorial mount Fully automatic Controlled remotly via the Internet Self diagnostics and fixing minor problems Automatic identification of short optical transients and moving objects
7 π of the Sky adavantages Automatic and permanent observations with on-line data analysis system Experience of Pi of the Sky team in software development and data analysis Wide field of view (accurate for survey purposes) New generation of system is currently in final preparation and testing stage. Single Detector : It will initially consist of 2 x 12 CCD cameras, covering ~1.5 70mm aperture steradians of the sky field of view of 20 x 20, CCD of 2048 x 2062 pixels Limiting magnitude ~12-13m on single 10s image THE DESIGN OF THE NEW ARRAY Marcin Sokolowski, IBWS 2010, Karlovy Vary
8 π of the Sky detector paramters D C C H M a t s r i zx e P i x s e i lz e C C T E C e at i dm OR C I ND C D x 2i x p 1 5 x µ 1m 25 T E AS C T O T A R 2 s B p 2. 0 e n t s ~ 01 -e > S N x 2i x ~ ef o 2r M H z ~ ef o r M 1 H z U I N 1 5 x µ 1m 25 h u t t e r I n t e r f a c e E 3 0 C b e l oe wn v i r o n t m e e a d n o o u i st e S LT OC FD a i r c h i l d o o sl i yn sg t e m R R I P E 1 0c y M c l e s e t h e, r nu es t B 2. 0 SINGLE MOUNT FIELD OF VIEW: FOCAL LENGTH: 85 LCO: 20x20 deg mm NEXT: 20x20 deg (DEEP FOCAL RATIO: 1,2 mode) APERTURE: 70 mm 40x40 deg (WIDE mode deg) TIME OF EXPOSITION:4x20x20 10s ANGLEON/OFF RES.: MOMENT 36 /pix DETERMINATION OF SHUTTER ERROR: 20ms E W
9 Photmetric and astrometric precision DEVIATIONS FROM MEAN STAR POSITION PHOTOMETRIC PRECISION ASTROMETRIC ACCURACYOF THE ORDER OF 10 arcsec
10 Identification of optical flashes and moving objects On continuously ( 10s exposure + 2s readout time ) collected images find objects which appeared in the new image and were not present in the set of previous images FIND THE DIFFERENCE
11 SIMPLE EXAMPLE FLASH / SATELLITE CANDIDATES MOSTLY BACKGROUND, WHICH MUST BE EFFECTIVELY REJECTED COINCIDENCE OF EVENTS FROM 2 CAMERAS Marcin Sokolowski, IBWS 2010, Karlovy Vary
12 Watchout for the higheway near the Equator Single camera events
13 Events after coincidence Watchout for the higheway near the Equator
14 There are moving objects there... In order to identify ( reject them ) we retrieve Two Lines Elements ( TLE ) from the Internet resources and merge to a single large file containing ~13,000 objects OBJECT ID 1st and 2nd Derivative of Mean Motion EPOCH TLE LINE B* DRAG TERM ELEMENT NUMBER INTEGRAL U 02048A RIGHT ASCENSION OF ASCENDING NODE [deg] ORBIT INCLINATION [deg] ARGUMENT OF PERIGEE [deg] ECCENTRICITY MEAN MOTION [ REVOLUTION /DAY ] MEAN ANOMALY [deg]
15 Compare OTs with TLE database Looking for nearest satellites in radius of 1800 arcsec Recently changed to 1000 arcsec Marcin Sokolowski, IBWS 2010, Karlovy Vary
16 Examples of TLE satellites SL12_97028C ANIK_F3_07009A ARIANE_44L_99071B GEOSTATIONARY ( Radius ~ km ) ATLAS_CENTAUR _R_SL_B_00028B EXPRESS_AM11_04015A
17 Examples of TLE geostationary satellites GEOSTATIONARY ORBIT R ~ km DIRECTV_7S_04016A R ~35798 km XM_4(BLUES) R ~35786 km TELSTAR_402R_95049A R ~35802 km Marcin Sokolowski, IBWS 2010, Karlovy Vary
18 Satellite detection theoretical investigations for Pi of the Sky ASSUMPTION: satellite is a spherical detector structure with 100% reflectance with different radius R M A G N IT U D E 1 2 ᅴ S A =T 2.0 m R S A =T 1.0 m 1 4 R S A =T 0.5 m 1 6 R S A =T m R S A =T m A L T [ k 2m ] 3 x 1 40
19 Identification of tracks from events after coincidence in two cameras 160 tracks Efficiency ~99%
20 Track fitting details Adding new points to existing tracks only when it is close enough from the fitted line ( Dist2 < 100 ) Velocity check distance from estimated to real position must not be too large ( DistToEstimated < 20 )
21 Identification of tracks from events from a single camera 40 tracks
22 Summary Satellites can be observed with the Pi of the Sky detector, preliminary estimate is that we can observed ~1/2 of objects in TLE database It is possible to observe easy targets on geostationary orbit We have algorithms for self-identification of moving objects, track fitting is a very efficient tool ( ~99% ) Pi of the Sky can be for survey tasks and can provide orbit updates for easy targets Precision of orbit fitting is currently being tested, advices are welcome if somebody has experience... Marcin Sokolowski, IBWS 2010, Karlovy Vary
23 Backup
24 Preliminary attempts to fit orbits and obtain TLE elements
Section 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
PRELIMINARY DESIGN REVIEW
STUDENTS SPACE ASSOCIATION THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING WARSAW UNIVERSITY OF TECHNOLOGY PRELIMINARY DESIGN REVIEW CAMERAS August 2015 Abstract The following document is a part of the
CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler [email protected]
CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler [email protected] Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric
Artificial Satellites Earth & Sky
Artificial Satellites Earth & Sky Name: Introduction In this lab, you will have the opportunity to find out when satellites may be visible from the RPI campus, and if any are visible during the activity,
Task 329. Tracking and Monitoring Suborbital Commercial Space Vehicles
Task 329. Tracking and Monitoring Suborbital Commercial Space Vehicles Dr. William H. Ryan Research Faculty, 2.4-meter Telescope (NM Tech/Magdalena Ridge Observatory) Project Overview Ultimately: develop
Orbital Mechanics and Space Geometry
Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit
GEO protected region: ISON capabilities to provide informational support for tasks of spacecraft flight safety and space debris removal
Russian Academy of Sciences Keldysh Institute of Applied Mathematics GEO protected region: ISON capabilities to provide informational support for tasks of spacecraft flight safety and space debris removal
Small Aperture Telescope Observations of Co-located Geostationary Satellites
Small Aperture Telescope Observations of Co-located Geostationary Satellites Robert (Lauchie) Scott Defence R&D Canada -Ottawa, Ottawa, Ontario, Canada, K1A 0Z4, [email protected] Dr. Brad Wallace
THE CANADIAN AUTOMATIC SMALL TELESCOPE FOR ORBITAL RESEARCH (CASTOR) - A RAVEN SYSTEM IN CANADA
THE CANADIAN AUTOMATIC SMALL TELESCOPE FOR ORBITAL RESEARCH (CASTOR) - A RAVEN SYSTEM IN CANADA Mr. Michael A. Earl and Dr. Thomas J. Racey: The Space Surveillance Research and Analysis Laboratory Department
Large FOV Mobile E-O Telescope for Searching and Tracking Low-orbit Micro-satellites and Space Debris
Large FOV Mobile E-O Telescope for earching and Tracking Low-orbit Micro-satellites and pace Debris WANG Jian-li 1, GAO Xin, TANG Jia, HAN Chang-yuan 1, ZHAO Jin-yu 1 1 Changchun Institute of Optics, Fine
Chapter 2. Mission Analysis. 2.1 Mission Geometry
Chapter 2 Mission Analysis As noted in Chapter 1, orbital and attitude dynamics must be considered as coupled. That is to say, the orbital motion of a spacecraft affects the attitude motion, and the attitude
1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times.
Appendix A Orbits As discussed in the Introduction, a good first approximation for satellite motion is obtained by assuming the spacecraft is a point mass or spherical body moving in the gravitational
Coverage Characteristics of Earth Satellites
Coverage Characteristics of Earth Satellites This document describes two MATLAB scripts that can be used to determine coverage characteristics of single satellites, and Walker and user-defined satellite
DETERMINING THE ORBIT HEIGHT OF A LOW EARTH ORBITING ARTIFICIAL SATELLITE OBSERVED NEAR THE LOCAL ZENITH
DETERMINING THE ORBIT HEIGHT OF A LOW EARTH ORBITING ARTIFICIAL SATELLITE OBSERVED NEAR THE LOCAL ZENITH by Michael A. Earl, Ottawa Centre ([email protected]) INTRODUCTION When you look up at satellites
RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento
RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne
SIERRA COLLEGE OBSERVATIONAL ASTRONOMY LABORATORY EXERCISE NUMBER III.F.a. TITLE: ASTEROID ASTROMETRY: BLINK IDENTIFICATION
SIERRA COLLEGE OBSERVATIONAL ASTRONOMY LABORATORY EXERCISE NUMBER III.F.a. TITLE: ASTEROID ASTROMETRY: BLINK IDENTIFICATION DATE- PRINT NAME/S AND INITIAL BELOW: GROUP DAY- LOCATION OBJECTIVE: Use CCD
EVOLUTION OF THE DEBRIS CLOUD GENERATED BY THE FENGYUN-1C FRAGMENTATION EVENT
EVOLUTION OF THE DEBRIS CLOUD GENERATED BY THE FENGYUN-1C FRAGMENTATION EVENT Carmen Pardini and Luciano Anselmo Space Flight Dynamics Laboratory Istituto di Scienza e Tecnologie dell Informazione Alessandro
Can Hubble be Moved to the International Space Station? 1
Can Hubble be Moved to the International Space Station? 1 On January 16, NASA Administrator Sean O Keefe informed scientists and engineers at the Goddard Space Flight Center (GSFC) that plans to service
Towards the Detection and Characterization of Smaller Transiting Planets
Towards the Detection and Characterization of Smaller Transiting Planets David W. Latham 27 July 2007 Kepler MISSION CONCEPT Kepler Mission is optimized for finding habitable planets ( 10 to 0.5 M )
LSST and the Cloud: Astro Collaboration in 2016 Tim Axelrod LSST Data Management Scientist
LSST and the Cloud: Astro Collaboration in 2016 Tim Axelrod LSST Data Management Scientist DERCAP Sydney, Australia, 2009 Overview of Presentation LSST - a large-scale Southern hemisphere optical survey
Penn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
Orbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
Section 2. Satellite Orbits
Section 2. Satellite Orbits References Kidder and Vonder Haar: chapter 2 Stephens: chapter 1, pp. 25-30 Rees: chapter 9, pp. 174-192 In order to understand satellites and the remote sounding data obtained
SUN-SYNCHRONOUS ORBIT SLOT ARCHITECTURE ANALYSIS AND DEVELOPMENT. A Thesis. Presented to. the Faculty of California Polytechnic State University
SUN-SYNCHRONOUS ORBIT SLOT ARCHITECTURE ANALYSIS AND DEVELOPMENT A Thesis Presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements
Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE
Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question
Development of an automated satellite network management system
Development of an automated satellite network management system Iasonas Kytros Christos Porios Nikitas Terzoudis Varvara Chatzipavlou Coach: Sitsanlis Ilias February 2013 Abstract In this paper we present
SATELLITE ORBIT DETERMINATION AND ANALYSIS (S.O.D.A) A VISUAL TOOL OF SATELLITE ORBIT FOR SPACE ENGINEERING EDUCATION & RESEARCH
SATELLITE ORBIT DETERMINATION AND ANALYSIS (S.O.D.A) A VISUAL TOOL OF SATELLITE ORBIT FOR SPACE ENGINEERING EDUCATION & RESEARCH 1 Muhammad Shamsul Kamal Adnan, 2 Md. Azlin Md. Said, 3 M. Helmi Othman,
Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission. Joint ESA NASA AIDA Team
AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission Joint ESA NASA AIDA Team Chelyabinsk Meteor on 15 February 2013 AIDA Asteroid Deflection Test AIDA international cooperation First
2. Orbits. FER-Zagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
Mobile Communications: Satellite Systems
Mobile Communications: Satellite Systems Mobile Communication: Satellite Systems - Jochen Schiller http://www.jochenschiller.de 1 History of satellite communication 1945 Arthur C. Clarke publishes an essay
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
Prospects for an Improved Lense-Thirring Test with SLR and the GRACE Gravity Mission
Prospects for an Improved Lense-Thirring Test with SLR and the GRACE Gravity Mission J. C. Ries, R. J. Eanes, B. D. Tapley Center for Space Research The University of Texas at Austin Austin, TX G. E. Peterson
EN4 Dynamics and Vibrations. Design Project. Orbital Design for a Lunar Impact Mission. Synopsis
EN4 Dynamics and Vibrations Design Project Orbital Design for a Lunar Impact Mission Synopsis NASA has identified a need for a low-cost mission to launch a satellite that will impact the moon. You will
Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005
Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital
Amateur Astrophotography. Lauri Kangas Teekkarikamerat 2011-10-20
Amateur Astrophotography Lauri Kangas Teekkarikamerat Astrophotography Outline Introduction Knowing the sky objects to shoot Choosing equipment / focal lengths Long exposures Fixed tripod astrophotos Tracking
Introduction to satellite constellations orbital types, uses and related facts
Introduction to satellite constellations orbital types, uses and related facts Dr Lloyd Wood space team, Cisco Systems http://www.cisco.com/go/space Guest lecture, ISU summer session July 2006 created
Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM
Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice
Understanding Orbital Mechanics Through a Step-by-Step Examination of the Space-Based Infrared System (SBIRS)
Understanding Orbital Mechanics Through a Step-by-Step Examination of the Space-Based Infrared System (SBIRS) Denny Sissom Elmco, Inc. May 2003 Pg 1 of 27 SSMD-1102-366 [1] The Ground-Based Midcourse Defense
5. Satellite Systems. History of Satellite Communications
5. Satellite Systems History and Orbits Routing, Localization, and Hand-over Systems 2005 Burkhard Stiller and Jochen Schiller FU Berlin M5 1 History of Satellite Communications 1945 Arthur C. Clarke about
Japanese Space Industry s Efforts regarding Long-term Sustainability of Space Activities. 14 Feb 2013. The Society of Japanese Aerospace Companies
Japanese Space Industry s Efforts regarding Long-term Sustainability of Space Activities 14 Feb 2013 The Society of Japanese Aerospace Companies (SJAC) 1 SJAC(The Society of Japanese Aerospace Companies)
Flight and Orbital Mechanics
Flight and Orbital Mechanics Lecture slides Challenge the future 1 Material for exam: this presentation (i.e., no material from text book). Sun-synchronous orbit: used for a variety of earth-observing
Orientation to the Sky: Apparent Motions
Chapter 2 Orientation to the Sky: Apparent Motions 2.1 Purpose The main goal of this lab is for you to gain an understanding of how the sky changes during the night and over the course of a year. We will
Attitude and Orbit Dynamics of High Area-to-Mass Ratio (HAMR) Objects and
Attitude and Orbit Dynamics of High Area-to-Mass Ratio (HAMR) Objects and Carolin Früh National Research Council Postdoctoral Fellow, AFRL, [email protected] Orbital Evolution of Space Debris Objects Main
Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2
Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2 Ok-Chul Jung 1 Korea Aerospace Research Institute (KARI), 45 Eoeun-dong, Daejeon, South Korea, 305-333 Jung-Hoon Shin 2 Korea Advanced
Mobile Computing. Chapter 5: Satellite Systems
Mobile Computing Chapter 5: Satellite Systems Prof. Sang-Jo Yoo History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial Relays 1957 First satellite SPUTNIK by
Detecting and measuring faint point sources with a CCD
Detecting and measuring faint point sources with a CCD Herbert Raab a,b a Astronomical ociety of Linz, ternwarteweg 5, A-400 Linz, Austria b Herbert Raab, chönbergstr. 3/1, A-400 Linz, Austria; [email protected]
How an electronic shutter works in a CMOS camera. First, let s review how shutters work in film cameras.
How an electronic shutter works in a CMOS camera I have been asked many times how an electronic shutter works in a CMOS camera and how it affects the camera s performance. Here s a description of the way
GNSS satellite attitude characteristics during eclipse season
GNSS satellite attitude characteristics during eclipse season F. Dilssner 1, T. Springer 1, J. Weiss 2, G. Gienger 1, W. Enderle 1 1 ESA/ESOC, Darmstadt, Germany 2 JPL, Pasadena, USA July 26, 2012 IGS
Mobile Communications Chapter 5: Satellite Systems
Mobile Communications Chapter 5: Satellite Systems History Basics Localization Handover Routing Systems History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial
How To Understand The History Of Space Exploration
Modeling the Space Debris Environment with MASTER-2009 and ORDEM2010 Flegel S., Gelhaus J., Wiedemann C., Möckel M., Vörsmann P. (1) Krisko P., Xu Y.-L., Horstman M.F., Opiela J.N. (2), Matney M. (3),
Sun Earth Relationships
1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation
Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered
Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson [email protected] Chalmers University of Technology, 2013
Lecture 5: Satellite Orbits Jan Johansson [email protected] Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS
High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes
UCRL-TR-227709 High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes C. Marois February 2, 2007 Disclaimer This document was prepared as an account of work sponsored by an
F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
Development of a Sun Synchronous. Conjunctions
Development of a Sun Synchronous Zoning Architecture to Minimize Conjunctions Kevin Shortt Brian Weeden Secure World Foundation www.secureworldfoundation.org Overview Current Situation in Sun synchronous
The Sun: Our nearest star
The Sun: Our nearest star Property Surface T Central T Luminosity Mass Lifetime (ms) Value 5500K 15x10 6 K 2 x 10 33 ergs 4 x 10 33 grams 10 billion years Solar Structure Build a model and find the central
Integration of a passive micro-mechanical infrared sensor package with a commercial smartphone camera system
1 Integration of a passive micro-mechanical infrared sensor package with a commercial smartphone camera system Nathan Eigenfeld Abstract This report presents an integration plan for a passive micro-mechanical
Radar interferometric techniques and data validation Terrafirma Essen, March 2011. Page 1
Radar interferometric techniques and data validation Terrafirma Essen, March 2011 Page 1 Agenda Introduction to InSAR technology Different radarinterferometric techniques Validation of InSAR technology
Lecture L17 - Orbit Transfers and Interplanetary Trajectories
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to
HybridSail. Hybrid Solar Sails for Active Debris Removal Final Report
HybridSail Hybrid Solar Sails for Active Debris Removal Final Report Authors: Lourens Visagie (1), Theodoros Theodorou (1) Affiliation: 1. Surrey Space Centre - University of Surrey ACT Researchers: Leopold
Astromechanics Two-Body Problem (Cont)
5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the
Fig.1. The DAWN spacecraft
Introduction Optical calibration of the DAWN framing cameras G. Abraham,G. Kovacs, B. Nagy Department of Mechatronics, Optics and Engineering Informatics Budapest University of Technology and Economics
Collaborative Commercial Space Situational Awareness with ESpOC-Empowered Telescopes
Collaborative Commercial Space Situational Awareness with ESpOC-Empowered Telescopes David Sibert ExoAnalytic Solutions, Inc. T.S. Kelso Center for Space Standards & Innovation Bill Therien, Doug Hendrix,
CHAPTER 2 ORBITAL DYNAMICS
14 CHAPTER 2 ORBITAL DYNAMICS 2.1 INTRODUCTION This chapter presents definitions of coordinate systems that are used in the satellite, brief description about satellite equations of motion and relative
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
COOKBOOK. for. Aristarchos Transient Spectrometer (ATS)
NATIONAL OBSERVATORY OF ATHENS Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing HELMOS OBSERVATORY COOKBOOK for Aristarchos Transient Spectrometer (ATS) P. Boumis, J. Meaburn,
Determining Polar Axis Alignment Accuracy
Determining Polar Axis Alignment Accuracy by Frank Barrett 7/6/008 Abstract: In order to photograph dim celestial objects, long exposures on the order of minutes or hours are required. To perform this
COMPARISON OF EISCAT RADAR DATA ON SPACE DEBRIS WITH MODEL PREDICTIONS BY THE MASTER MODEL OF ESA
PEDAS1-B1.4-0003-02 COMPARISON OF EISCAT RADAR DATA ON SPACE DEBRIS WITH MODEL PREDICTIONS BY THE MASTER MODEL OF ESA M. Landgraf 1, R. Jehn 1, and W. Flury 1 1 ESA/ESOC, Robert-Bosch-Str. 5, 64293 Darmstadt,
WHITE PAPER. Are More Pixels Better? www.basler-ipcam.com. Resolution Does it Really Matter?
WHITE PAPER www.basler-ipcam.com Are More Pixels Better? The most frequently asked question when buying a new digital security camera is, What resolution does the camera provide? The resolution is indeed
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
Mars Sample Return Campaign: An Overview. Dr. Firouz Naderi Associate Director NASA s JPL
Mars Sample Return Campaign: An Overview Dr. Firouz Naderi Associate Director NASA s JPL 1 Why Sample Return? Why Now? Compelling Science Informed Landing Site Selection International Interest Good Engineering
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
The Concept(s) of Mosaic Image Processing. by Fabian Neyer
The Concept(s) of Mosaic Image Processing by Fabian Neyer NEAIC 2012 April 27, 2012 Suffern, NY My Background 2003, ST8, AP130 2005, EOS 300D, Borg101 2 2006, mod. EOS20D, Borg101 2010/11, STL11k, Borg101
INSTITUTE OF THEORETICAL PHYSICS AND ASTRONOMY MOLĖTAI ASTRONOMICAL OBSERVATORY THE 35/51 CM TELESCOPE OF THE MAKSUTOV SYSTEM (ACT-452) USER'S GUIDE
INSTITUTE OF THEORETICAL PHYSICS AND ASTRONOMY MOLĖTAI ASTRONOMICAL OBSERVATORY THE 35/51 CM TELESCOPE OF THE MAKSUTOV SYSTEM (ACT-452) USER'S GUIDE 2005 MAIN TECHNICAL SPECIFICATIONS The Maksutov telescope
ACTIVE DEBRIS REMOVAL MISSION WITH SMALL SATELLITE
ACTIVE DEBRIS REMOVAL MISSION WITH SMALL SATELLITE Marcello Valdatta Niccolò Bellini Davide Rastelli University of Bologna, ITALY 2nd Mission Idea Contest 4th Nano-satellite Symposium on October 10th -
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE TRANSMISSIONS IN THE BAND 620 790 MHz
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE
Section 2.2. Contents of the Tycho Catalogue
Section 2.2 Contents of the Tycho Catalogue 141 2.2. Contents of the Tycho Catalogue Overview of the Tycho Catalogue: The Tycho Catalogue provides astrometry (positions, parallaxes and proper motions)
APPENDIX D: SOLAR RADIATION
APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working
The Space Situational Awareness Cost (SSA) Model
The Space Situational Awareness Cost (SSA) Model James Smirnoff Brennen Woodruff Ryan Welch Geoff Pierce 2016 ICEAA Conference [email protected] (937) 672-0731 Introduction Today there are over
Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)
Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial
Satellite Mission Analysis
CARLETON UNIVERSITY SPACECRAFT DESIGN PROJECT 2004 FINAL DESIGN REPORT Satellite Mission Analysis FDR Reference Code: FDR-SAT-2004-3.2.A Team/Group: Satellite Mission Analysis Date of Submission: April
DEVELOPMENT OF AN ARCHITECTURE OF SUN-SYNCHRONOUS ORBITAL SLOTS TO MINIMIZE CONJUNCTIONS. Brian Weeden Secure World Foundation
DEVELOPMENT OF AN ARCHITECTURE OF SUN-SYNCHRONOUS ORBITAL SLOTS TO MINIMIZE CONJUNCTIONS Brian Weeden Secure World Foundation Sun-synchronous orbit (SSO) satellites serve many important functions, primarily
Binary Stars. Kepler s Laws of Orbital Motion
Binary Stars Kepler s Laws of Orbital Motion Kepler s Three Laws of orbital motion result from the solution to the equation of motion for bodies moving under the influence of a central 1/r 2 force gravity.
Analysis of the 2007 Chinese ASAT Test and the Impact of its Debris on the Space Environment. T.S. Kelso Center for Space Standards & Innovation
Analysis of the 2007 Chinese ASAT Test and the Impact of its Debris on the Space Environment T.S. Kelso Center for Space Standards & Innovation ABSTRACT On 2007 January 11, the People s Republic of China
Chapter 6. Orbital Mechanics. Maj Edward P. Chatters IV, USAF; Maj Bryan Eberhardt, USAF; and Maj Michael S. Warner, USAF
Chapter 6 Orbital Mechanics Maj Edward P. Chatters IV, USAF; Maj Bryan Eberhardt, USAF; and Maj Michael S. Warner, USAF Knowledge of orbital motion is essential for a full understanding of space operations.
How To Calibrate A Mass-Dimm With A Dimm Sensor
European Community s Framework Programme 6 EUROPEAN EXTREMELY LARGE TELESCOPE DESIGN STUDY Doc Nº. Issue 1.2 DRAFT 24 th March 2008 Prepared by Approved by Released by Héctor Vázquez Ramió, Antonia M.
arxiv:0903.4116v1 [astro-ph.im] 24 Mar 2009
Astron. Nachr./AN xxx (xxxx) x, xxx xxx CTK - A new CCD Camera at the University Observatory Jena arxiv:0903.4116v1 [astro-ph.im] 24 Mar 2009 1. Introduction MARKUS MUGRAUER Astrophysikalisches Institut
Trigonometry LESSON ONE - Degrees and Radians Lesson Notes
210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:
