What is cloud computing?
|
|
|
- Samson Singleton
- 10 years ago
- Views:
Transcription
1 Introduction to Clouds and MapReduce Jimmy Lin University of Maryland What is cloud computing? With mods by Alan Sussman This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See for details The best thing since sliced bread? Before clouds Grids Vector supercomputers Cloud computing means many different things: Large-data processing Rebranding of web 2.0 Utility computing Everything as a service Rebranding of web 2.0 Rich, interactive web applications Clouds refer to the servers that run them AJAX as the de facto standard (for better or worse) Examples: Facebook, YouTube, Gmail, The network is the computer : take two User data is stored in the clouds Rise of the netbook, smartphones, etc. Browser is the OS
2 Utility Computing Enabling Technology: Virtualization What? Computing resources as a metered service ( pay as you go ) Ability to dynamically provision virtual machines Why? Cost: capital vs. operating expenses Scalability: infinite capacity Elasticity: scale up or down on demand Does it make sense? Benefits to cloud users Business case for cloud providers App App App Operating System Hardware Traditional Stack App App App OS OS OS Hypervisor Hardware Virtualized Stack I think there is a world market for about five computers. Everything as a Service Who cares? Utility computing = Infrastructure as a Service (IaaS) Why buy machines when you can rent cycles? Examples: Amazon s EC2, Rackspace Platform as a Service (PaaS) Give me nice API and take care of the maintenance, upgrades, Example: Google App Engine Software as a Service (SaaS) Just run it for me! Example: Gmail, Salesforce Ready-made large-data problems Lots of user-generated content Even more user behavior data Examples: Facebook friend suggestions, Google ad placement Business intelligence: gather everything in a data warehouse and run analytics to generate insight Utility computing Provision Hadoop clusters on-demand in the cloud Lower barrier to entry for tackling large-data problem Commoditization and democratization of large-data capabilities
3 What is MapReduce? Programming model for expressing distributed computations at a massive scale Execution framework for organizing and performing such computations Open-source implementation called Hadoop Why large data? How much data? Google processes 20 PB a day (2008) Wayback Machine has 3 PB TB/month (3/2009) Facebook has 2.5 PB of user data + 15 TB/day (4/2009) ebay has 6.5 PB of user data + 50 TB/day (5/2009) CERN s LHC will generate 15 PB a year (??) 640K ought to be enough for anybody. Source: Wikipedia (Everest)
4 Maximilien Brice, CERN Maximilien Brice, CERN What to do with more data? Answering factoid questions Pattern matching on the Web Works amazingly well Who shot Abraham Lincoln? X shot Abraham Lincoln Learning relations Start with seed instances Search for patterns on the Web Using patterns to find more instances How do we scale up? Wolfgang Amadeus Mozart ( ) Einstein was born in 1879 Birthday-of(Mozart, 1756) Birthday-of(Einstein, 1879) PERSON (DATE PERSON was born in DATE (Brill et al., TREC 2001; Lin, ACM TOIS 2007) (Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; )
5 Divide and Conquer Work Partition w 1 w 2 w 3 worker worker worker r 1 r 2 r 3 Result Combine Source: Wikipedia (IBM Roadrunner) Parallelization Challenges How do we assign work units to workers? What if we have more work units than workers? What if workers need to share partial results? How do we aggregate partial results? Common Theme? Parallelization problems arise from: Communication between workers (e.g., to exchange state) Access to shared resources (e.g., data) Thus, we need a synchronization mechanism How do we know all the workers have finished? What if workers die? What is the common theme of all of these problems?
6 Managing Multiple Workers Difficult because We don t know the order in which workers run We don t know when workers interrupt each other We don t know the order in which workers access shared data Thus, we need: Semaphores (lock, unlock) Conditional variables (wait, notify, broadcast) Barriers Still, lots of problems: Deadlock, livelock, race conditions... Dining philosophers, sleeping barbers, cigarette smokers... Moral of the story: be careful! Source: Ricardo Guimarães Herrmann Current Tools Where the rubber meets the road Programming models Shared Memory Message Passing Concurrency is difficult to reason about Shared memory (pthreads) Message passing (MPI) Design Patterns Master-slaves Producer-consumer flows Shared work queues master producer consumer P 1 P 2 P 3 P 4 P 5 Memory P 1 P 2 P 3 P 4 P 5 work queue Concurrency is even more difficult to reason about At the scale of datacenters (even across datacenters) In the presence of failures In terms of multiple interacting services Not to mention debugging The reality: Lots of one-off solutions, custom code Write you own dedicated library, then program with it Burden on the programmer to explicitly manage everything slaves producer consumer
7 What s then is needed? It s all about the right level of abstraction The von Neumann architecture has served us well, but is no longer appropriate for the multi-core/cluster environment Hide system-level details from the developers No more race conditions, lock contention, etc. Separating the what from how Developer specifies the computation that needs to be performed Execution framework ( runtime ) handles actual execution Big Ideas Scale out, not up Limits of SMP and large shared-memory machines Move processing to the data Cluster have limited bandwidth Process data sequentially, avoid random access Seeks are expensive, disk throughput is reasonable Seamless scalability From the mythical man-month to the tradable machine-hour The datacenter is the computer! Typical Large-Data Problem Iterate over a large number of records MapReduce Map Extract something of interest from each Shuffle and sort intermediate results Aggregate intermediate results Generate final output Reduce Key idea: provide a functional abstraction for these two operations (Dean and Ghemawat, OSDI 2004)
8 Roots in Functional Programming Map f f f f f MapReduce Programmers specify two functions: map (k, v) <k, v >* reduce (k, v ) <k, v >* All values with the same key are sent to the same reducer The execution framework handles everything else Fold g g g g g k 1 v 1 k 2 v 2 k 3 v 3 k 4 v 4 k 5 v 5 k 6 v 6 map map map map MapReduce Programmers specify two functions: map (k, v) <k, v >* reduce (k, v ) <k, v >* All values with the same key are sent to the same reducer The execution framework handles everything else a 1 b 2 c 3 c 6 a 5 c 2 b 7 c 8 Shuffle and Sort: aggregate values by keys a 1 5 b 2 7 c What s everything else? reduce reduce reduce r 1 s 1 r 2 s 2 r 3 s 3
9 MapReduce Runtime Handles scheduling Assigns workers to map and reduce tasks Handles data distribution Moves processes to data Handles synchronization Gathers, sorts, and shuffles intermediate data Handles errors and faults Detects worker failures and restarts Everything happens on top of a distributed FS (later) MapReduce Programmers specify two functions: map (k, v) <k, v >* reduce (k, v ) <k, v >* All values with the same key are reduced together The execution framework handles everything else Not quite usually, programmers also specify: partition (k, number of partitions) partition for k Often a simple hash of the key, e.g., hash(k ) mod n Divides up key space for parallel reduce operations combine (k, v ) <k, v >* Mini-reducers that run in memory after the map phase Used as an optimization to reduce network traffic k 1 v 1 k 2 v 2 k 3 v 3 k 4 v 4 k 5 v 5 k 6 v 6 map map map combine combine combine map a 1 b 2 c 3 c 6 a 5 c 2 b 7 c 8 combine Two more details Barrier between map and reduce phases But we can begin copying intermediate data earlier Keys arrive at each reducer in sorted order No enforced ordering across reducers a 1 b 2 c 9 a 5 c 2 b 7 c 8 partition partition partition partition Shuffle and Sort: aggregate values by keys a 1 5 b 2 7 c reduce reduce reduce r 1 s 1 r 2 s 2 r 3 s 3
10 Hello World : Word Count MapReduce can refer to The programming model Map(String docid, String text): for each word w in text: Emit(w, 1); Reduce(String term, Iterator<Int> values): int sum = 0; for each v in values: sum += v; Emit(term, value); The execution framework (aka runtime ) The specific implementation Usage is usually clear from context! MapReduce Implementations Google has a proprietary implementation in C++ Bindings in Java, Python User Program (1) submit Hadoop is an open-source implementation in Java Master Development led by Yahoo, used in production Now an Apache project Rapidly expanding software ecosystem Lots of custom research implementations For GPUs, cell processors, etc. split 0 split 1 split 2 split 3 split 4 (3) read worker worker (2) schedule map (2) schedule reduce (4) local write (5) remote read worker worker (6) write output file 0 output file 1 worker Input files Map phase Intermediate files (on local disk) Reduce phase Output files Adapted from (Dean and Ghemawat, OSDI 2004)
11 How do we get data to the workers? NAS Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes in the cluster Start up the workers on the node that has the data local Compute Nodes SAN Why? Not enough RAM to hold all the data in memory Disk access is slow, but disk throughput is reasonable A distributed file system is the answer GFS (Google File System) for Google s MapReduce HDFS (Hadoop Distributed File System) for Hadoop What s the problem here? GFS: Assumptions GFS: Design Decisions Commodity hardware over exotic hardware Scale out, not up High component failure rates Inexpensive commodity components fail all the time Modest number of huge files Multi-gigabyte files are common, if not encouraged Files are write-once, mostly appended to Perhaps concurrently Large streaming reads over random access High sustained throughput over low latency Files stored as chunks Fixed size (64MB) Reliability through replication Each chunk replicated across 3+ chunkservers Single master to coordinate access, keep metadata Simple centralized management No data caching Little benefit due to large datasets, streaming reads Simplify the API Push some of the issues onto the client (e.g., data layout) HDFS = GFS clone (same basic ideas) GFS slides adapted from material by (Ghemawat et al., SOSP 2003)
MAPREDUCE Programming Model
CS 2510 COMPUTER OPERATING SYSTEMS Cloud Computing MAPREDUCE Dr. Taieb Znati Computer Science Department University of Pittsburgh MAPREDUCE Programming Model Scaling Data Intensive Application MapReduce
Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu
Lecture 1 Introduction to Cloud Computing Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu Outline What is cloud computing? How it evolves? What are the
Cloud Computing Summary and Preparation for Examination
Basics of Cloud Computing Lecture 8 Cloud Computing Summary and Preparation for Examination Satish Srirama Outline Quick recap of what we have learnt as part of this course How to prepare for the examination
Hadoop & Map-Reduce. Riccardo Torlone Università Roma Tre. Credits: Jimmy Lin (University of Maryland)
Hadoop & Map-Reduce Riccardo Torlone Università Roma Tre 1 Credits: Jimmy Lin (University of Maryland) Hadoop in a nutshell An open-source software framework (Apache project) Originally developed by Yahoo
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Introduction to Cloud Computing
Introduction to Cloud Computing Cloud Computing I (intro) 15 319, spring 2010 2 nd Lecture, Jan 14 th Majd F. Sakr Lecture Motivation General overview on cloud computing What is cloud computing Services
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Distributed File Systems
Distributed File Systems Mauro Fruet University of Trento - Italy 2011/12/19 Mauro Fruet (UniTN) Distributed File Systems 2011/12/19 1 / 39 Outline 1 Distributed File Systems 2 The Google File System (GFS)
Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms
Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan [email protected] Abstract Every day, we create 2.5 quintillion
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Parallel Processing of cluster by Map Reduce
Parallel Processing of cluster by Map Reduce Abstract Madhavi Vaidya, Department of Computer Science Vivekanand College, Chembur, Mumbai [email protected] MapReduce is a parallel programming model
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
A programming model in Cloud: MapReduce
A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value
Introduction to Hadoop
1 What is Hadoop? Introduction to Hadoop We are living in an era where large volumes of data are available and the problem is to extract meaning from the data avalanche. The goal of the software tools
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
CS246: Mining Massive Datasets Jure Leskovec, Stanford University. http://cs246.stanford.edu
CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2 CPU Memory Machine Learning, Statistics Classical Data Mining Disk 3 20+ billion web pages x 20KB = 400+ TB
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela
Hadoop Distributed File System T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Agenda Introduction Flesh and bones of HDFS Architecture Accessing data Data replication strategy Fault tolerance
Parallel Programming Map-Reduce. Needless to Say, We Need Machine Learning for Big Data
Case Study 2: Document Retrieval Parallel Programming Map-Reduce Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 31 st, 2013 Carlos Guestrin
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
24/11/14. During this course. Internet is everywhere. Frequency barrier hit. Management costs increase. Advanced Distributed Systems Cloud Computing
Advanced Distributed Systems Cristian Klein Department of Computing Science Umeå University During this course Treads in IT Towards a new data center What is Cloud computing? Types of Clouds Making applications
Sriram Krishnan, Ph.D. [email protected]
Sriram Krishnan, Ph.D. [email protected] (Re-)Introduction to cloud computing Introduction to the MapReduce and Hadoop Distributed File System Programming model Examples of MapReduce Where/how to run MapReduce
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Scalable Cloud Computing Solutions for Next Generation Sequencing Data
Scalable Cloud Computing Solutions for Next Generation Sequencing Data Matti Niemenmaa 1, Aleksi Kallio 2, André Schumacher 1, Petri Klemelä 2, Eija Korpelainen 2, and Keijo Heljanko 1 1 Department of
MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012
MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction
MapReduce (in the cloud)
MapReduce (in the cloud) How to painlessly process terabytes of data by Irina Gordei MapReduce Presentation Outline What is MapReduce? Example How it works MapReduce in the cloud Conclusion Demo Motivation:
Viswanath Nandigam Sriram Krishnan Chaitan Baru
Viswanath Nandigam Sriram Krishnan Chaitan Baru Traditional Database Implementations for large-scale spatial data Data Partitioning Spatial Extensions Pros and Cons Cloud Computing Introduction Relevance
Distributed File Systems
Distributed File Systems Paul Krzyzanowski Rutgers University October 28, 2012 1 Introduction The classic network file systems we examined, NFS, CIFS, AFS, Coda, were designed as client-server applications.
Developing MapReduce Programs
Cloud Computing Developing MapReduce Programs Dell Zhang Birkbeck, University of London 2015/16 MapReduce Algorithm Design MapReduce: Recap Programmers must specify two functions: map (k, v) * Takes
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the The Israeli Association of Grid Technologies July 15, 2009 Outline Architecture
PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS
PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS By HAI JIN, SHADI IBRAHIM, LI QI, HAIJUN CAO, SONG WU and XUANHUA SHI Prepared by: Dr. Faramarz Safi Islamic Azad
University of Maryland. Tuesday, February 2, 2010
Data-Intensive Information Processing Applications Session #2 Hadoop: Nuts and Bolts Jimmy Lin University of Maryland Tuesday, February 2, 2010 This work is licensed under a Creative Commons Attribution-Noncommercial-Share
CIS 4930/6930 Spring 2014 Introduction to Data Science /Data Intensive Computing. University of Florida, CISE Department Prof.
CIS 4930/6930 Spring 2014 Introduction to Data Science /Data Intensie Computing Uniersity of Florida, CISE Department Prof. Daisy Zhe Wang Map/Reduce: Simplified Data Processing on Large Clusters Parallel/Distributed
Hadoop Parallel Data Processing
MapReduce and Implementation Hadoop Parallel Data Processing Kai Shen A programming interface (two stage Map and Reduce) and system support such that: the interface is easy to program, and suitable for
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
Comparison of Different Implementation of Inverted Indexes in Hadoop
Comparison of Different Implementation of Inverted Indexes in Hadoop Hediyeh Baban, S. Kami Makki, and Stefan Andrei Department of Computer Science Lamar University Beaumont, Texas (hbaban, kami.makki,
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
Lecture 5: GFS & HDFS! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 5: GFS & HDFS!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Cloud computing - Architecting in the cloud
Cloud computing - Architecting in the cloud [email protected] 1 Outline Cloud computing What is? Levels of cloud computing: IaaS, PaaS, SaaS Moving to the cloud? Architecting in the cloud Best practices
GraySort and MinuteSort at Yahoo on Hadoop 0.23
GraySort and at Yahoo on Hadoop.23 Thomas Graves Yahoo! May, 213 The Apache Hadoop[1] software library is an open source framework that allows for the distributed processing of large data sets across clusters
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13 Astrid Rheinländer Wissensmanagement in der Bioinformatik What is Big Data? collection of data sets so large and complex
LARGE-SCALE DATA PROCESSING USING MAPREDUCE IN CLOUD COMPUTING ENVIRONMENT
LARGE-SCALE DATA PROCESSING USING MAPREDUCE IN CLOUD COMPUTING ENVIRONMENT Samira Daneshyar 1 and Majid Razmjoo 2 1,2 School of Computer Science, Centre of Software Technology and Management (SOFTEM),
MapReduce and Hadoop Distributed File System
MapReduce and Hadoop Distributed File System 1 B. RAMAMURTHY Contact: Dr. Bina Ramamurthy CSE Department University at Buffalo (SUNY) [email protected] http://www.cse.buffalo.edu/faculty/bina Partially
What Is Datacenter (Warehouse) Computing. Distributed and Parallel Technology. Datacenter Computing Application Programming
Distributed and Parallel Technology Datacenter and Warehouse Computing Hans-Wolfgang Loidl School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh 0 Based on earlier versions by
Comparative analysis of Google File System and Hadoop Distributed File System
Comparative analysis of Google File System and Hadoop Distributed File System R.Vijayakumari, R.Kirankumar, K.Gangadhara Rao Dept. of Computer Science, Krishna University, Machilipatnam, India, [email protected]
Cloud Platforms, Challenges & Hadoop. Aditee Rele Karpagam Venkataraman Janani Ravi
Cloud Platforms, Challenges & Hadoop Aditee Rele Karpagam Venkataraman Janani Ravi Cloud Platform Models Aditee Rele Microsoft Corporation Dec 8, 2010 IT CAPACITY Provisioning IT Capacity Under-supply
Systems Engineering II. Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de
Systems Engineering II Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de About me! Since May 2015 2015 2012 Research Group Leader cfaed, TU Dresden PhD Student MPI- SWS Research Intern Microsoft
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
Recognization of Satellite Images of Large Scale Data Based On Map- Reduce Framework
Recognization of Satellite Images of Large Scale Data Based On Map- Reduce Framework Vidya Dhondiba Jadhav, Harshada Jayant Nazirkar, Sneha Manik Idekar Dept. of Information Technology, JSPM s BSIOTR (W),
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
Resource Scalability for Efficient Parallel Processing in Cloud
Resource Scalability for Efficient Parallel Processing in Cloud ABSTRACT Govinda.K #1, Abirami.M #2, Divya Mercy Silva.J #3 #1 SCSE, VIT University #2 SITE, VIT University #3 SITE, VIT University In the
CLOUD COMPUTING USING HADOOP TECHNOLOGY
CLOUD COMPUTING USING HADOOP TECHNOLOGY DHIRAJLAL GANDHI COLLEGE OF TECHNOLOGY SALEM B.NARENDRA PRASATH S.PRAVEEN KUMAR 3 rd year CSE Department, 3 rd year CSE Department, Email:[email protected]
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
A PERFORMANCE ANALYSIS of HADOOP CLUSTERS in OPENSTACK CLOUD and in REAL SYSTEM
A PERFORMANCE ANALYSIS of HADOOP CLUSTERS in OPENSTACK CLOUD and in REAL SYSTEM Ramesh Maharjan and Manoj Shakya Department of Computer Science and Engineering Dhulikhel, Kavre, Nepal [email protected],
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers
Hadoop Distributed File System. Jordan Prosch, Matt Kipps
Hadoop Distributed File System Jordan Prosch, Matt Kipps Outline - Background - Architecture - Comments & Suggestions Background What is HDFS? Part of Apache Hadoop - distributed storage What is Hadoop?
Big Data Processing in the Cloud. Shadi Ibrahim Inria, Rennes - Bretagne Atlantique Research Center
Big Data Processing in the Cloud Shadi Ibrahim Inria, Rennes - Bretagne Atlantique Research Center Data is ONLY as useful as the decisions it enables 2 Data is ONLY as useful as the decisions it enables
BlobSeer: Towards efficient data storage management on large-scale, distributed systems
: Towards efficient data storage management on large-scale, distributed systems Bogdan Nicolae University of Rennes 1, France KerData Team, INRIA Rennes Bretagne-Atlantique PhD Advisors: Gabriel Antoniu
Big Fast Data Hadoop acceleration with Flash. June 2013
Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional
Map Reduce / Hadoop / HDFS
Chapter 3: Map Reduce / Hadoop / HDFS 97 Overview Outline Distributed File Systems (re-visited) Motivation Programming Model Example Applications Big Data in Apache Hadoop HDFS in Hadoop YARN 98 Overview
Load Rebalancing for File System in Public Cloud Roopa R.L 1, Jyothi Patil 2
Load Rebalancing for File System in Public Cloud Roopa R.L 1, Jyothi Patil 2 1 PDA College of Engineering, Gulbarga, Karnataka, India [email protected] 2 PDA College of Engineering, Gulbarga, Karnataka,
Open Cloud System. (Integration of Eucalyptus, Hadoop and AppScale into deployment of University Private Cloud)
Open Cloud System (Integration of Eucalyptus, Hadoop and into deployment of University Private Cloud) Thinn Thu Naing University of Computer Studies, Yangon 25 th October 2011 Open Cloud System University
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
What s Happening to the Mainframe? Mobile? Social? Cloud? Big Data?
December, 2014 What s Happening to the Mainframe? Mobile? Social? Cloud? Big Data? Glenn Anderson IBM Lab Services and Training Today s mainframe is a hybrid system z/os Linux on Sys z DB2 Analytics Accelerator
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
Big Data Explained. An introduction to Big Data Science.
Big Data Explained An introduction to Big Data Science. 1 Presentation Agenda What is Big Data Why learn Big Data Who is it for How to start learning Big Data When to learn it Objective and Benefits of
Part V Applications. What is cloud computing? SaaS has been around for awhile. Cloud Computing: General concepts
Part V Applications Cloud Computing: General concepts Copyright K.Goseva 2010 CS 736 Software Performance Engineering Slide 1 What is cloud computing? SaaS: Software as a Service Cloud: Datacenters hardware
Cloud Computing using MapReduce, Hadoop, Spark
Cloud Computing using MapReduce, Hadoop, Spark Benjamin Hindman [email protected] Why this talk? At some point, you ll have enough data to run your parallel algorithms on multiple computers SPMD (e.g.,
Big Data Storage, Management and challenges. Ahmed Ali-Eldin
Big Data Storage, Management and challenges Ahmed Ali-Eldin (Ambitious) Plan What is Big Data? And Why talk about Big Data? How to store Big Data? BigTables (Google) Dynamo (Amazon) How to process Big
Accelerating Hadoop MapReduce Using an In-Memory Data Grid
Accelerating Hadoop MapReduce Using an In-Memory Data Grid By David L. Brinker and William L. Bain, ScaleOut Software, Inc. 2013 ScaleOut Software, Inc. 12/27/2012 H adoop has been widely embraced for
Big Data Processing with Google s MapReduce. Alexandru Costan
1 Big Data Processing with Google s MapReduce Alexandru Costan Outline Motivation MapReduce programming model Examples MapReduce system architecture Limitations Extensions 2 Motivation Big Data @Google:
Google File System. Web and scalability
Google File System Web and scalability The web: - How big is the Web right now? No one knows. - Number of pages that are crawled: o 100,000 pages in 1994 o 8 million pages in 2005 - Crawlable pages might
Cloud Computing. Adam Barker
Cloud Computing Adam Barker 1 Overview Introduction to Cloud computing Enabling technologies Different types of cloud: IaaS, PaaS and SaaS Cloud terminology Interacting with a cloud: management consoles
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed
Application Development. A Paradigm Shift
Application Development for the Cloud: A Paradigm Shift Ramesh Rangachar Intelsat t 2012 by Intelsat. t Published by The Aerospace Corporation with permission. New 2007 Template - 1 Motivation for the
Intro to Map/Reduce a.k.a. Hadoop
Intro to Map/Reduce a.k.a. Hadoop Based on: Mining of Massive Datasets by Ra jaraman and Ullman, Cambridge University Press, 2011 Data Mining for the masses by North, Global Text Project, 2012 Slides by
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms
Cloud Computing and Amazon Web Services. CJUG March, 2009 Tom Malaher
Cloud Computing and Amazon Web Services CJUG March, 2009 Tom Malaher Agenda What is Cloud Computing? Amazon Web Services (AWS) Other Offerings Composing AWS Services Use Cases Ecosystem Reality Check Pros&Cons
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 14 Big Data Management IV: Big-data Infrastructures (Background, IO, From NFS to HFDS) Chapter 14-15: Abideboul
Parallel Computing. Benson Muite. [email protected] http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage
Parallel Computing Benson Muite [email protected] http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework
Hadoop: Distributed Data Processing. Amr Awadallah Founder/CTO, Cloudera, Inc. ACM Data Mining SIG Thursday, January 25 th, 2010
Hadoop: Distributed Data Processing Amr Awadallah Founder/CTO, Cloudera, Inc. ACM Data Mining SIG Thursday, January 25 th, 2010 Outline Scaling for Large Data Processing What is Hadoop? HDFS and MapReduce
Introduction to Big Data & Basic Data Analysis. Freddy Wetjen, National Library of Norway.
Introduction to Big Data & Basic Data Analysis Freddy Wetjen, National Library of Norway. Big Data EveryWhere! Lots of data may be collected and warehoused Web data, e-commerce purchases at department/
