Student Project 1 - Explorative Data Analysis with Hadoop and Spark

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Student Project 1 - Explorative Data Analysis with Hadoop and Spark"

Transcription

1 Student Project 1 - Explorative Data Analysis with Hadoop and Spark 42matters is a rapidly growing start up, leading the development of next generation mobile user modeling technology. Our solutions are used by big brand companies within the mobile advertising market to serve mobile users intelligently targeted content. We are an international team, with an innovative and fast paced company culture. Project Overview The collected anonymized data about mobile devices needs to be used for different data analytics tasks. The data is stored in an online transaction processing system (shortly refereed to as online system in the following) which is not suitable for this type of tasks. The goal of the project is to set up a system which allows offline data analytics based on Hadoop/Spark. The whole system will be implemented on Amazon AWS. Main activities of the project are: Load data from the online system into Hadoop/Spark. Structure and prepare the data to be suitable for required data analytics tasks. Implement and run data analytics tasks. The system will be built on a stack of MongoDB, Couchbase, and Hadoop cluster running on Amazon cloud. More details about the three parts are described in the following sections. In the figure below an overview of the systems involved in the project is provided. On the left side there is the online system which stores all production data. Data is stored in two different database systems, Couchbase and MongoDB. This part of the system will be provided. On the right site there is the offline system which needs to be implemented. Data from the online system has to be loaded into the created offline system and analyzed there. The whole system will be created in Amazon AWS (user credentials for Amazon AWS will be provided by 42matters).

2 Data Sources Structure The source data used in the project is data about mobile devices and about apps. Devices are stored in Couchbase, whereas, apps in MongoDB. Both, devices and apps, are stored in JSON format: Apps Apps are stored in a MongoDB collection (a collection in MongoDB corresponds to a table in a relational database). Each app is represented by a JSON document (which corresponds to a row in a table of a relational database) containing among others the following fields: package name: The unique identifier of an app title: The title of an app description: The description of an app category: The Google Play category the app belongs to. 42category (optional): Similar to the field category but more fine granular. rating: The rating of the app on Google Play.

3 The following example represents the app document for the Facebook app: package_name : com.facebook.katana, title : Facebook, description : Keeping up with friends is faster than ever.., category : Social, 42category : Social Network, rating : 4.0, } This collection contains about 1 million apps. Devices Devices are stored in Couchbase buckets (a bucket in Couchbase corresponds to a table in a relational database). Each device is represented by a JSON document (which corresponds to a row in a table of a relational database) containing among others the following fields: udid: The unique identifier of a device country: The country of the device timestamp: Timestamp of the last update of the document apps: List of apps installed on the device (apps are identified by their package name) The following example represents a device which among others has the Facebook app installed: udid : ++/OarsCrkiQx5EyY/XTVxOwc4m1H2Re3m+CdiW+YeU=, country : CH, timestamp : ISODate(" T10:18:56.531Z"), apps : [ fit : ISODate(" T03:47:39Z"), lut : ISODate(" T12:15:19Z"), pn : playboard.android }, fit : ISODate(" T08:43:32Z"), lut : ISODate(" T10:11:46Z"), pn : com.facebook.katana }, ], } This bucket contains millions of devices.

4 Data Analytics Requirements The system to be build will enable explorative data analytics, i.e. it will allow to explore devices and apps data by executing SQL like queries (e.g. by using Hive over Spark or Spark QL). In the following some examples of queries to be supported by the system: number of devices having a specific app installed. Package name com.facebook.katana 1,850,300 the number of existing apps per app category. Category Social 2,500 Business 7,430 Find the top 10 most installed apps in the countries CH, DE, US, IT. Compute the cumulative count of apps installation on devices based on the app rankings (also grouped by country): ry Ranking Range App Installations Cumulative App Installations CH ( ] 15,000,000 15,000,000 CH ( ] 10,000,000 25,000,000 CH ( ] 2,000,000 27,000,000 CH ( ] 1,000,000 28,000,000 CH [ ] 500,000 28,500,000 DE ( ] 75,000,000 75,000,000

5 Percentage of the top 1000 apps apps (apps with most installations on devices) per country with a 42category (Note: this query requires first to indentify the top 1000 apps per country and then the percentage of them having a 42category). Average percentage of apps having a 42category, per device and country. Top 10 apps (apps with most installations on devices) per country which do not have any 42category. Project Tasks The project requires several tasks to be accomplished: Loading data from Couchbase and MongoDB into Hadoop. There exist Hadoop connectors which allow to connect to Couchbase and MongoDB. This connectors can be used to extract the data about devices and apps from the source systems in order to load it into Hadoop. Data modeling Data from the source systems needs to be modelled (e.g. into Hive tables) in Hadoop in a way to allow the above queries to be expressed. A challenging part of this task might be to bring the devices document into a tabular structure. Indeed, each device document contains a list of apps installed on that device and this list can have a different length on each device. Query writing Based on the defined data model queries need to be written to answer the data analytics requirements described in the previous section. Challenges Understanding and using the technology stack Mastering the distributed model of Hadoop/Spark Mastering the SQL like query language to accomplish the data analytics tasks. (Optional) Tableau Software Integration Tableau Software is a tool for explorative data analysis. It allows to connect to different data sources and to explore the data graphically. Tableau Software could use the Hadoop/Spark/Hive cluster as a data source allowing to explore the data in Hadoop graphically and to create dashboards.

Student Project 2 - Apps Frequently Installed Together

Student Project 2 - Apps Frequently Installed Together Student Project 2 - Apps Frequently Installed Together 42matters is a rapidly growing start up, leading the development of next generation mobile user modeling technology. Our solutions are used by big

More information

INTRODUCTION TO CASSANDRA

INTRODUCTION TO CASSANDRA INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open

More information

Customer Case Study. Sharethrough

Customer Case Study. Sharethrough Customer Case Study Customer Case Study Benefits Faster prototyping of new applications Easier debugging of complex pipelines Improved overall engineering team productivity Summary offers a robust advertising

More information

Big Data for everyone Democratizing big data with the cloud. Steffen Krause Technical Evangelist @AWS_Aktuell skrause@amazon.de

Big Data for everyone Democratizing big data with the cloud. Steffen Krause Technical Evangelist @AWS_Aktuell skrause@amazon.de Big Data for everyone Democratizing big data with the cloud Steffen Krause Technical Evangelist @AWS_Aktuell skrause@amazon.de Does this Data make me look big? Overview Designing big data solutions in

More information

From Spark to Ignition:

From Spark to Ignition: From Spark to Ignition: Fueling Your Business on Real-Time Analytics Eric Frenkiel, MemSQL CEO June 29, 2015 San Francisco, CA What s in Store For This Presentation? 1. MemSQL: A real-time database for

More information

Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth

Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth MAKING BIG DATA COME ALIVE Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth Steve Gonzales, Principal Manager steve.gonzales@thinkbiganalytics.com

More information

Background on Elastic Compute Cloud (EC2) AMI s to choose from including servers hosted on different Linux distros

Background on Elastic Compute Cloud (EC2) AMI s to choose from including servers hosted on different Linux distros David Moses January 2014 Paper on Cloud Computing I Background on Tools and Technologies in Amazon Web Services (AWS) In this paper I will highlight the technologies from the AWS cloud which enable you

More information

Sisense. Product Highlights. www.sisense.com

Sisense. Product Highlights. www.sisense.com Sisense Product Highlights Introduction Sisense is a business intelligence solution that simplifies analytics for complex data by offering an end-to-end platform that lets users easily prepare and analyze

More information

A very short talk about Apache Kylin Business Intelligence meets Big Data. Fabian Wilckens EMEA Solutions Architect

A very short talk about Apache Kylin Business Intelligence meets Big Data. Fabian Wilckens EMEA Solutions Architect A very short talk about Apache Kylin Business Intelligence meets Big Data Fabian Wilckens EMEA Solutions Architect 1 The challenge today 2 Very quickly: OLAP Online Analytical Processing How many beers

More information

Big Data & Analytics @ Netflix. Paul Ellwood February 9th, 2015

Big Data & Analytics @ Netflix. Paul Ellwood February 9th, 2015 Big Data & Analytics @ Netflix Paul Ellwood February 9th, 2015 Who Am I? Director, Data Science & Engineering Also Leader, DataKind San Francisco chapter Formerly: Director, Product Analytics @ Netflix

More information

Getting to Know Big Data

Getting to Know Big Data Getting to Know Big Data Dr. Putchong Uthayopas Department of Computer Engineering, Faculty of Engineering, Kasetsart University Email: putchong@ku.th Information Tsunami Rapid expansion of Smartphone

More information

TE's Analytics on Hadoop and SAP HANA Using SAP Vora

TE's Analytics on Hadoop and SAP HANA Using SAP Vora TE's Analytics on Hadoop and SAP HANA Using SAP Vora Naveen Narra Senior Manager TE Connectivity Santha Kumar Rajendran Enterprise Data Architect TE Balaji Krishna - Director, SAP HANA Product Mgmt. -

More information

How to Navigate Big Data with Ad Hoc Visual Data Discovery Data technologies are rapidly changing, but principles of 30 years ago still apply today

How to Navigate Big Data with Ad Hoc Visual Data Discovery Data technologies are rapidly changing, but principles of 30 years ago still apply today How to Navigate Big Data with Ad Hoc Visual Data Discovery Data technologies are rapidly changing, but principles of 30 years ago still apply today INTRODUCTION Data is the heart of TIBCO Spotfire. It

More information

Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia

Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop

More information

KNIME & Avira, or how I ve learned to love Big Data

KNIME & Avira, or how I ve learned to love Big Data KNIME & Avira, or how I ve learned to love Big Data Facts about Avira (AntiVir) 100 mio. customers Extreme Reliability 500 employees (Tettnang, San Francisco, Kuala Lumpur, Bucharest, Amsterdam) Company

More information

IBM BigInsights Has Potential If It Lives Up To Its Promise. InfoSphere BigInsights A Closer Look

IBM BigInsights Has Potential If It Lives Up To Its Promise. InfoSphere BigInsights A Closer Look IBM BigInsights Has Potential If It Lives Up To Its Promise By Prakash Sukumar, Principal Consultant at iolap, Inc. IBM released Hadoop-based InfoSphere BigInsights in May 2013. There are already Hadoop-based

More information

Native Connectivity to Big Data Sources in MSTR 10

Native Connectivity to Big Data Sources in MSTR 10 Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single

More information

Data Analytics Infrastructure

Data Analytics Infrastructure Data Analytics Infrastructure Data Science SG Nov 2015 Meetup Le Nguyen The Dat @lenguyenthedat Backgrounds ZALORA Group (2013 2014) o Biggest online fashion retails in South East Asia o Data Infrastructure

More information

Real Time Big Data Processing

Real Time Big Data Processing Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure

More information

CAPTURING & PROCESSING REAL-TIME DATA ON AWS

CAPTURING & PROCESSING REAL-TIME DATA ON AWS CAPTURING & PROCESSING REAL-TIME DATA ON AWS @ 2015 Amazon.com, Inc. and Its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent

More information

Overview of edx Analytics

Overview of edx Analytics Overview of edx Analytics I. Data Available from edx EdX provides researchers with data about your institution's classes running on edx.org and edge.edx.org. This includes: Course data Student information

More information

Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL. May 2015

Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL. May 2015 Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL May 2015 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document

More information

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1 Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots

More information

The Inside Scoop on Hadoop

The Inside Scoop on Hadoop The Inside Scoop on Hadoop Orion Gebremedhin National Solutions Director BI & Big Data, Neudesic LLC. VTSP Microsoft Corp. Orion.Gebremedhin@Neudesic.COM B-orgebr@Microsoft.com @OrionGM The Inside Scoop

More information

Big Data on Google Cloud

Big Data on Google Cloud Big Data on Google Cloud Using Cloud Dataflow, BigQuery, and friends to process data the Cloud way William Vambenepe, Lead Product Manager for Big Data, Google Cloud Platform @vambenepe / vbp@google.com

More information

Winning Against All Odds: Big Data for the Budget Travel Industry. Silviu Preoteasa Head of Marketing Technology

Winning Against All Odds: Big Data for the Budget Travel Industry. Silviu Preoteasa Head of Marketing Technology Winning Against All Odds: Big Data for the Budget Travel Industry Silviu Preoteasa Head of Marketing Technology ABOUT Launched in 1999 6M+ visitors / mo 1M+ pages indexed in Google 30,000+ properties listed

More information

MySQL Comes of Age. Robert Hodges Sr. Staff Engineer Percona Live London November 4, 2014. 2014 VMware Inc. All rights reserved.

MySQL Comes of Age. Robert Hodges Sr. Staff Engineer Percona Live London November 4, 2014. 2014 VMware Inc. All rights reserved. MySQL Comes of Age Robert Hodges Sr. Staff Engineer Percona Live London November 4, 2014 2014 VMware Inc. All rights reserved. Continuent is now part of VMware! VMware acquired Continuent on 28 October

More information

So What s the Big Deal?

So What s the Big Deal? So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data

More information

Increasing revenue realization CASE STUDY. by leveraging. Big Data. Mobile marketing platform

Increasing revenue realization CASE STUDY. by leveraging. Big Data. Mobile marketing platform Increasing revenue realization CASE STUDY by leveraging Big Data Mobile marketing platform background Opera Mediaworks is a part of Opera Software. It is the world's leading mobile advertising platform.

More information

Introduction to NoSQL Databases. Tore Risch Information Technology Uppsala University 2013-03-05

Introduction to NoSQL Databases. Tore Risch Information Technology Uppsala University 2013-03-05 Introduction to NoSQL Databases Tore Risch Information Technology Uppsala University 2013-03-05 UDBL Tore Risch Uppsala University, Sweden Evolution of DBMS technology Distributed databases SQL 1960 1970

More information

Preparing Your Data For Cloud

Preparing Your Data For Cloud Preparing Your Data For Cloud Narinder Kumar Inphina Technologies 1 Agenda Relational DBMS's : Pros & Cons Non-Relational DBMS's : Pros & Cons Types of Non-Relational DBMS's Current Market State Applicability

More information

Sparking your Knowledge with Azure Spark

Sparking your Knowledge with Azure Spark Sparking your Knowledge with Azure Spark Data Platform Airlift 21 de Outubro \\ Microsoft Lisbon Experience Industry validation "Microsoft s comprehensive hybrid story, which spans applications and platforms

More information

WHITEPAPER. A Technical Perspective on the Talena Data Availability Management Solution

WHITEPAPER. A Technical Perspective on the Talena Data Availability Management Solution WHITEPAPER A Technical Perspective on the Talena Data Availability Management Solution BIG DATA TECHNOLOGY LANDSCAPE Over the past decade, the emergence of social media, mobile, and cloud technologies

More information

JAVASCRIPT CHARTING. Scaling for the Enterprise with Metric Insights. 2013 Copyright Metric insights, Inc.

JAVASCRIPT CHARTING. Scaling for the Enterprise with Metric Insights. 2013 Copyright Metric insights, Inc. JAVASCRIPT CHARTING Scaling for the Enterprise with Metric Insights 2013 Copyright Metric insights, Inc. A REVOLUTION IS HAPPENING... 3! Challenges... 3! Borrowing From The Enterprise BI Stack... 4! Visualization

More information

Monetizing Millions of Mobile Users with Cloud Business Analytics

Monetizing Millions of Mobile Users with Cloud Business Analytics Monetizing Millions of Mobile Users with Cloud Business Analytics MicroStrategy World 2013 David Abercrombie Data Analytics Engineer Agenda Tapjoy Big Data Architecture MicroStrategy Cloud Implementation

More information

Analyzing Big Data with AWS

Analyzing Big Data with AWS Analyzing Big Data with AWS Peter Sirota, General Manager, Amazon Elastic MapReduce @petersirota What is Big Data? Computer generated data Application server logs (web sites, games) Sensor data (weather,

More information

WA2192 Introduction to Big Data and NoSQL EVALUATION ONLY

WA2192 Introduction to Big Data and NoSQL EVALUATION ONLY WA2192 Introduction to Big Data and NoSQL Web Age Solutions Inc. USA: 1-877-517-6540 Canada: 1-866-206-4644 Web: http://www.webagesolutions.com The following terms are trademarks of other companies: Java

More information

TOP 8 TRENDS FOR 2016 BIG DATA

TOP 8 TRENDS FOR 2016 BIG DATA The year 2015 was an important one in the world of big data. What used to be hype became the norm as more businesses realized that data, in all forms and sizes, is critical to making the best possible

More information

wow CPSC350 relational schemas table normalization practical use of relational algebraic operators tuple relational calculus and their expression in a declarative query language relational schemas CPSC350

More information

Databricks. A Primer

Databricks. A Primer Databricks A Primer Who is Databricks? Databricks was founded by the team behind Apache Spark, the most active open source project in the big data ecosystem today. Our mission at Databricks is to dramatically

More information

Dealing with Data Especially Big Data

Dealing with Data Especially Big Data Dealing with Data Especially Big Data INFO-GB-2346.30 Spring 2016 Very Rough Draft Subject to Change Professor Norman White Background: Most courses spend their time on the concepts and techniques of analyzing

More information

Tap into Hadoop and Other No SQL Sources

Tap into Hadoop and Other No SQL Sources Tap into Hadoop and Other No SQL Sources Presented by: Trishla Maru What is Big Data really? The Three Vs of Big Data According to Gartner Volume Volume Orders of magnitude bigger than conventional data

More information

Creative Director. Inspire artists, programmers, producers and marketing staff to make the highest quality product possible

Creative Director. Inspire artists, programmers, producers and marketing staff to make the highest quality product possible Open positions Creative Director... 2 Level designer... 3 Data scientist... 4 Backend engineer - user acquisition and game management tools... 5 Gameplay programmer... 6 Software engineer Client, tools,

More information

Data processing goes big

Data processing goes big Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,

More information

MapR: Best Solution for Customer Success

MapR: Best Solution for Customer Success 2015 MapR Technologies 2015 MapR Technologies 1 MapR: Best Solution for Customer Success Best Product High Growth 700+ Customers Premier Investors Apache Open Source 2X 2X Growth In Direct Customers Growth

More information

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QlikView Technical Case Study Series Big Data June 2012 qlikview.com Introduction This QlikView technical case study focuses on the QlikView deployment

More information

Tableau Visual Intelligence Platform Rapid Fire Analytics for Everyone Everywhere

Tableau Visual Intelligence Platform Rapid Fire Analytics for Everyone Everywhere Tableau Visual Intelligence Platform Rapid Fire Analytics for Everyone Everywhere Agenda 1. Introductions & Objectives 2. Tableau Overview 3. Tableau Products 4. Tableau Architecture 5. Why Tableau? 6.

More information

Tableau Online. Understanding Data Updates

Tableau Online. Understanding Data Updates Tableau Online Understanding Data Updates Author: Francois Ajenstat July 2013 p2 Whether your data is in an on-premise database, a database, a data warehouse, a cloud application or an Excel file, you

More information

6 Steps to Faster Data Blending Using Your Data Warehouse

6 Steps to Faster Data Blending Using Your Data Warehouse 6 Steps to Faster Data Blending Using Your Data Warehouse Self-Service Data Blending and Analytics Dynamic market conditions require companies to be agile and decision making to be quick meaning the days

More information

Step by Step: Big Data Technology. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 25 August 2015

Step by Step: Big Data Technology. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 25 August 2015 Step by Step: Big Data Technology Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 25 August 2015 Data Sources IT Infrastructure Analytics 2 B y 2015, 20% of Global 1000 organizations

More information

Moving From Hadoop to Spark

Moving From Hadoop to Spark + Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com sujee@elephantscale.com Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee

More information

Bringing Big Data to People

Bringing Big Data to People Bringing Big Data to People Microsoft s modern data platform SQL Server 2014 Analytics Platform System Microsoft Azure HDInsight Data Platform Everyone should have access to the data they need. Process

More information

Platform Agnostic Mobile App Development

Platform Agnostic Mobile App Development Platform Agnostic Mobile App Development January 2016 A cooperative project between NTT DATA, Inc. and University of Texas Dallas Copyright 2012 NTT DATA Corporation Copyright 2012 NTT DATA Corporation

More information

Using Hadoop, Cloud and Tiered Storage For Peak Performance

Using Hadoop, Cloud and Tiered Storage For Peak Performance Using Hadoop, Cloud and Tiered Storage For Peak Performance Presented by: David Gorbet, Vice President, Engineering, MarkLogic Corporation AGILITY SLIDE: 2 Local Disk SAN NAS SLIDE: 3 TIERED STORAGE ELASTICITY

More information

Databricks. A Primer

Databricks. A Primer Databricks A Primer Who is Databricks? Databricks vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created Apache Spark, a powerful

More information

BCIT COMPUTING offers courses and credentials in SIX related information technology sectors

BCIT COMPUTING offers courses and credentials in SIX related information technology sectors COMPUTING PART-TIME STUDIES SOFTWARE and MOBILE DEVELOPMENT ADVANCED WEB TECHNOLOGIES DATABASE and BUSINESS INTELLIGENCE BCIT COMPUTING offers courses and credentials in SIX related information technology

More information

[Hadoop, Storm and Couchbase: Faster Big Data]

[Hadoop, Storm and Couchbase: Faster Big Data] [Hadoop, Storm and Couchbase: Faster Big Data] With over 8,500 clients, LivePerson is the global leader in intelligent online customer engagement. With an increasing amount of agent/customer engagements,

More information

Big Data Spatial Analytics An Introduction

Big Data Spatial Analytics An Introduction 2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop Big Data Spatial Analytics An Introduction Marwa Mabrouk Mansour Raad Esri iu UC2013. Technical Workshop

More information

Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect

Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate

More information

Best Practices for Hadoop Data Analysis with Tableau

Best Practices for Hadoop Data Analysis with Tableau Best Practices for Hadoop Data Analysis with Tableau September 2013 2013 Hortonworks Inc. http:// Tableau 6.1.4 introduced the ability to visualize large, complex data stored in Apache Hadoop with Hortonworks

More information

III Big Data Technologies

III Big Data Technologies III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

Sentimental Analysis using Hadoop Phase 2: Week 2

Sentimental Analysis using Hadoop Phase 2: Week 2 Sentimental Analysis using Hadoop Phase 2: Week 2 MARKET / INDUSTRY, FUTURE SCOPE BY ANKUR UPRIT The key value type basically, uses a hash table in which there exists a unique key and a pointer to a particular

More information

Real Time Fraud Detection With Sequence Mining on Big Data Platform. Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA

Real Time Fraud Detection With Sequence Mining on Big Data Platform. Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA Real Time Fraud Detection With Sequence Mining on Big Data Platform Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA Open Source Big Data Eco System Query (NOSQL) : Cassandra,

More information

Lofan Abrams Data Services for Big Data Session # 2987

Lofan Abrams Data Services for Big Data Session # 2987 Lofan Abrams Data Services for Big Data Session # 2987 Big Data Are you ready for blast-off? Big Data, for better or worse: 90% of world s data generated over last two years. ScienceDaily, ScienceDaily

More information

Ali Ghodsi Head of PM and Engineering Databricks

Ali Ghodsi Head of PM and Engineering Databricks Making Big Data Simple Ali Ghodsi Head of PM and Engineering Databricks Big Data is Hard: A Big Data Project Tasks Tasks Build a Hadoop cluster Challenges Clusters hard to setup and manage Build a data

More information

Oracle Big Data SQL Technical Update

Oracle Big Data SQL Technical Update Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical

More information

Customer Case Study. Automatic Labs

Customer Case Study. Automatic Labs Customer Case Study Automatic Labs Customer Case Study Automatic Labs Benefits Validated product in days Completed complex queries in minutes Freed up 1 full-time data scientist Infrastructure savings

More information

BIRT in the World of Big Data

BIRT in the World of Big Data BIRT in the World of Big Data David Rosenbacher VP Sales Engineering Actuate Corporation 2013 Actuate Customer Days Today s Agenda and Goals Introduction to Big Data Compare with Regular Data Common Approaches

More information

Azure Data Lake Analytics

Azure Data Lake Analytics Azure Data Lake Analytics Compose and orchestrate data services at scale Fully managed service to support orchestration of data movement and processing Connect to relational or non-relational data

More information

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems

More information

Connecting Hadoop with Oracle Database

Connecting Hadoop with Oracle Database Connecting Hadoop with Oracle Database Sharon Stephen Senior Curriculum Developer Server Technologies Curriculum The following is intended to outline our general product direction.

More information

Tapping Into Hadoop and NoSQL Data Sources with MicroStrategy. Presented by: Jeffrey Zhang and Trishla Maru

Tapping Into Hadoop and NoSQL Data Sources with MicroStrategy. Presented by: Jeffrey Zhang and Trishla Maru Tapping Into Hadoop and NoSQL Data Sources with MicroStrategy Presented by: Jeffrey Zhang and Trishla Maru Agenda Big Data Overview All About Hadoop What is Hadoop? How does MicroStrategy connects to Hadoop?

More information

SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES

SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES AWS GLOBAL INFRASTRUCTURE 10 Regions 25 Availability Zones 51 Edge locations WHAT

More information

Spil Games Enables 500% ROI, Cuts Week from Reporting Timeline

Spil Games Enables 500% ROI, Cuts Week from Reporting Timeline CUSTOMER SUCCESS STORY Spil Games Enables 500% ROI, Cuts Week from Reporting Timeline Spil Games, which publishes and distributes mobile games to more than 100 million monthly users, was playing a game

More information

Next-Generation Cloud Analytics with Amazon Redshift

Next-Generation Cloud Analytics with Amazon Redshift Next-Generation Cloud Analytics with Amazon Redshift What s inside Introduction Why Amazon Redshift is Great for Analytics Cloud Data Warehousing Strategies for Relational Databases Analyzing Fast, Transactional

More information

Learning Tree Training Pre-approved Training for Continuing Education Units (CEUs)

Learning Tree Training Pre-approved Training for Continuing Education Units (CEUs) Learning Tree Training Pre-approved Training for Continuing Education Units (CEUs) Note: Approved training courses in this document are subject to change without prior notification. Training submitted

More information

What Next for DBAs in the Big Data Era

What Next for DBAs in the Big Data Era What Next for DBAs in the Big Data Era February 21 st, 2015 Copyright 2013. Apps Associates LLC. 1 Satyendra Kumar Pasalapudi Associate Practice Director IMS @ Apps Associates Co Founder & President of

More information

Big Data. Facebook Wall Data using Graph API. Presented by: Prashant Patel-2556219 Jaykrushna Patel-2619715

Big Data. Facebook Wall Data using Graph API. Presented by: Prashant Patel-2556219 Jaykrushna Patel-2619715 Big Data Facebook Wall Data using Graph API Presented by: Prashant Patel-2556219 Jaykrushna Patel-2619715 Outline Data Source Processing tools for processing our data Big Data Processing System: Mongodb

More information

Big Data Analytics in LinkedIn. Danielle Aring & William Merritt

Big Data Analytics in LinkedIn. Danielle Aring & William Merritt Big Data Analytics in LinkedIn by Danielle Aring & William Merritt 2 Brief History of LinkedIn - Launched in 2003 by Reid Hoffman (https://ourstory.linkedin.com/) - 2005: Introduced first business lines

More information

Big Data Technologies Compared June 2014

Big Data Technologies Compared June 2014 Big Data Technologies Compared June 2014 Agenda What is Big Data Big Data Technology Comparison Summary Other Big Data Technologies Questions 2 What is Big Data by Example The SKA Telescope is a new development

More information

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of

More information

#mstrworld. Tapping into Hadoop and NoSQL Data Sources in MicroStrategy. Presented by: Trishla Maru. #mstrworld

#mstrworld. Tapping into Hadoop and NoSQL Data Sources in MicroStrategy. Presented by: Trishla Maru. #mstrworld Tapping into Hadoop and NoSQL Data Sources in MicroStrategy Presented by: Trishla Maru Agenda Big Data Overview All About Hadoop What is Hadoop? How does MicroStrategy connects to Hadoop? Customer Case

More information

NoSQL Data Base Basics

NoSQL Data Base Basics NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS

More information

Outline. What is Big data and where they come from? How we deal with Big data?

Outline. What is Big data and where they come from? How we deal with Big data? What is Big Data Outline What is Big data and where they come from? How we deal with Big data? Big Data Everywhere! As a human, we generate a lot of data during our everyday activity. When you buy something,

More information

Deploy. Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture

Deploy. Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture Apps and data source extensions with APIs Future white label, embed or integrate Power BI Deploy Intelligent

More information

Google Cloud Platform The basics

Google Cloud Platform The basics Google Cloud Platform The basics Who I am Alfredo Morresi ROLE Developer Relations Program Manager COUNTRY Italy PASSIONS Community, Development, Snowboarding, Tiramisu' Reach me alfredomorresi@google.com

More information

Hadoop in the Enterprise

Hadoop in the Enterprise Hadoop in the Enterprise Modern Architecture with Hadoop 2 Jeff Markham Technical Director, APAC Hortonworks Hadoop Wave ONE: Web-scale Batch Apps relative % customers 2006 to 2012 Web-Scale Batch Applications

More information

Big Data and Industrial Internet

Big Data and Industrial Internet Big Data and Industrial Internet Keijo Heljanko Department of Computer Science and Helsinki Institute for Information Technology HIIT School of Science, Aalto University keijo.heljanko@aalto.fi 16.6-2015

More information

HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS.

HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS. HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS. ALTILIA turns Big Data into Smart Data and enables businesses to

More information

You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required.

You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required. What is this course about? This course is an overview of Big Data tools and technologies. It establishes a strong working knowledge of the concepts, techniques, and products associated with Big Data. Attendees

More information

Hadoop & Spark Using Amazon EMR

Hadoop & Spark Using Amazon EMR Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?

More information

Secure Data Storage and Retrieval in the Cloud

Secure Data Storage and Retrieval in the Cloud UT DALLAS Erik Jonsson School of Engineering & Computer Science Secure Data Storage and Retrieval in the Cloud Agenda Motivating Example Current work in related areas Our approach Contributions of this

More information

Shark Installation Guide Week 3 Report. Ankush Arora

Shark Installation Guide Week 3 Report. Ankush Arora Shark Installation Guide Week 3 Report Ankush Arora Last Updated: May 31,2014 CONTENTS Contents 1 Introduction 1 1.1 Shark..................................... 1 1.2 Apache Spark.................................

More information

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what

More information

This Symposium brought to you by www.ttcus.com

This Symposium brought to you by www.ttcus.com This Symposium brought to you by www.ttcus.com Linkedin/Group: Technology Training Corporation @Techtrain Technology Training Corporation www.ttcus.com Big Data Analytics as a Service (BDAaaS) Big Data

More information

Innolligence focuses on four capability areas using cutting age technologies

Innolligence focuses on four capability areas using cutting age technologies Innolligence started embodying way back in 2012 end with freelancing and technology consulting. It started software delivery with freelancing projects. Innolligence core members started developing competency

More information

Emerging Requirements and DBMS Technologies:

Emerging Requirements and DBMS Technologies: Emerging Requirements and DBMS Technologies: When Is Relational the Right Choice? Carl Olofson Research Vice President, IDC April 1, 2014 Agenda 2 Why Relational in the First Place? Evolution of Databases

More information

In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet

In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet Ema Iancuta iorhian@gmail.com Radu Chilom radu.chilom@gmail.com Buzzwords Berlin - 2015 Big data analytics / machine

More information

Big Data Use Case: Business Analytics

Big Data Use Case: Business Analytics Big Data Use Case: Business Analytics Starting point A telecommunications company wants to allude to the topic of Big Data. The established Big Data working group has access to the data stock of the enterprise

More information

An Industrial Perspective on the Hadoop Ecosystem. Eldar Khalilov Pavel Valov

An Industrial Perspective on the Hadoop Ecosystem. Eldar Khalilov Pavel Valov An Industrial Perspective on the Hadoop Ecosystem Eldar Khalilov Pavel Valov agenda 03.12.2015 2 agenda Introduction 03.12.2015 2 agenda Introduction Research goals 03.12.2015 2 agenda Introduction Research

More information