Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia

Size: px
Start display at page:

Download "Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia"

Transcription

1 Monitis Project Proposals for AUA September 2014, Yerevan, Armenia

2 Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop ecosystem projects, Java, Python, MapReduce/Spark, machine learning Hardware Requirements: Cluster hosting the data platform, test servers Prerequisites: Java programming, Linux and networking fundamentals, a brief understanding of NoSQL systems Capacity: 8 applicants

3 Distributed Log Collecting and Analysing Platform Project Outline As corporate and enterprise systems grow in size, and with recent trends in distributed systems, centralized log collecting, analysing and processing, becomes more and more challenging. The goal of this project is creation of a platform, that will store log data generated by corporate services, and will provide an interface for interactive querying and analysis. Tasks Create a distributed Hadoop based platform for log storage Create a MapReduce framework Organize log data flow (Apache Flume, Fluentd, etc.) Organize querying with SQL syntax (Hive, Impala, Stinger/Stinger.next - Hortonworks, etc.) Organize real-time search (Apache Solr, Elasticsearch) Run machine learning algorithms to process log data to provide health reports for the whole system

4 Machine Learning and Parallel Computing Project Specifications Category: Big Data and NoSQL Project Type: Applied Research Software Requirements: Java, Eclipse Hardware Requirements: None Prerequisites: MapReduce, Java, Object oriented programming Capacity: 2 applicants

5 Machine Learning and Parallel Computing Project Outline MapReduce is a software framework for distributed computing introduced by Google. While MapReduce might be criticized for its distributed computing capabilities it is ideally suited for the type of experimental evaluations that are carried out in machine learning (ML) and data mining. Testing in machine learning typically involves running variants of algorithms on different datasets and this type of work can be distributed across nodes very effectively using MapReduce. Tasks Implement two machine learning algorithms in a MapReduce framework and demonstrate the evaluation of these algorithms across a number of datasets. These algorithms would not need to be implemented from scratch as a java code for most Machine Learning algorithms are publicly available - see the Weka code for instance.

6 Apache Spark vs. Classic MapReduce Project Specifications Category: Big Data and NoSQL Project Type: Applied Research Software Requirements: Apache Hadoop, Java/Scala/Python, MapReduce, Machine Learning Hardware Requirements: Cluster hosting the data platform Prerequisites: Java, Python, object oriented programming, basic understanding of NoSQL systems Capacity: 2 applicants

7 Apache Spark vs. Classic MapReduce Project Outline Apache Spark is a fast and general engine for large-scale data processing, and gets more and more popular this days. Developers claim that Spark, is more than 100 times faster than classic MapReduce processing. So the goal of this project is to create a data platform collect some test data(ex. Twitter twits data), and provide comparison analysis of both systems. Tasks Create a Hadoop cluster for distributed data storage Create Yarn based MapReduce framework Write testing data of some size (ex. test could be done on 1TB data set) Run some classic MapReduce tasks and document results Rewrite the same logic with Apache Spark Run Spark jobs and document results Create a detailed comparison report

8 Machine Learning and Predictive Analysis Project Specifications Category: Statistical Data Analysis Project Type: Applied Research Software Requirements: Java and/or Python, Eclipse, R Hardware Requirements: None Prerequisites: Basic statistics, R Capacity: 2 applicants

9 Machine Learning and Predictive Analysis Project Outline Every observational data like monitoring data can be represented as time series. Multivariate time series can be represented as matrices. If single time series/matrix rows are varies similarly then it is possible to use some machine learning, statistical tools to predict future behavior of data. Very simple approach is so called multivariate linear regression method. It allows predicting future data and also finding confidence level for every single time series. Tasks Develop a program that will read data from JSON format and convert it to multivariate time series, i.e. timestamp, value pairs. At first write a program for simple linear regression and prediction based on it. Examine other single value prediction algorithms/methods like Holt-Winters, linear regression, ARIMA, state-space. Check compatibility of data to use certain machine learning algorithm. Create test data collection to test proposed algorithm and interpret results.

10 Social Network Analysis Project Specifications Category: Software Development Project Type: Applied Research Software Requirements: Java and/or Python, Eclipse Hardware Requirements: None Prerequisites: Java, Python, Object oriented programming Capacity: 1 applicant

11 Social Network Analysis Project Outline The goal for this project is to take a news topic e.g. the Presidential Election or a group of Twitter users such as professional rugby players and analyse the related activity on Twitter. Rather than attempt to analyses the content of the tweets the idea would be to analyse the characteristics of the Twitter network. An example of this type of analysis see below. The reading list below contains links to material on the Twitter API and Twitter4J a Java library for Twitter. Similar resources are available for Python and Ruby. Tasks Develop a system that will take as input a collection of Twitter user IDs and will generate the data around these users which can be represented in a form that can be visualized. Visualization of generated data on a web page is desired.

12 NoSQL Systems Comparison Analysis Project Specifications Category: Big Data and NoSQL Project Type: Applied Research Software Requirements: Java/Python, NoSQL systems that would be chosen Hardware Requirements: Servers (virtual/dedicated) hosting the NoSQL systems Prerequisites: Java, Python, object oriented programming, basic understanding of NoSQL systems Capacity: 2-3 applicants

13 NoSQL Systems Comparison Analysis Project Outline The recent trends and developments in "NoSQL" systems, make the decision process for corporate system selection harder. Therefore, having a toolset and comparison reports and/or charts provide for more justified decision on system selection/ customization. The goal of this project is to develop some benchmarking tools to test NoSQL systems of some type (ex. in memory stores), and to provide articles, benchmark test results and comparison reports made with the developed tools. Tasks Create feature comparison report Develop benchmarking tools for the testing systems. The tool(s) should be able to test: Write load test Read load test MapReduce test (if available) Cluster tests Sharding test Create a detailed report of compared systems features and benchmark tests

14 Statistical Data Analysis Environment Project Specifications Category: Statistical Data Analysis Project Type: Applied Research Software Requirements: Java, JavaScript and/or Python, Eclipse, R Hardware Requirements: None Prerequisites: Basic statistics, R Capacity: 1 applicant

15 Statistical Data Analysis Environment Project Outline There is a lot of tools based on R, Python and Java for statistical data analysis. Also some web based environments exist to do simple statistical analysis without any embedded test data. But if one would like to test analysis result reliability some test data should exists or a tool should be able to extract data from given test database. So the aim of this project is combining different statistical tools with data for doing analysis and visualise them. For example see RStudio server, StatAce. Tasks Develop a web interface to do statistical analysis and visualisation. Create test database and connect it to web interface. Combine different statistical tools and programming languages like R, SciPy of Python and Java to work in one environment with the same data

16 Software Performance Project Specifications Category: Software Development Project Type: Design and Implementation Software Requirements: Java, Unit testing framework (JUnit), Logging (Log4J), Eclipse Hardware Requirements: None Prerequisites: Java, object oriented programming Capacity: 1 applicant

17 Software Performance Project Outline The goal of this project is to monitor the performance of any Java application using aspect oriented programming (AOP) which is a programming concept that allows intercepting calls at run-time and modifying the program and is often used to separate concerns in a software development, typically for crosscutting things such as logging or performance monitoring. Tasks Run testing systems on several Java libraries/applications and study of the testing process (such as when and where faults are injected, how faults are detected) Write a simple performance monitoring tool for testing systems using AOP Visualization of the performance of the testing systems on a web page. Integration with Monitis system is desired. The cooperation with the external monitoring platform should be done via Java Management Extensions (JMX) technology.

18 Cloud Computing Platforms Comparison Project Specifications Category: Cloud Computing Project Type: Applied Research Software Requirements: Java/Python, Eclipse Hardware Requirements: None Prerequisites: Java, Python, Object oriented programming Capacity: 2 applicants

19 Cloud Computing Platforms Comparison Project Outline Currently, the business applications are moving more-and-more to the cloud. It s not just a fad - the shift from traditional software models to the Internet has steadily gained momentum over the last 10 years. The goal of this project is to compare and test the main functionality and performance available on Amazon EC2, Google Compute Engine, and Microsoft Windows Azure. Tasks Overview of Cloud computing technologies, architectures provided by well-known vendors Implement cloud based application and benchmark test instrument Make a benchmark test on various well-known cloud platforms Provide comparison of AmazonEC2, Google compute Engine and Microsoft Windows Azure cloud platforms

20 Projects Structure

21 Thank You! Questions?

Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia

Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing

More information

Hadoop Ecosystem B Y R A H I M A.

Hadoop Ecosystem B Y R A H I M A. Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open

More information

Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook

Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future

More information

ITG Software Engineering

ITG Software Engineering Introduction to Cloudera Course ID: Page 1 Last Updated 12/15/2014 Introduction to Cloudera Course : This 5 day course introduces the student to the Hadoop architecture, file system, and the Hadoop Ecosystem.

More information

The Inside Scoop on Hadoop

The Inside Scoop on Hadoop The Inside Scoop on Hadoop Orion Gebremedhin National Solutions Director BI & Big Data, Neudesic LLC. VTSP Microsoft Corp. Orion.Gebremedhin@Neudesic.COM B-orgebr@Microsoft.com @OrionGM The Inside Scoop

More information

Moving From Hadoop to Spark

Moving From Hadoop to Spark + Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com sujee@elephantscale.com Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee

More information

A Performance Analysis of Distributed Indexing using Terrier

A Performance Analysis of Distributed Indexing using Terrier A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search

More information

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform

More information

Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview

Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce

More information

Implement Hadoop jobs to extract business value from large and varied data sets

Implement Hadoop jobs to extract business value from large and varied data sets Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to

More information

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web

More information

CS555: Distributed Systems [Fall 2015] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2015] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [SPARK] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Streaming Significance of minimum delays? Interleaving

More information

Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: bdg@qburst.com Website: www.qburst.com

Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: bdg@qburst.com Website: www.qburst.com Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...

More information

Big Data and Industrial Internet

Big Data and Industrial Internet Big Data and Industrial Internet Keijo Heljanko Department of Computer Science and Helsinki Institute for Information Technology HIIT School of Science, Aalto University keijo.heljanko@aalto.fi 16.6-2015

More information

Architectures for Big Data Analytics A database perspective

Architectures for Big Data Analytics A database perspective Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum

More information

Big Data Explained. An introduction to Big Data Science.

Big Data Explained. An introduction to Big Data Science. Big Data Explained An introduction to Big Data Science. 1 Presentation Agenda What is Big Data Why learn Big Data Who is it for How to start learning Big Data When to learn it Objective and Benefits of

More information

Big Data and Data Science: Behind the Buzz Words

Big Data and Data Science: Behind the Buzz Words Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing

More information

Pro Apache Hadoop. Second Edition. Sameer Wadkar. Madhu Siddalingaiah

Pro Apache Hadoop. Second Edition. Sameer Wadkar. Madhu Siddalingaiah Pro Apache Hadoop Second Edition Sameer Wadkar Madhu Siddalingaiah Contents J About the Authors About the Technical Reviewer Acknowledgments Introduction xix xxi xxiii xxv Chapter 1: Motivation for Big

More information

Challenges for Data Driven Systems

Challenges for Data Driven Systems Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2

More information

Open Source Technologies on Microsoft Azure

Open Source Technologies on Microsoft Azure Open Source Technologies on Microsoft Azure A Survey @DChappellAssoc Copyright 2014 Chappell & Associates The Main Idea i Open source technologies are a fundamental part of Microsoft Azure The Big Questions

More information

Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP

Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools

More information

AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW

AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW AGENDA What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story Hadoop PDW Our BIG DATA Roadmap BIG DATA? Volume 59% growth in annual WW information 1.2M Zetabytes (10 21 bytes) this

More information

A programming model in Cloud: MapReduce

A programming model in Cloud: MapReduce A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value

More information

Microsoft Big Data. Solution Brief

Microsoft Big Data. Solution Brief Microsoft Big Data Solution Brief Contents Introduction... 2 The Microsoft Big Data Solution... 3 Key Benefits... 3 Immersive Insight, Wherever You Are... 3 Connecting with the World s Data... 3 Any Data,

More information

Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic

Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic Big Data Analytics with Spark and Oscar BAO Tamas Jambor, Lead Data Scientist at Massive Analytic About me Building a scalable Machine Learning platform at MA Worked in Big Data and Data Science in the

More information

Big Data Open Source Stack vs. Traditional Stack for BI and Analytics

Big Data Open Source Stack vs. Traditional Stack for BI and Analytics Big Data Open Source Stack vs. Traditional Stack for BI and Analytics Part I By Sam Poozhikala, Vice President Customer Solutions at StratApps Inc. 4/4/2014 You may contact Sam Poozhikala at spoozhikala@stratapps.com.

More information

BIG DATA TRENDS AND TECHNOLOGIES

BIG DATA TRENDS AND TECHNOLOGIES BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.

More information

Apache HBase. Crazy dances on the elephant back

Apache HBase. Crazy dances on the elephant back Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage

More information

Comprehensive Analytics on the Hortonworks Data Platform

Comprehensive Analytics on the Hortonworks Data Platform Comprehensive Analytics on the Hortonworks Data Platform We do Hadoop. Page 1 Page 2 Back to 2005 Page 3 Vertical Scaling Page 4 Vertical Scaling Page 5 Vertical Scaling Page 6 Horizontal Scaling Page

More information

Workshop on Hadoop with Big Data

Workshop on Hadoop with Big Data Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly

More information

Peers Techno log ies Pv t. L td. HADOOP

Peers Techno log ies Pv t. L td. HADOOP Page 1 Peers Techno log ies Pv t. L td. Course Brochure Overview Hadoop is a Open Source from Apache, which provides reliable storage and faster process by using the Hadoop distibution file system and

More information

CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)

CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model

More information

Oracle Big Data Fundamentals Ed 1

Oracle Big Data Fundamentals Ed 1 Oracle University Contact Us: 001-855-844-3881 Oracle Big Data Fundamentals Ed 1 Duration: 5 Days What you will learn In the Oracle Big Data Fundamentals course, learn to use Oracle's Integrated Big Data

More information

Big Data and Analytics: Challenges and Opportunities

Big Data and Analytics: Challenges and Opportunities Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif

More information

Hadoop2, Spark Big Data, real time, machine learning & use cases. Cédric Carbone Twitter : @carbone

Hadoop2, Spark Big Data, real time, machine learning & use cases. Cédric Carbone Twitter : @carbone Hadoop2, Spark Big Data, real time, machine learning & use cases Cédric Carbone Twitter : @carbone Agenda Map Reduce Hadoop v1 limits Hadoop v2 and YARN Apache Spark Streaming : Spark vs Storm Machine

More information

Real-time Data Analytics mit Elasticsearch. Bernhard Pflugfelder inovex GmbH

Real-time Data Analytics mit Elasticsearch. Bernhard Pflugfelder inovex GmbH Real-time Data Analytics mit Elasticsearch Bernhard Pflugfelder inovex GmbH Bernhard Pflugfelder Big Data Engineer @ inovex Fields of interest: search analytics big data bi Working with: Lucene Solr Elasticsearch

More information

Secure Data Storage and Retrieval in the Cloud

Secure Data Storage and Retrieval in the Cloud UT DALLAS Erik Jonsson School of Engineering & Computer Science Secure Data Storage and Retrieval in the Cloud Agenda Motivating Example Current work in related areas Our approach Contributions of this

More information

Sunnie Chung. Cleveland State University

Sunnie Chung. Cleveland State University Sunnie Chung Cleveland State University Data Scientist Big Data Processing Data Mining 2 INTERSECT of Computer Scientists and Statisticians with Knowledge of Data Mining AND Big data Processing Skills:

More information

BIG DATA TOOLS. Top 10 open source technologies for Big Data

BIG DATA TOOLS. Top 10 open source technologies for Big Data BIG DATA TOOLS Top 10 open source technologies for Big Data We are in an ever expanding marketplace!!! With shorter product lifecycles, evolving customer behavior and an economy that travels at the speed

More information

HDP Hadoop From concept to deployment.

HDP Hadoop From concept to deployment. HDP Hadoop From concept to deployment. Ankur Gupta Senior Solutions Engineer Rackspace: Page 41 27 th Jan 2015 Where are you in your Hadoop Journey? A. Researching our options B. Currently evaluating some

More information

A Professional Big Data Master s Program to train Computational Specialists

A Professional Big Data Master s Program to train Computational Specialists A Professional Big Data Master s Program to train Computational Specialists Anoop Sarkar, Fred Popowich, Alexandra Fedorova! School of Computing Science! Education for Employable Graduates: Critical Questions

More information

You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required.

You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required. What is this course about? This course is an overview of Big Data tools and technologies. It establishes a strong working knowledge of the concepts, techniques, and products associated with Big Data. Attendees

More information

Machine Learning and Cloud Computing. trends, issues, solutions. EGI-InSPIRE RI-261323

Machine Learning and Cloud Computing. trends, issues, solutions. EGI-InSPIRE RI-261323 Machine Learning and Cloud Computing trends, issues, solutions Daniel Pop HOST Workshop 2012 Future plans // Tools and methods Develop software package(s)/libraries for scalable, intelligent algorithms

More information

A Brief Introduction to Apache Tez

A Brief Introduction to Apache Tez A Brief Introduction to Apache Tez Introduction It is a fact that data is basically the new currency of the modern business world. Companies that effectively maximize the value of their data (extract value

More information

Native Connectivity to Big Data Sources in MSTR 10

Native Connectivity to Big Data Sources in MSTR 10 Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single

More information

Big Data Visualization. Apache Spark and Zeppelin

Big Data Visualization. Apache Spark and Zeppelin Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark

More information

COMP9321 Web Application Engineering

COMP9321 Web Application Engineering COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411

More information

Oracle Big Data Fundamentals Ed 1 NEW

Oracle Big Data Fundamentals Ed 1 NEW Oracle University Contact Us: +90 212 329 6779 Oracle Big Data Fundamentals Ed 1 NEW Duration: 5 Days What you will learn In the Oracle Big Data Fundamentals course, learn to use Oracle's Integrated Big

More information

Forecast of Big Data Trends. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014

Forecast of Big Data Trends. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014 Forecast of Big Data Trends Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014 Big Data transforms Business 2 Data created every minute Source http://mashable.com/2012/06/22/data-created-every-minute/

More information

Big Data Rethink Algos and Architecture. Scott Marsh Manager R&D Personal Lines Auto Pricing

Big Data Rethink Algos and Architecture. Scott Marsh Manager R&D Personal Lines Auto Pricing Big Data Rethink Algos and Architecture Scott Marsh Manager R&D Personal Lines Auto Pricing Agenda History Map Reduce Algorithms History Google talks about their solutions to their problems Map Reduce:

More information

Dominik Wagenknecht Accenture

Dominik Wagenknecht Accenture Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna

More information

NoSQL and Hadoop Technologies On Oracle Cloud

NoSQL and Hadoop Technologies On Oracle Cloud NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath

More information

Big Data. Lyle Ungar, University of Pennsylvania

Big Data. Lyle Ungar, University of Pennsylvania Big Data Big data will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus. McKinsey Data Scientist: The Sexiest Job of the 21st Century -

More information

Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84

Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84 Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics

More information

APP DEVELOPMENT ON THE CLOUD MADE EASY WITH PAAS

APP DEVELOPMENT ON THE CLOUD MADE EASY WITH PAAS APP DEVELOPMENT ON THE CLOUD MADE EASY WITH PAAS This article looks into the benefits of using the Platform as a Service paradigm to develop applications on the cloud. It also compares a few top PaaS providers

More information

Why Big Data in the Cloud?

Why Big Data in the Cloud? Have 40 Why Big Data in the Cloud? Colin White, BI Research January 2014 Sponsored by Treasure Data TABLE OF CONTENTS Introduction The Importance of Big Data The Role of Cloud Computing Using Big Data

More information

Unlocking the True Value of Hadoop with Open Data Science

Unlocking the True Value of Hadoop with Open Data Science Unlocking the True Value of Hadoop with Open Data Science Kristopher Overholt Solution Architect Big Data Tech 2016 MinneAnalytics June 7, 2016 Overview Overview of Open Data Science Python and the Big

More information

Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.

Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture. Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in

More information

Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN

Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current

More information

Introduction to Big Data Training

Introduction to Big Data Training Introduction to Big Data Training The quickest way to be introduce with NOSQL/BIG DATA offerings Learn and experience Big Data Solutions including Hadoop HDFS, Map Reduce, NoSQL DBs: Document Based DB

More information

Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14

Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14 Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 14 Big Data Management IV: Big-data Infrastructures (Background, IO, From NFS to HFDS) Chapter 14-15: Abideboul

More information

Introduction to Big Data! with Apache Spark" UC#BERKELEY#

Introduction to Big Data! with Apache Spark UC#BERKELEY# Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"

More information

Shark Installation Guide Week 3 Report. Ankush Arora

Shark Installation Guide Week 3 Report. Ankush Arora Shark Installation Guide Week 3 Report Ankush Arora Last Updated: May 31,2014 CONTENTS Contents 1 Introduction 1 1.1 Shark..................................... 1 1.2 Apache Spark.................................

More information

Big Data Specialized Studies

Big Data Specialized Studies Information Technologies Programs Big Data Specialized Studies Accelerate Your Career extension.uci.edu/bigdata Offered in partnership with University of California, Irvine Extension s professional certificate

More information

HiBench Introduction. Carson Wang (carson.wang@intel.com) Software & Services Group

HiBench Introduction. Carson Wang (carson.wang@intel.com) Software & Services Group HiBench Introduction Carson Wang (carson.wang@intel.com) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is

More information

Apache Hadoop. Alexandru Costan

Apache Hadoop. Alexandru Costan 1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open

More information

Case Study : 3 different hadoop cluster deployments

Case Study : 3 different hadoop cluster deployments Case Study : 3 different hadoop cluster deployments Lee moon soo moon@nflabs.com HDFS as a Storage Last 4 years, our HDFS clusters, stored Customer 1500 TB+ data safely served 375,000 TB+ data to customer

More information

Big Data on Microsoft Platform

Big Data on Microsoft Platform Big Data on Microsoft Platform Prepared by GJ Srinivas Corporate TEG - Microsoft Page 1 Contents 1. What is Big Data?...3 2. Characteristics of Big Data...3 3. Enter Hadoop...3 4. Microsoft Big Data Solutions...4

More information

Assignment # 1 (Cloud Computing Security)

Assignment # 1 (Cloud Computing Security) Assignment # 1 (Cloud Computing Security) Group Members: Abdullah Abid Zeeshan Qaiser M. Umar Hayat Table of Contents Windows Azure Introduction... 4 Windows Azure Services... 4 1. Compute... 4 a) Virtual

More information

Reference Architecture, Requirements, Gaps, Roles

Reference Architecture, Requirements, Gaps, Roles Reference Architecture, Requirements, Gaps, Roles The contents of this document are an excerpt from the brainstorming document M0014. The purpose is to show how a detailed Big Data Reference Architecture

More information

Big Data Course Highlights

Big Data Course Highlights Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like

More information

HPC ABDS: The Case for an Integrating Apache Big Data Stack

HPC ABDS: The Case for an Integrating Apache Big Data Stack HPC ABDS: The Case for an Integrating Apache Big Data Stack with HPC 1st JTC 1 SGBD Meeting SDSC San Diego March 19 2014 Judy Qiu Shantenu Jha (Rutgers) Geoffrey Fox gcf@indiana.edu http://www.infomall.org

More information

#TalendSandbox for Big Data

#TalendSandbox for Big Data Evalua&on von Apache Hadoop mit der #TalendSandbox for Big Data Julien Clarysse @whatdoesdatado @talend 2015 Talend Inc. 1 Connecting the Data-Driven Enterprise 2 Talend Overview Founded in 2006 BRAND

More information

How Companies are! Using Spark

How Companies are! Using Spark How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made

More information

BioInterchange 2.0 CODAMONO. Integrating and Scaling Genomics Data

BioInterchange 2.0 CODAMONO. Integrating and Scaling Genomics Data BioInterchange 2.0 Integrating and Scaling Genomics Data by CODAMONO www.codamono.com @CODAMONO +1 647 780 3927 5-121 Marion Street, Toronto, Ontario, M6R 1E6, Canada Genomics Today: Big Data Challenge

More information

Hadoop-BAM and SeqPig

Hadoop-BAM and SeqPig Hadoop-BAM and SeqPig Keijo Heljanko 1, André Schumacher 1,2, Ridvan Döngelci 1, Luca Pireddu 3, Matti Niemenmaa 1, Aleksi Kallio 4, Eija Korpelainen 4, and Gianluigi Zanetti 3 1 Department of Computer

More information

Hadoop and Map-Reduce. Swati Gore

Hadoop and Map-Reduce. Swati Gore Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data

More information

Hadoop & Spark Using Amazon EMR

Hadoop & Spark Using Amazon EMR Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?

More information

Map Reduce & Hadoop Recommended Text:

Map Reduce & Hadoop Recommended Text: Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately

More information

VOL. 5, NO. 2, August 2015 ISSN 2225-7217 ARPN Journal of Systems and Software 2009-2015 AJSS Journal. All rights reserved

VOL. 5, NO. 2, August 2015 ISSN 2225-7217 ARPN Journal of Systems and Software 2009-2015 AJSS Journal. All rights reserved Big Data Analysis of Airline Data Set using Hive Nillohit Bhattacharya, 2 Jongwook Woo Grad Student, 2 Prof., Department of Computer Information Systems, California State University Los Angeles nbhatta2

More information

BIG DATA What it is and how to use?

BIG DATA What it is and how to use? BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14

More information

The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect

The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect IT Insight podcast This podcast belongs to the IT Insight series You can subscribe to the podcast through

More information

Big Data Analytics OverOnline Transactional Data Set

Big Data Analytics OverOnline Transactional Data Set Big Data Analytics OverOnline Transactional Data Set Rohit Vaswani 1, Rahul Vaswani 2, Manish Shahani 3, Lifna Jos(Mentor) 4 1 B.E. Computer Engg. VES Institute of Technology, Mumbai -400074, Maharashtra,

More information

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica

More information

Qsoft Inc www.qsoft-inc.com

Qsoft Inc www.qsoft-inc.com Big Data & Hadoop Qsoft Inc www.qsoft-inc.com Course Topics 1 2 3 4 5 6 Week 1: Introduction to Big Data, Hadoop Architecture and HDFS Week 2: Setting up Hadoop Cluster Week 3: MapReduce Part 1 Week 4:

More information

Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes

Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes Highly competitive enterprises are increasingly finding ways to maximize and accelerate

More information

Open source Google-style large scale data analysis with Hadoop

Open source Google-style large scale data analysis with Hadoop Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: ikons@cslab.ece.ntua.gr Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical

More information

Can the Elephants Handle the NoSQL Onslaught?

Can the Elephants Handle the NoSQL Onslaught? Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented

More information

Hadoop Introduction. Olivier Renault Solution Engineer - Hortonworks

Hadoop Introduction. Olivier Renault Solution Engineer - Hortonworks Hadoop Introduction Olivier Renault Solution Engineer - Hortonworks Hortonworks A Brief History of Apache Hadoop Apache Project Established Yahoo! begins to Operate at scale Hortonworks Data Platform 2013

More information

Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL. May 2015

Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL. May 2015 Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL May 2015 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document

More information

Ubuntu and Hadoop: the perfect match

Ubuntu and Hadoop: the perfect match WHITE PAPER Ubuntu and Hadoop: the perfect match February 2012 Copyright Canonical 2012 www.canonical.com Executive introduction In many fields of IT, there are always stand-out technologies. This is definitely

More information

BIRT in the World of Big Data

BIRT in the World of Big Data BIRT in the World of Big Data David Rosenbacher VP Sales Engineering Actuate Corporation 2013 Actuate Customer Days Today s Agenda and Goals Introduction to Big Data Compare with Regular Data Common Approaches

More information

Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments

Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and

More information

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop

More information

Ali Ghodsi Head of PM and Engineering Databricks

Ali Ghodsi Head of PM and Engineering Databricks Making Big Data Simple Ali Ghodsi Head of PM and Engineering Databricks Big Data is Hard: A Big Data Project Tasks Tasks Build a Hadoop cluster Challenges Clusters hard to setup and manage Build a data

More information

Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12

Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12 Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using

More information

Step by Step: Big Data Technology. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 25 August 2015

Step by Step: Big Data Technology. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 25 August 2015 Step by Step: Big Data Technology Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 25 August 2015 Data Sources IT Infrastructure Analytics 2 B y 2015, 20% of Global 1000 organizations

More information

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of

More information

Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015

Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib

More information

Oracle Big Data SQL Technical Update

Oracle Big Data SQL Technical Update Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical

More information