Secure Network Coding via Filtered Secret Sharing


 Lorraine Elliott
 3 years ago
 Views:
Transcription
1 Secure Network Coding via Filtered Secret Sharing Jon Feldman, Tal Malkin, Rocco Servedio, Cliff Stein (Columbia University) columbiaedu Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p1/21
2 Network Coding and Security Network coding: new model of transmission how do we make it secure? 1 Cai and Yeung[02] wiretap adversary: can look at any Suff conditions for 2 Jain[04]: More precise cond (one terminal) 3 Ho, Leong, Koetter, Médard, Effros, Karger [04]: Byzantine modification detection edges secure multicast code Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p2/21
3 Network Coding and Security Network coding: new model of transmission how do we make it secure? 1 Cai and Yeung[02] wiretap adversary: can look at any Suff conditions for 2 Jain[04]: More precise cond (one terminal) 3 Ho, Leong, Koetter, Médard, Effros, Karger [04]: Byzantine modification detection edges secure multicast code This talk: precise analysis of wiretap adversary, balance between security, rate, edge bandwidth Related: robustness [Koetter Médard 02] Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p2/21
4 Making our Example Secure Use Less ambitious goal: Send one symbol to both sinks Choose randomly Can define symbols st any single wiretapper learns nothing about, both sinks can compute Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p3/21
5 Linear Multicast Network Coding (No Security) Given: Network mincut value = Goal: get message, source, sinks to every sink Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p4/21
6 Linear Multicast Network Coding (No Security) Given: Network mincut value = Goal: get message, source Network code: Define coding vectors Edge carries symbol, sinks to every sink for each edge Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p4/21
7 Linear Multicast Network Coding (No Security) Given: Network mincut value = Goal: get message, source Network code: Define coding vectors Edge carries symbol Feasibility of transmission: (i) Every spanned by, sinks to every sink for each edge (or ) Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p4/21
8 Linear Multicast Network Coding (No Security) Given: Network mincut value = Goal: get message, source Network code: Define coding vectors Edge carries symbol Feasibility of transmission: (i) Every spanned by Recoverability at sinks: (ii) For all, the vectors, sinks to every sink for each edge (or span ) Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p4/21
9 WireTap Model, Randomness at the Source Adversary has access to any set of knows symbol transmitted along edge, knows network code, topology, has unlimited computational power edges, Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p5/21
10 WireTap Model, Randomness at the Source Adversary has access to any set of knows symbol transmitted along edge, knows network code, topology, has unlimited computational power Source allowed to generate random symbols ( ) (Jain [04]: random bits at intermediate nodes) edges, Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p5/21
11 WireTap Model, Randomness at the Source Adversary has access to any set of knows symbol transmitted along edge, knows network code, topology, has unlimited computational power Source allowed to generate random symbols ( ) (Jain [04]: random bits at intermediate nodes) edges, Task: design function at source, coding vectors on edges st: Coding vectors satisfy feasibility, Information recoverable at each sink, Information secure against adversary Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p5/21
12 WireTap Model, Randomness at the Source Adversary has access to any set of knows symbol transmitted along edge, knows network code, topology, has unlimited computational power Source allowed to generate random symbols ( ) (Jain [04]: random bits at intermediate nodes) edges, Task: design function at source, coding vectors on edges st: Coding vectors satisfy feasibility, Information recoverable at each sink, Information secure against adversary Goal: informationtheoretic security Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p5/21
13 Security, Rate and Bandwidth We study possible tradeoffs between security, rate and bandwidth: Security = Rate = = # edges tapped = # information symbols multicast Edge Bandwidth =, where symbols in Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p6/21
14 Security, Rate and Bandwidth We study possible tradeoffs between security, rate and bandwidth: Security = Rate = = # edges tapped = # information symbols multicast Edge Bandwidth =, where symbols in Easy to show: Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p6/21
15 Security, Rate and Bandwidth We study possible tradeoffs between security, rate and bandwidth: Security = Rate = = # edges tapped = # information symbols multicast Edge Bandwidth =, where symbols in Easy to show: Cai and Yeung [02]: If symbols securely Construction time, can send Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p6/21
16 Our Results If you give up a little capacity, bandwidth requirement reduced significantly: Thm: For any, if, can send symbols securely Algorithm: polytime, secure whp If, only need Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p7/21
17 Our Results If you give up a little capacity, bandwidth requirement reduced significantly: Thm: For any, if, can send symbols securely Algorithm: polytime, secure whp If, only need If you do not give up capacity, then bandwidth might have to be large: Thm: If, then there are examples where all solutions (using this method) must have Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p7/21
18 Relation w/ Cai & Yeung Core Lemma of Cai and Yeung: If one can construct a matrix with certain independence properties relative to the coding vectors, then the network code can be altered to achieve security Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p8/21
19 Relation w/ Cai & Yeung Core Lemma of Cai and Yeung: If one can construct a matrix with certain independence properties relative to the coding vectors, then the network code can be altered to achieve security Our extensions: Independence properties are also necessary Using orthogonal space, recast as coding theory problem Give up some capacity to make coding problem solvable Use necessary direction, covering radius, to prove negative result Observation: don t alter code, just input Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p8/21
20 Making a Given Network Code Secure [CY02] Given a linear solutionto a network coding problem, can we use it securely? Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p9/21
21 Making a Given Network Code Secure [CY02] Given a linear solutionto a network coding problem, can we use it securely? Set, with info, random Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p9/21
22 Making a Given Network Code Secure [CY02] Given a linear solutionto a network coding problem, can we use it securely? Set Send message, with info, random normally using network code Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p9/21
23 Making a Given Network Code Secure [CY02] Given a linear solutionto a network coding problem, can we use it securely? Set Send message, with info, random normally using network code Security condition: If adversary looks at any edges, can learn nothing about (More formally, for all sets with is a random vector in, the random variable is independent of ), If Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p9/21
24 Making a Given Network Code Secure [CY02] Given a linear solutionto a network coding problem, can we use it securely? Set Send message, with info, random normally using network code Security condition: If adversary looks at any edges, can learn nothing about (More formally, for all sets with is a random vector in, the random variable is independent of ) Recoverability, feasibility follow immediately (as long as can be determined from ), If Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p9/21
25 Making a Given Network Code Secure [CY02] Given a linear solutionto a network coding problem, can we use it securely? Set Send message, with info, random normally using network code Security condition: If adversary looks at any edges, can learn nothing about (More formally, for all sets with is a random vector in, the random variable is independent of ) Recoverability, feasibility follow immediately (as long as can be determined from ) Advantage: don t need to alter network code Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p9/21, If
26 Secret Sharing (Shamir) Secret Dealer has secret Distribute shares Given any Given any st shares, can recover secret shares, learn nothing Computational/infotheoretic security Access pattern for recoverability/security Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p10/21
27 Connection to Secret Sharing Simple case: single source/sink, adversary has any set of s edges parallel edges, t Modest goal : send one symbol Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p11/21
28 Connection to Secret Sharing Suppose Encoding: Choose = is the dealer in secret sharing at random Let Set message (Encode (x,r) using a ReedSolomon code) Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p12/21
29 Connection to Secret Sharing Suppose Encoding: Choose = is the dealer in secret sharing at random Let Set message (Encode (x,r) using a ReedSolomon code) Decoding: Knowing all Knowing Works for any or fewer reveals (interpolation) s tells you nothing Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p12/21
30 Filtered Secret Sharing Classical secret sharing: adversary has shares Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p13/21
31 Filtered Secret Sharing Classical secret sharing: adversary has Filtered secret sharing: Menu of lin combos of all shares Adversary chooses items from the menu shares Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p13/21
32 Filtered Secret Sharing Classical secret sharing: adversary has Filtered secret sharing: Menu of lin combos of all shares Adversary chooses items from the menu Secret is shares Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p13/21
33 Filtered Secret Sharing Classical secret sharing: adversary has Filtered secret sharing: Menu of lin combos of all shares Adversary chooses items from the menu Secret is Given: by fullrank filter matrix Find: Function For all by over random we have submatrices, indep of over such that: of, ( ) shares Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p13/21
34 Filtered Secret Sharing Given: by fullrank filter matrix over over random we have submatrices, Classical: special case indep of, such that: of,, Find: Function For all by For network coding:, is by matrix of coding vectors Ignores network topology Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p14/21
35 Design of Linear ErrorCorrecting Codes = linear subspace generated by the rows of Distance( ) = by matrix Goal in coding theory: For given rate, find code with large distance Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p15/21
36 Design of Linear ErrorCorrecting Codes = linear subspace generated by the rows of Distance( ) = by matrix Goal in coding theory: For given rate, find code with large distance  Generalization: Designed code must be far from other given points, and some Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p15/21
37 Generalized Coding Problem For generators,, define: Note: Asymmetric Note: mindist( ) Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p16/21
38 Generalized Coding Problem For generators,, define: Note: Asymmetric Note: mindist( ) by Span Distance Problem (over field Given an by matrix, find a matrix where ): Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p16/21
39 Generalized Coding Problem Goal: Design code For generators,, define: Note: Asymmetric Note: mindist( ) by Span Distance Problem (over field Given an by matrix, find a matrix where ): codeword in with distance to every Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p16/21
40 Filtered Secret sharing Span Distance Filtered secret sharing (linear of the span distance problem: ) is a special case (linear) fss solution with (for all ) solution to the span distance problem with,, ( generates null space of Required distance = ) Parameter for network coding application: amount of capacity given up Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p17/21
41 Positive result Given any, choose randomly Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p18/21
42 Positive result Given any, choose randomly Analysis like random lin codes on GV bound: vector in Each has Vol prob of having dist from Union bound over codewords : Random has w/ prob Vol Vol Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p18/21
43 Positive result Given any, choose randomly Analysis like random lin codes on GV bound: vector in Each has Vol prob of having dist from Union bound over codewords : Random has w/ prob Vol Vol In general, Pr For if, need only Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p18/21
44 Negative Result: Using the Covering Radius Covering radius( ) = Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p19/21
45 Negative Result: Using the Covering Radius Covering radius( ) = If has covering radius alone subspace (let ) has dist no from Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p19/21
46 Negative Result: Using the Covering Radius ) = Covering radius( no has covering radius alone subspace (let ) has dist If from, using result of [Cohen, Frankl 85]: Setting ) Vol st ( st ), Vol Thm: ( and where Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p19/21
47 Negative Result: Using the Covering Radius ) = Covering radius( no has covering radius alone subspace (let ) has dist If from, using result of [Cohen, Frankl 85]: Setting ) Vol st ( st ), Vol Thm: ( and where, where st exists (Contrast to C/Y upper reasonable settings of if ) bound Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p19/21
48 Conclusions Given a fixed linear network code, the problem of making it secure (using linear filtered secret sharing) is a generalized [classical] code design problem To achieve security: tradeoff between rate and required link bandwidth Sacrificing small amount of capacity allows large savings in required bandwidth Secret sharing can be extended from [adversary gets [adversary gets linear combinations (from a given set) of all shares] shares],to Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p20/21
49 Future Work Better upper/lower bounds (, or in general) Consider (network topology, code design, security, robustness) simultaneously Allow more power at nodes [Jain: random bits] Relax notion of security [Jain: computationally bounded adversary] Different adversaries, nonlinear network codes, nonmulticast? Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing p21/21
Weakly Secure Network Coding
Weakly Secure Network Coding Kapil Bhattad, Student Member, IEEE and Krishna R. Narayanan, Member, IEEE Department of Electrical Engineering, Texas A&M University, College Station, USA Abstract In this
More informationSecurity for Wiretap Networks via RankMetric Codes
Security for Wiretap Networks via RankMetric Codes Danilo Silva and Frank R. Kschischang Department of Electrical and Computer Engineering, University of Toronto Toronto, Ontario M5S 3G4, Canada, {danilo,
More informationSecure Network Coding for Wiretap Networks of Type II
1 Secure Network Coding for Wiretap Networks of Type II Salim El Rouayheb, Emina Soljanin, Alex Sprintson Abstract We consider the problem of securing a multicast network against a wiretapper that can
More informationOn Secure Communication over Wireless Erasure Networks
On Secure Communication over Wireless Erasure Networks Andrew Mills Department of CS amills@cs.utexas.edu Brian Smith bsmith@ece.utexas.edu T. Charles Clancy University of Maryland College Park, MD 20472
More informationAchievable Strategies for General Secure Network Coding
Achievable Strategies for General Secure Network Coding Tao Cui and Tracey Ho Department of Electrical Engineering California Institute of Technology Pasadena, CA 91125, USA Email: {taocui, tho}@caltech.edu
More informationNetwork Monitoring in Multicast Networks Using Network Coding
Network Monitoring in Multicast Networks Using Network Coding Tracey Ho Coordinated Science Laboratory University of Illinois Urbana, IL 6181 Email: trace@mit.edu Ben Leong, YuHan Chang, Yonggang Wen
More informationEfficient weakly secure network coding scheme against node conspiracy attack based on network segmentation
Du et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:5 RESEARCH Open Access Efficient weakly secure network coding scheme against node conspiracy attack based on network segmentation
More informationSecure Network Coding on a Wiretap Network
IEEE TRANSACTIONS ON INFORMATION THEORY 1 Secure Network Coding on a Wiretap Network Ning Cai, Senior Member, IEEE, and Raymond W. Yeung, Fellow, IEEE Abstract In the paradigm of network coding, the nodes
More informationNetwork Coding for Security and Error Correction
Network Coding for Security and Error Correction NGAI, Chi Kin A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Information Engineering c The Chinese
More informationNetwork coding for security and robustness
Network coding for security and robustness 1 Outline Network coding for detecting attacks Network management requirements for robustness Centralized versus distributed network management 2 Byzantine security
More informationSecure Network Coding: Bounds and Algorithms for Secret and Reliable Communications
Secure Network Coding: Bounds and Algorithms for Secret and Reliable Communications S. Jaggi and M. Langberg 1 Introduction Network coding allows the routers to mix the information content in packets before
More informationOn Secure Network Coding With Nonuniform or Restricted Wiretap Sets
166 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013 On Secure Network Coding With Nonuniform or Restricted Wiretap Sets Tao Cui, Student Member, IEEE, TraceyHo, Senior Member, IEEE,
More informationA Network Flow Approach in Cloud Computing
1 A Network Flow Approach in Cloud Computing Soheil Feizi, Amy Zhang, Muriel Médard RLE at MIT Abstract In this paper, by using network flow principles, we propose algorithms to address various challenges
More informationTopologybased network security
Topologybased network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the
More informationComparison of Network Coding and NonNetwork Coding Schemes for Multihop Wireless Networks
Comparison of Network Coding and NonNetwork Coding Schemes for Multihop Wireless Networks JiaQi Jin, Tracey Ho California Institute of Technology Pasadena, CA Email: {jin,tho}@caltech.edu Harish Viswanathan
More informationA Numerical Study on the Wiretap Network with a Simple Network Topology
A Numerical Study on the Wiretap Network with a Simple Network Topology Fan Cheng and Vincent Tan Department of Electrical and Computer Engineering National University of Singapore Mathematical Tools of
More informationLinear Codes. Chapter 3. 3.1 Basics
Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length
More informationOn the Multiple Unicast Network Coding Conjecture
On the Multiple Unicast Networ Coding Conjecture Michael Langberg Computer Science Division Open University of Israel Raanana 43107, Israel miel@openu.ac.il Muriel Médard Research Laboratory of Electronics
More informationLatticeBased ThresholdChangeability for Standard Shamir SecretSharing Schemes
LatticeBased ThresholdChangeability for Standard Shamir SecretSharing Schemes Ron Steinfeld (Macquarie University, Australia) (email: rons@ics.mq.edu.au) Joint work with: Huaxiong Wang (Macquarie University)
More informationSecure Network Coding: Dependency of Efficiency on Network Topology,
13 IEEE. Reprinted, with permission, from S. Pfennig and E. Franz, Secure Network Coding: Dependency of Efficiency on Network Topology, in IEEE International Conference on Communications (ICC 13), pp.
More informationOn the Complexity of Exact MaximumLikelihood Decoding for Asymptotically Good Low Density Parity Check Codes: A New Perspective
On the Complexity of Exact MaximumLikelihood Decoding for Asymptotically Good Low Density Parity Check Codes: A New Perspective Weiyu Xu and Babak Hassibi EE Department California Institute of Technology
More informationEnergy Benefit of Network Coding for Multiple Unicast in Wireless Networks
Energy Benefit of Network Coding for Multiple Unicast in Wireless Networks Jasper Goseling IRCTR/CWPC, WMC Group Delft University of Technology The Netherlands j.goseling@tudelft.nl Abstract Jos H. Weber
More informationLink Loss Inference in Wireless Sensor Networks with Randomized Network Coding
Link Loss Inference in Wireless Sensor Networks with Randomized Network Coding Vahid ShahMansouri and Vincent W.S. Wong Department of Electrical and Computer Engineering The University of British Columbia,
More informationOn the Complexity of Exact MaximumLikelihood Decoding for Asymptotically Good Low Density Parity Check Codes
On the Complexity of Exact MaximumLikelihood Decoding for Asymptotically Good Low Density Parity Check Codes arxiv:cs/0702147v1 [cs.it] 25 Feb 2007 Abstract Since the classical work of Berlekamp, McEliece
More informationEfficient Recovery of Secrets
Efficient Recovery of Secrets Marcel Fernandez Miguel Soriano, IEEE Senior Member Department of Telematics Engineering. Universitat Politècnica de Catalunya. C/ Jordi Girona 1 i 3. Campus Nord, Mod C3,
More informationKodo: An Open and Research Oriented Network Coding Library Pedersen, Morten Videbæk; Heide, Janus; Fitzek, Frank Hanns Paul
Aalborg Universitet Kodo: An Open and Research Oriented Network Coding Library Pedersen, Morten Videbæk; Heide, Janus; Fitzek, Frank Hanns Paul Published in: Lecture Notes in Computer Science DOI (link
More informationON THE APPLICATION OF RANDOM LINEAR NETWORK CODING FOR NETWORK SECURITY AND DIAGNOSIS
ON THE APPLICATION OF RANDOM LINEAR NETWORK CODING FOR NETWORK SECURITY AND DIAGNOSIS by Elias Kehdi A thesis submitted in conformity with the requirements for the degree of Master of Applied Science,
More informationNetwork Coding for Distributed Storage
Network Coding for Distributed Storage Alex Dimakis USC Overview Motivation Data centers Mobile distributed storage for D2D Specific storage problems Fundamental tradeoff between repair communication and
More informationTowards High Security and Fault Tolerant Dispersed Storage System with Optimized Information Dispersal Algorithm
Towards High Security and Fault Tolerant Dispersed Storage System with Optimized Information Dispersal Algorithm I Hrishikesh Lahkar, II Manjunath C R I,II Jain University, School of Engineering and Technology,
More informationFunctionalRepairbyTransfer Regenerating Codes
FunctionalRepairbyTransfer Regenerating Codes Kenneth W Shum and Yuchong Hu Abstract In a distributed storage system a data file is distributed to several storage nodes such that the original file can
More informationSignatures for Content Distribution with Network Coding
Signatures for Content Distribution with Network Coding Fang Zhao, Ton Kalker, Muriel Médard, and Keesook J. Han Lab for Information and Decision Systems MIT, Cambridge, MA 02139, USA Email: zhaof/medard@mit.edu
More informationMathematical Modelling of Computer Networks: Part II. Module 1: Network Coding
Mathematical Modelling of Computer Networks: Part II Module 1: Network Coding Lecture 3: Network coding and TCP 12th November 2013 Laila Daniel and Krishnan Narayanan Dept. of Computer Science, University
More informationCommunication Overhead of Network Coding Schemes Secure against Pollution Attacks
Communication Overhead of Network Coding Schemes Secure against Pollution Attacks Elke Franz, Stefan Pfennig, and André Fischer TU Dresden, Faculty of Computer Science 01062 Dresden, Germany {elke.franz
More informationInNetwork Coding for Resilient Sensor Data Storage and Efficient Data Mule Collection
InNetwork Coding for Resilient Sensor Data Storage and Efficient Data Mule Collection Michele Albano Jie Gao Instituto de telecomunicacoes, Aveiro, Portugal Stony Brook University, Stony Brook, USA Data
More informationSECRET sharing schemes were introduced by Blakley [5]
206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006 Secret Sharing Schemes From Three Classes of Linear Codes Jin Yuan Cunsheng Ding, Senior Member, IEEE Abstract Secret sharing has
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationOn network coding for security
On network coding for security Keesook Han Tracey Ho Ralf Koetter Muriel Medard AFRL Computer Science ICE EECS Caltech TUM MIT Fang Zhao EECS MIT Abstract The use of network coding in military networks
More informationINTRODUCTION TO CODING THEORY: BASIC CODES AND SHANNON S THEOREM
INTRODUCTION TO CODING THEORY: BASIC CODES AND SHANNON S THEOREM SIDDHARTHA BISWAS Abstract. Coding theory originated in the late 1940 s and took its roots in engineering. However, it has developed and
More informationCIS 700: algorithms for Big Data
CIS 700: algorithms for Big Data Lecture 6: Graph Sketching Slides at http://grigory.us/bigdataclass.html Grigory Yaroslavtsev http://grigory.us Sketching Graphs? We know how to sketch vectors: v Mv
More information17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):
More informationLinear Network Coding on MultiMesh of Trees (MMT) using All to All Broadcast (AAB)
462 Linear Network Coding on MultiMesh of Trees (MMT) using All to All Broadcast (AAB) Nitin Rakesh 1 and VipinTyagi 2 1, 2 Department of CSE & IT, Jaypee University of Information Technology, Solan,
More informationDesign of LDPC codes
Design of LDPC codes Codes from finite geometries Random codes: Determine the connections of the bipartite Tanner graph by using a (pseudo)random algorithm observing the degree distribution of the code
More informationThis article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
IEEE/ACM TRANSACTIONS ON NETWORKING 1 A Greedy Link Scheduler for Wireless Networks With Gaussian MultipleAccess and Broadcast Channels Arun Sridharan, Student Member, IEEE, C Emre Koksal, Member, IEEE,
More informationNotes 11: List Decoding Folded ReedSolomon Codes
Introduction to Coding Theory CMU: Spring 2010 Notes 11: List Decoding Folded ReedSolomon Codes April 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami At the end of the previous notes,
More informationTo Provide Security & Integrity for Storage Services in Cloud Computing
To Provide Security & Integrity for Storage Services in Cloud Computing 1 vinothlakshmi.s Assistant Professor, Dept of IT, Bharath Unversity, Chennai, TamilNadu, India ABSTRACT: we propose in this paper
More information5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the FordFulkerson
More informationLink Failure Monitoring via Network Coding
5th IEEE Workshop on Network Measurements WNM 2010, Denver, Colorado Link Failure Monitoring via Network Coding Mohammad H. Firooz, Sumit Roy, Linda Bai, and Christopher Lydick Electrical Engineering Department
More informationSecret Key Generation from Reciprocal Spatially Correlated MIMO Channels,
203 IEEE. Reprinted, with permission, from Johannes Richter, Elke Franz, Sabrina Gerbracht, Stefan Pfennig, and Eduard A. Jorswieck, Secret Key Generation from Reciprocal Spatially Correlated MIMO Channels,
More informationFile Sharing between PeertoPeer using Network Coding Algorithm
File Sharing between PeertoPeer using Network Coding Algorithm Rathod Vijay U. PG Student, MBES College Of Engineering, Ambajogai V.R. Chirchi PG Dept, MBES College Of Engineering, Ambajogai ABSTRACT
More informationA Robust and Secure Overlay Storage Scheme Based on Erasure Coding
A Robust and Secure Overlay Storage Scheme Based on Erasure Coding Chuanyou Li Yun Wang School of Computer Science and Engineering, Southeast University Key Lab of Computer Network and Information Integration,
More informationPrivacy and Security in the Internet of Things: Theory and Practice. Bob Baxley; bob@bastille.io HitB; 28 May 2015
Privacy and Security in the Internet of Things: Theory and Practice Bob Baxley; bob@bastille.io HitB; 28 May 2015 Internet of Things (IoT) THE PROBLEM By 2020 50 BILLION DEVICES NO SECURITY! OSI Stack
More informationEnhancing Wireless Security with Physical Layer Network Cooperation
Enhancing Wireless Security with Physical Layer Network Cooperation Amitav Mukherjee, Ali Fakoorian, A. Lee Swindlehurst University of California Irvine The Physical Layer Outline Background Game Theory
More informationLow Delay Network Streaming Under Burst Losses
Low Delay Network Streaming Under Burst Losses Rafid Mahmood, Ahmed Badr, and Ashish Khisti School of Electrical and Computer Engineering University of Toronto Toronto, ON, M5S 3G4, Canada {rmahmood, abadr,
More informationAdaptive Linear Programming Decoding
Adaptive Linear Programming Decoding Mohammad H. Taghavi and Paul H. Siegel ECE Department, University of California, San Diego Email: (mtaghavi, psiegel)@ucsd.edu ISIT 2006, Seattle, USA, July 9 14, 2006
More informationGrowth Codes: Maximizing Sensor Network Data Persistence
Growth Codes: Maximizing Sensor Network Data Persistence ABSTRACT Abhinav Kamra Columbia University New York, USA kamra@cs.columbia.edu Jon Feldman Google Inc. New York, USA jonfeld@google.com Sensor networks
More informationN O T E S. A Reed Solomon Code Magic Trick. The magic trick T O D D D. M A T E E R
N O T E S A Reed Solomon Code Magic Trick T O D D D. M A T E E R Howard Community College Columbia, Maryland 21044 tmateer@howardcc.edu Richard Ehrenborg [1] has provided a nice magic trick that can be
More informationPhysical Layer Security in Wireless Communications
Physical Layer Security in Wireless Communications Dr. Zheng Chang Department of Mathematical Information Technology zheng.chang@jyu.fi Outline Fundamentals of Physical Layer Security (PLS) Coding for
More informationA Practical Scheme for Wireless Network Operation
A Practical Scheme for Wireless Network Operation Radhika Gowaikar, Amir F. Dana, Babak Hassibi, Michelle Effros June 21, 2004 Abstract In many problems in wireline networks, it is known that achieving
More informationBeyond the MDS Bound in Distributed Cloud Storage
Beyond the MDS Bound in Distributed Cloud Storage Jian Li Tongtong Li Jian Ren Department of ECE, Michigan State University, East Lansing, MI 488241226 Email: {lijian6, tongli, renjian}@msuedu Abstract
More informationApplied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
More informationOverview. How distributed file systems work Part 1: The code repair problem Regenerating Codes. Part 2: Locally Repairable Codes
Overview How distributed file systems work Part 1: The code repair problem Regenerating Codes Part 2: Locally Repairable Codes Part 3: Availability of Codes Open problems 1 current hadoop architecture
More informationApplications of Linear Algebra to Coding Theory. Presented by: Prof.Surjeet kaur Dept of Mathematics SIES College.Sion(W)
Applications of Linear Algebra to Coding Theory Presented by: Prof.Surjeet kaur Dept of Mathematics SIES College.Sion(W) Outline Introduction AIM Coding Theory Vs Cryptography Coding Theory Binary Symmetric
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationOptimizing Congestion in PeertoPeer File Sharing Based on Network Coding
International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 151156 (2015) ABSTRACT Optimizing Congestion in PeertoPeer File Sharing Based on Network Coding E.ShyamSundhar
More informationDiversity Coloring for Distributed Data Storage in Networks 1
Diversity Coloring for Distributed Data Storage in Networks 1 Anxiao (Andrew) Jiang and Jehoshua Bruck California Institute of Technology Pasadena, CA 9115, U.S.A. {jax, bruck}@paradise.caltech.edu Abstract
More information3/25/2014. 3/25/2014 Sensor Network Security (Simon S. Lam) 1
Sensor Network Security 3/25/2014 Sensor Network Security (Simon S. Lam) 1 1 References R. Blom, An optimal class of symmetric key generation systems, Advances in Cryptology: Proceedings of EUROCRYPT 84,
More informationOptimal Index Codes for a Class of Multicast Networks with Receiver Side Information
Optimal Index Codes for a Class of Multicast Networks with Receiver Side Information Lawrence Ong School of Electrical Engineering and Computer Science, The University of Newcastle, Australia Email: lawrence.ong@cantab.net
More information954 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005
954 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005 Using Linear Programming to Decode Binary Linear Codes Jon Feldman, Martin J. Wainwright, Member, IEEE, and David R. Karger, Associate
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. #approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of three
More informationPerformance Evaluation of Network Coding: Effects of Topology and Network Traffic for Linear and XOR Coding
JOURNAL OF COMMUNICATIONS, VOL., NO. 11, DECEMBER 9 88 Performance Evaluation of Network Coding: Effects of Topology and Network Traffic for Linear and XOR Coding Borislava Gajic, Janne Riihijärvi and
More informationAN INTRODUCTION TO ERROR CORRECTING CODES Part 1
AN INTRODUCTION TO ERROR CORRECTING CODES Part 1 Jack Keil Wolf ECE 154C Spring 2008 Noisy Communications Noise in a communications channel can cause errors in the transmission of binary digits. Transmit:
More informationOrthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
More informationCODEC: CONTENT DISTRIBUTION WITH (N,K) ERASURE CODE IN MANET
CODEC: CONTENT DISTRIBUTION WITH (N,K) ERASURE CODE IN MANET Bin Dai, Wenwen Zhao, Jun Yang and Lu Lv Department of Electronic and Information Engineering, Huazhong University of Science and Technology
More informationLecture 14: Data transfer in multihop wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 6, Thursday
Lecture 14: Data transfer in multihop wireless networks Mythili Vutukuru CS 653 Spring 2014 March 6, Thursday Data transfer over multiple wireless hops Many applications: TCP flow from a wireless node
More informationErasure Coding for Cloud Storage Systems: A Survey
TSINGHUA SCIENCE AND TECHNOLOGY ISSNll10070214ll06/11llpp259272 Volume 18, Number 3, June 2013 Erasure Coding for Cloud Storage Systems: A Survey Jun Li and Baochun Li Abstract: In the current era of
More informationEnsuring Data Storage Security in Cloud Computing
Ensuring Data Storage Security in Cloud Computing Cong Wang 1, Qian Wang 1, Kui Ren 1, and Wenjing Lou 2 1 ECE Department, Illinois Institute of Technology 2 ECE Department, Worcester Polytechnic Institute
More informationCoding and decoding with convolutional codes. The Viterbi Algor
Coding and decoding with convolutional codes. The Viterbi Algorithm. 8 Block codes: main ideas Principles st point of view: infinite length block code nd point of view: convolutions Some examples Repetition
More informationOn the Locality of Codeword Symbols
On the Locality of Codeword Symbols Parikshit Gopalan Microsoft Research parik@microsoft.com Cheng Huang Microsoft Research chengh@microsoft.com Sergey Yekhanin Microsoft Research yekhanin@microsoft.com
More informationWe shall turn our attention to solving linear systems of equations. Ax = b
59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system
More informationThe Complexity of Online Memory Checking
The Complexity of Online Memory Checking Moni Naor Guy N. Rothblum Abstract We consider the problem of storing a large file on a remote and unreliable server. To verify that the file has not been corrupted,
More informationA Survey of the Theory of ErrorCorrecting Codes
Posted by permission A Survey of the Theory of ErrorCorrecting Codes by Francis Yein Chei Fung The theory of errorcorrecting codes arises from the following problem: What is a good way to send a message
More informationImage Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology EISSN 2277 4106, PISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
More informationMOST errorcorrecting codes are designed for the equal
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 3, MARCH 2007 387 Transactions Letters Unequal Error Protection Using Partially Regular LDPC Codes Nazanin Rahnavard, Member, IEEE, Hossein PishroNik,
More informationLinear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.
Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a subvector space of V[n,q]. If the subspace of V[n,q]
More informationNetwork File Storage with Graceful Performance Degradation
Network File Storage with Graceful Performance Degradation ANXIAO (ANDREW) JIANG California Institute of Technology and JEHOSHUA BRUCK California Institute of Technology A file storage scheme is proposed
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationNetwork Design and Protection Using Network Coding
Network Design and Protection Using Network Coding Salah A. Aly Electrical & Computer Eng. Dept. New Jersey Institute of Technology salah@njit.edu Ahmed E. Kamal Electrical & Computer Eng. Dept. Iowa State
More informationAn Application of Visual Cryptography To Financial Documents
An Application of Visual Cryptography To Financial Documents L. W. Hawkes, A. Yasinsac, C. Cline Security and Assurance in Information Technology Laboratory Computer Science Department Florida State University
More informationNimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff
Nimble Algorithms for Cloud Computing Ravi Kannan, Santosh Vempala and David Woodruff Cloud computing Data is distributed arbitrarily on many servers Parallel algorithms: time Streaming algorithms: sublinear
More informationSolutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
More informationSYSTEMATIC NETWORK CODING FOR LOSSY LINE NETWORKS. (Paresh Saxena) Supervisor: Dr. M. A. VázquezCastro
SYSTEMATIC NETWORK CODING FOR LOSSY LINE NETWORKS Paresh Saxena Supervisor: Dr. M. A. VázquezCastro PhD Programme in Telecommunications and Systems Engineering Department of Telecommunications and Systems
More informationA REVIEW ON NETWORK CODING AND ITS APPLICATIONS IN WIRED AND WIRELESS NETWORKS
IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 23218843; ISSN(P): 23474599 Vol. 2, Issue 5, May 2014, 179186 Impact Journals A REVIEW ON NETWORK CODING
More informationErasure Coding for Cloud Communication and Storage
Erasure Coding for Cloud Communication and Storage Cheng Huang, Jin Li Microsoft Research Tutorial at IEEE ICC (June, 2014) 1 Tutorial at IEEE ICC (June, 2014) 2 Tutorial at IEEE ICC (June, 2014) 3 Erasure
More informationOn the Security and Efficiency of Content Distribution Via Network Coding
1 On the Security and Efficiency of Content Distribution Via Network Coding Qiming Li John C.S. Lui + DahMing Chiu Crypto. & Security Department, Institute for Infocomm Research, Singapore + Computer
More informationNetwork Coding Applications
Foundations and Trends R in Networking Vol. 2, No. 2 (2007) 135 269 c 2007 C. Fragouli and E. Soljanin DOI: 10.1561/1300000013 Network Coding Applications Christina Fragouli 1 and Emina Soljanin 2 1 École
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationNetwork Coding Meets Multimedia: a Review
1 Network Coding Meets Multimedia: a Review Enrico Magli, Mea Wang, Pascal Frossard, Athina Markopoulou Abstract While every network node only relays messages in a traditional communication system, the
More informationQuantum Network Coding
Salah A. Aly Department of Computer Science Texas A& M University Quantum Computing Seminar April 26, 2006 Network coding example In this butterfly network, there is a source S 1 and two receivers R 1
More informationChapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NPhard problem. What should I do? A. Theory says you're unlikely to find a polytime algorithm. Must sacrifice one
More informationOPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION
OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering
More information