NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015"

Transcription

1 NoSQL Databases Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015

2 Database Landscape Source: H. Lim, Y. Han, and S. Babu, How to Fit when No One Size Fits., in CIDR, Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

3 Why NoSQL? Rise of the Internet (Distributed Systems, Web 2.0 applications, Cloud Systems) Applications spanning over huge geographic areas Many concurrent users Different data characteristics Rise of Big Data 3Vs of Big Data (according to D. Laney, 3D data management: Controlling data volume, velocity and variety, Appl. Deliv. Strateg. File, vol. 949, 2001.) Data Velocity From batch, periodic, near real time to real time Data Volume From MB, GB, TB, PB, EB... Data Variety From structured (tables, etc.), semi-structured (JSON, XML, s etc.) to unstructured (photos, web, social media, texts, tweets, blogs, audio etc.) Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

4 NoSQL System Characteristics Ability to scale horizontally Distribution and replication of data over many servers Simple interfaces, not necessary SQL Weaker concurrency models than ACID Utilization of distributed indexes and memory Flexible schemata Source: R. Cattell, Scalable SQL and NoSql Data Stores. SIGMOD Record, 39(4), 27-Dec and often Open Source Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

5 CAP Theorem CAP theorem (also known as Brewer s theorem) stated at the Symposium on Principles of Distributed Computing (PODC) by Eric Brewer in 2000 Formal proof by Seth Gilbert, Nancy Lynch in 2002 The CAP theorem states that in a distributed database you can only have two of the following properties: Consistency equivalent to having a single up-to-date copy of the data (all requests at the same time retrieve the same value) High Availability of that data (the retrieval of data is always possible as long as at least one server is running) Tolerance to Network Partitions (the system will function even if the communication is broken). Typically Consistency is traded for a higher level of availability, this is known as BASE (Basically Available, Soft state, Eventually consistent). Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

6 CAP Theorem (cont.) C RDBMS ATM A DNS P Social Media Sites (were weak consistency is okay) Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

7 CAP Theorem (cont.) Assume a server (single node, no cluster) has performance problems. Solution: Add another node to increase performance. Now we have a distributed system. A new problem occurs in our two-node cluster: When data is written to both nodes the data is not consistent if it s not synchronized (the system is still available and partition tolerant). Solution: Each node propagates updates to other node. That requires that both nodes are online all the time. If one node is down, the other can t function anymore and the system is not available anymore (but still consistent and partition tolerant). Solution: The nodes offline will perform the updates (stored in a queue) when they are online again. Not partition tolerant (but always consistent and available). Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

8 CAP Theorem Revisited The 2 of 3 formulation was always misleading because it tended to oversimplify the tensions among properties. Now such nuances matter. CAP prohibits only a tiny part of the design space: perfect availability and consistency in the presence of partitions, which are rare. Although designers still need to choose between consistency and availability when partitions are present, there is an incredible range of flexibility for handling partitions and recovering from them. The modern CAP goal should be to maximize combinations of consistency and availability that make sense for the specific application. Such an approach incorporates plans for operation during a partition and for recovery afterward, thus helping designers think about CAP beyond its historically perceived limitations. Source: Eric Brewer, CAP twelve years later: How the rules have changed, IEEE Explore, Volume 45, Issue 2 (2012), pg Additional reading: Daniel Abadi (February 2012), Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only Part of the Story, IEEE Computer Society Press 45(2):27-42 Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

9 CAP Theorem Revisited (cont.) Of the CAP theorem s Consistency, Availability, and Partition Tolerance, Partition Tolerance is mandatory in distributed systems. You cannot not choose it. Coda Hale, Yammer Software Engineer An important observation is that in larger distributed-scale systems, network partitions are a given; therefore, consistency and availability cannot be achieved at the same time. Werner Vogels, Amazon CTO So in reality, there are only two types of systems: CP/CA and AP. I.e., if there is a partition, does the system give up availability or consistency? Daneil Abadi, Co-founder of Hadapt, Associate Professor at Yale University Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

10 NoSQL Databases A Classification NoSQL Systems are often classified in four categories Key-Value Stores (e.g. Dynamo, Riak) Values are accessed by a key Simple data model, simple queries Wide Columnar Stores (e.g. Big Table, Hbase, Cassandra) Big sparse tables with a lot of columns Document Stores (e.g. MongoDB, DB4O) Documents (e.g. JSON/BSON/XML) are accessed by a key Graph Databases (e.g.neo4j, Allegro) Nodes and Edges (Relationships) are stored Complex data model, complex queries Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

11 NoSQL Landscape Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

12 Some NoSQL Databases in Detail Apache Cassandra (Wide Column-Store) MongoDB (Document Store) Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

13 Cassandra Characteristics Apache Project (Apache Cassandra) Architecture inspired by Amazon Dynamo and Big Table Distributed and Decentralized (no master-slave architecture, no SPOF) Good Scalability High Availability and Fault Tolerance (Replication) Tuneable Consistency Column-oriented Key-Value Store CQL (a SQL like query language) High (Write-)Performance Flexible Schema (No ETL at ingestion phase at least) Hadoop Integration Capable of handling Big Data workloads Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

14 Cassandra Terms Cluster A group of nodes where you store your data. Replication Storing copies of data on multiple nodes to ensure reliability and fault tolerance (number of copies set by replication factor). Data Center A (replication) group of related nodes configured together within a cluster for replication purposes. It is not necessarily a physical data center. Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

15 Cassandra Architecture Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

16 Cassandra Partitioning Partitioner A partitioner distributes data evenly across the nodes in the cluster for load balancing. Murmur3Partitioner (default): uniformly distributes data based on MurmurHash hash values. RandomPartitioner: uniformly distributes data based on MD5 hash values. ByteOrderedPartitioner: keeps an ordered distribution of data lexically by key bytes Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

17 Cassandra Data Model Data stored in big sparse hash table Column Family (CF) Comparable to a table in RDBMS CF contain columns, and a set of related columns is identified by a row key. Each row in a CF is not required to have the same set of columns. Keyspace Schema in relational world All CF objects (tables) are in keyspaces Usually one keyspace per application Replication is controlled on a per-keyspace basis Design of data model based on (expected) queries Joining CF at query time is not supported, no FK Column values have a timestamp Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

18 Cassandra Data Model (cont.) A super column is a way to group multiple columns based on a common lookup value. Adds another level of nesting to the regular column family structure Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

19 RDBMS vs. Cassandra Data Model Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

20 RDBMS vs. Cassandra Data Model (cont.) Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

21 Cassandra Query Language (CQL) CQL command to create a keyspace CREATE KEYSPACE db2_keyspace WITH replication = {'class':'simplestrategy', 'replication_factor':3}; CQL command to create CF Static CF: CREATE TABLE usertable (userid TEXT PRIMARY KEY, lastname VARCHAR, firstname VARCHAR); Dynamic CF: CREATE TABLE usertable (userid TEXT PRIMARY KEY); Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

22 Cassandra Overview Source: Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

23 Cassandra Use Cases Typical Cassandra Use Cases: Geophraphical distribution Write intensive workloads Application (and queries) well known in advance in the data model design phase Big Data Workloads Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

24 Cassandra References Datastax Cassandra Documentation, (accessed Jan 15, 2015) Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

25 MongoDB Characteristics Document store (JSON style), flexible data model Index support for attributes Querying: Range queries, search by field Map/Reduce Support (e.g. aggregation functions) Replication Open Source (GNU AGPL v3.0) Good horizontal scalability (due to sharding) Easy to understand/learn for app programmers Writes only handled by master (possible bottleneck) Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

26 MongoDB Architecture Master/Slave architecture Write/Reads to primary (master) by default Strong Consistency, CP system by default Also possible to allow reading from secondaries Eventual Consistency Number of replica configurable If master fails, a slave is elected and promoted to master Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

27 MongoDB Data Model Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

28 MongoDB Query Language (Read) Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

29 MongoDB Query Language (Insert) Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

30 MongoDB Query Language (Update + Delete) db.inventory.update( { username: db2student" }, { $set: { age": 25" } } ) db.inventory.remove( ) { age : 25" } Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

31 MongoDB Use Cases Typical MongoDB Use Cases: Good to store documents (Content Management) Easy (ad hoc) querying of documents and their attributes Easy to learn for programmers using object oriented programming languages Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

32 MongoDB References MongoDB Documentation, (accessed Jan 15, 2015) MongoDB Architecture Guide, odb_architecture_guide.pdf (accessed Jan 15, 2015) Institute of Computer Science and Mathematics, Databases and Information Systems (DBIS), DB 2 WS 2014/

NoSQL Databases. Nikos Parlavantzas

NoSQL Databases. Nikos Parlavantzas !!!! NoSQL Databases Nikos Parlavantzas Lecture overview 2 Objective! Present the main concepts necessary for understanding NoSQL databases! Provide an overview of current NoSQL technologies Outline 3!

More information

Cloud Scale Distributed Data Storage. Jürmo Mehine

Cloud Scale Distributed Data Storage. Jürmo Mehine Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented

More information

A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA

A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA Ompal Singh Assistant Professor, Computer Science & Engineering, Sharda University, (India) ABSTRACT In the new era of distributed system where

More information

Introduction to NOSQL

Introduction to NOSQL Introduction to NOSQL Université Paris-Est Marne la Vallée, LIGM UMR CNRS 8049, France January 31, 2014 Motivations NOSQL stands for Not Only SQL Motivations Exponential growth of data set size (161Eo

More information

So What s the Big Deal?

So What s the Big Deal? So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data

More information

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010 System/ Scale to Primary Secondary Joins/ Integrity Language/ Data Year Paper 1000s Index Indexes Transactions Analytics Constraints Views Algebra model my label 1971 RDBMS O tables sql-like 2003 memcached

More information

Structured Data Storage

Structured Data Storage Structured Data Storage Xgen Congress Short Course 2010 Adam Kraut BioTeam Inc. Independent Consulting Shop: Vendor/technology agnostic Staffed by: Scientists forced to learn High Performance IT to conduct

More information

Study and Comparison of Elastic Cloud Databases : Myth or Reality?

Study and Comparison of Elastic Cloud Databases : Myth or Reality? Université Catholique de Louvain Ecole Polytechnique de Louvain Computer Engineering Department Study and Comparison of Elastic Cloud Databases : Myth or Reality? Promoters: Peter Van Roy Sabri Skhiri

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

Preparing Your Data For Cloud

Preparing Your Data For Cloud Preparing Your Data For Cloud Narinder Kumar Inphina Technologies 1 Agenda Relational DBMS's : Pros & Cons Non-Relational DBMS's : Pros & Cons Types of Non-Relational DBMS's Current Market State Applicability

More information

Databases : Lecture 11 : Beyond ACID/Relational databases Timothy G. Griffin Lent Term 2014. Apologies to Martin Fowler ( NoSQL Distilled )

Databases : Lecture 11 : Beyond ACID/Relational databases Timothy G. Griffin Lent Term 2014. Apologies to Martin Fowler ( NoSQL Distilled ) Databases : Lecture 11 : Beyond ACID/Relational databases Timothy G. Griffin Lent Term 2014 Rise of Web and cluster-based computing NoSQL Movement Relationships vs. Aggregates Key-value store XML or JSON

More information

Application-specific databases have always been with us...

Application-specific databases have always been with us... Databases : Lecture 11 : Beyond ACID/Relational databases Timothy G. Griffin Lent Term 2014 Rise of Web and cluster-based computing NoSQL Movement Relationships vs. Aggregates Key-value store XML or JSON

More information

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems

More information

MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15

MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15 MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15 1 MongoDB in the NoSQL and SQL world. NoSQL What? Why? - How? Say goodbye to ACID, hello BASE You

More information

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF)

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) Not Relational Models For The Management of Large Amount of Astronomical Data Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) What is a DBMS A Data Base Management System is a software infrastructure

More information

Can the Elephants Handle the NoSQL Onslaught?

Can the Elephants Handle the NoSQL Onslaught? Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented

More information

Lecture Data Warehouse Systems

Lecture Data Warehouse Systems Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores

More information

NOSQL DATABASES AND CASSANDRA

NOSQL DATABASES AND CASSANDRA NOSQL DATABASES AND CASSANDRA Semester Project: Advanced Databases DECEMBER 14, 2015 WANG CAN, EVABRIGHT BERTHA Université Libre de Bruxelles 0 Preface The goal of this report is to introduce the new evolving

More information

Big Data Development CASSANDRA NoSQL Training - Workshop. March 13 to 17-2016 9 am to 5 pm HOTEL DUBAI GRAND DUBAI

Big Data Development CASSANDRA NoSQL Training - Workshop. March 13 to 17-2016 9 am to 5 pm HOTEL DUBAI GRAND DUBAI Big Data Development CASSANDRA NoSQL Training - Workshop March 13 to 17-2016 9 am to 5 pm HOTEL DUBAI GRAND DUBAI ISIDUS TECH TEAM FZE PO Box 121109 Dubai UAE, email training-coordinator@isidusnet M: +97150

More information

The Cloud Trade Off IBM Haifa Research Storage Systems

The Cloud Trade Off IBM Haifa Research Storage Systems The Cloud Trade Off IBM Haifa Research Storage Systems 1 Fundamental Requirements form Cloud Storage Systems The Google File System first design consideration: component failures are the norm rather than

More information

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00 Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn

More information

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what

More information

MongoDB Developer and Administrator Certification Course Agenda

MongoDB Developer and Administrator Certification Course Agenda MongoDB Developer and Administrator Certification Course Agenda Lesson 1: NoSQL Database Introduction What is NoSQL? Why NoSQL? Difference Between RDBMS and NoSQL Databases Benefits of NoSQL Types of NoSQL

More information

Comparing SQL and NOSQL databases

Comparing SQL and NOSQL databases COSC 6397 Big Data Analytics Data Formats (II) HBase Edgar Gabriel Spring 2015 Comparing SQL and NOSQL databases Types Development History Data Storage Model SQL One type (SQL database) with minor variations

More information

Big Data Management. Big Data Management. (BDM) Autumn 2013. Povl Koch September 30, 2013 29-09-2013 1

Big Data Management. Big Data Management. (BDM) Autumn 2013. Povl Koch September 30, 2013 29-09-2013 1 Big Data Management Big Data Management (BDM) Autumn 2013 Povl Koch September 30, 2013 29-09-2013 1 Overview Today s program 1. Little more practical details about this course 2. Recap from last time 3.

More information

NoSQL Data Base Basics

NoSQL Data Base Basics NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS

More information

Benchmarking Couchbase Server for Interactive Applications. By Alexey Diomin and Kirill Grigorchuk

Benchmarking Couchbase Server for Interactive Applications. By Alexey Diomin and Kirill Grigorchuk Benchmarking Couchbase Server for Interactive Applications By Alexey Diomin and Kirill Grigorchuk Contents 1. Introduction... 3 2. A brief overview of Cassandra, MongoDB, and Couchbase... 3 3. Key criteria

More information

INTRODUCTION TO CASSANDRA

INTRODUCTION TO CASSANDRA INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open

More information

NoSQL Database Options

NoSQL Database Options NoSQL Database Options Introduction For this report, I chose to look at MongoDB, Cassandra, and Riak. I chose MongoDB because it is quite commonly used in the industry. I chose Cassandra because it has

More information

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop

More information

Data Services Advisory

Data Services Advisory Data Services Advisory Modern Datastores An Introduction Created by: Strategy and Transformation Services Modified Date: 8/27/2014 Classification: DRAFT SAFE HARBOR STATEMENT This presentation contains

More information

The CAP theorem and the design of large scale distributed systems: Part I

The CAP theorem and the design of large scale distributed systems: Part I The CAP theorem and the design of large scale distributed systems: Part I Silvia Bonomi University of Rome La Sapienza www.dis.uniroma1.it/~bonomi Great Ideas in Computer Science & Engineering A.A. 2012/2013

More information

Evaluating NoSQL for Enterprise Applications. Dirk Bartels VP Strategy & Marketing

Evaluating NoSQL for Enterprise Applications. Dirk Bartels VP Strategy & Marketing Evaluating NoSQL for Enterprise Applications Dirk Bartels VP Strategy & Marketing Agenda The Real Time Enterprise The Data Gold Rush Managing The Data Tsunami Analytics and Data Case Studies Where to go

More information

Integrating Big Data into the Computing Curricula

Integrating Big Data into the Computing Curricula Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big

More information

Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY MANNING ANN KELLY. Shelter Island

Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY MANNING ANN KELLY. Shelter Island Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY ANN KELLY II MANNING Shelter Island contents foreword preface xvii xix acknowledgments xxi about this book xxii Part 1 Introduction

More information

NoSQL: Going Beyond Structured Data and RDBMS

NoSQL: Going Beyond Structured Data and RDBMS NoSQL: Going Beyond Structured Data and RDBMS Scenario Size of data >> disk or memory space on a single machine Store data across many machines Retrieve data from many machines Machine = Commodity machine

More information

NoSQL in der Cloud Why? Andreas Hartmann

NoSQL in der Cloud Why? Andreas Hartmann NoSQL in der Cloud Why? Andreas Hartmann 17.04.2013 17.04.2013 2 NoSQL in der Cloud Why? Quelle: http://res.sys-con.com/story/mar12/2188748/cloudbigdata_0_0.jpg Why Cloud??? 17.04.2013 3 NoSQL in der Cloud

More information

Introduction to NoSQL

Introduction to NoSQL Introduction to NoSQL Gabriele Pozzani April 24, 2013 Outline NoSQL Definition Categories Related concepts Modeling NoSQL stores Properties Performance Relational vs NoSQL DBMSs Applications What does

More information

BRAC. Investigating Cloud Data Storage UNIVERSITY SCHOOL OF ENGINEERING. SUPERVISOR: Dr. Mumit Khan DEPARTMENT OF COMPUTER SCIENCE AND ENGEENIRING

BRAC. Investigating Cloud Data Storage UNIVERSITY SCHOOL OF ENGINEERING. SUPERVISOR: Dr. Mumit Khan DEPARTMENT OF COMPUTER SCIENCE AND ENGEENIRING BRAC UNIVERSITY SCHOOL OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGEENIRING 12-12-2012 Investigating Cloud Data Storage Sumaiya Binte Mostafa (ID 08301001) Firoza Tabassum (ID 09101028) BRAC University

More information

How to Choose Between Hadoop, NoSQL and RDBMS

How to Choose Between Hadoop, NoSQL and RDBMS How to Choose Between Hadoop, NoSQL and RDBMS Keywords: Jean-Pierre Dijcks Oracle Redwood City, CA, USA Big Data, Hadoop, NoSQL Database, Relational Database, SQL, Security, Performance Introduction A

More information

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1 Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots

More information

NoSQL Systems for Big Data Management

NoSQL Systems for Big Data Management NoSQL Systems for Big Data Management Venkat N Gudivada East Carolina University Greenville, North Carolina USA Venkat Gudivada NoSQL Systems for Big Data Management 1/28 Outline 1 An Overview of NoSQL

More information

Big Systems, Big Data

Big Systems, Big Data Big Systems, Big Data When considering Big Distributed Systems, it can be noted that a major concern is dealing with data, and in particular, Big Data Have general data issues (such as latency, availability,

More information

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets

More information

Distributed Data Stores

Distributed Data Stores Distributed Data Stores 1 Distributed Persistent State MapReduce addresses distributed processing of aggregation-based queries Persistent state across a large number of machines? Distributed DBMS High

More information

Firebird meets NoSQL (Apache HBase) Case Study

Firebird meets NoSQL (Apache HBase) Case Study Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 thomas.steinmaurer@scch.at www.scch.at Michael Zwick DI

More information

X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released

X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released General announcements In-Memory is available next month http://www.oracle.com/us/corporate/events/dbim/index.html X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released

More information

Eventually Consistent

Eventually Consistent Historical Perspective In an ideal world there would be only one consistency model: when an update is made all observers would see that update. The first time this surfaced as difficult to achieve was

More information

A survey of big data architectures for handling massive data

A survey of big data architectures for handling massive data CSIT 6910 Independent Project A survey of big data architectures for handling massive data Jordy Domingos - jordydomingos@gmail.com Supervisor : Dr David Rossiter Content Table 1 - Introduction a - Context

More information

Slave. Master. Research Scholar, Bharathiar University

Slave. Master. Research Scholar, Bharathiar University Volume 3, Issue 7, July 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper online at: www.ijarcsse.com Study on Basically, and Eventually

More information

Introduction to Big Data Training

Introduction to Big Data Training Introduction to Big Data Training The quickest way to be introduce with NOSQL/BIG DATA offerings Learn and experience Big Data Solutions including Hadoop HDFS, Map Reduce, NoSQL DBs: Document Based DB

More information

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra dwd@fnal.gov Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359

More information

Advanced Data Management Technologies

Advanced Data Management Technologies ADMT 2014/15 Unit 15 J. Gamper 1/44 Advanced Data Management Technologies Unit 15 Introduction to NoSQL J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE ADMT 2014/15 Unit 15

More information

Benchmarking and Analysis of NoSQL Technologies

Benchmarking and Analysis of NoSQL Technologies Benchmarking and Analysis of NoSQL Technologies Suman Kashyap 1, Shruti Zamwar 2, Tanvi Bhavsar 3, Snigdha Singh 4 1,2,3,4 Cummins College of Engineering for Women, Karvenagar, Pune 411052 Abstract The

More information

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3

More information

Using RDBMS, NoSQL or Hadoop?

Using RDBMS, NoSQL or Hadoop? Using RDBMS, NoSQL or Hadoop? DOAG Conference 2015 Jean- Pierre Dijcks Big Data Product Management Server Technologies Copyright 2014 Oracle and/or its affiliates. All rights reserved. Data Ingest 2 Ingest

More information

Introduction to NoSQL

Introduction to NoSQL Introduction to NoSQL NoSQL Seminar 2012 @ TUT Arto Salminen What is NoSQL? Class of database management systems (DBMS) "Not only SQL" Does not use SQL as querying language Distributed, fault-tolerant

More information

Вовченко Алексей, к.т.н., с.н.с. ВМК МГУ ИПИ РАН

Вовченко Алексей, к.т.н., с.н.с. ВМК МГУ ИПИ РАН Вовченко Алексей, к.т.н., с.н.с. ВМК МГУ ИПИ РАН Zettabytes Petabytes ABC Sharding A B C Id Fn Ln Addr 1 Fred Jones Liberty, NY 2 John Smith?????? 122+ NoSQL Database

More information

Cassandra A Decentralized Structured Storage System

Cassandra A Decentralized Structured Storage System Cassandra A Decentralized Structured Storage System Avinash Lakshman, Prashant Malik LADIS 2009 Anand Iyer CS 294-110, Fall 2015 Historic Context Early & mid 2000: Web applicaoons grow at tremendous rates

More information

SQL, NoSQL, and Next Generation DBMSs. Shahram Ghandeharizadeh Director of the USC Database Lab

SQL, NoSQL, and Next Generation DBMSs. Shahram Ghandeharizadeh Director of the USC Database Lab SQL, NoSQL, and Next Generation DBMSs Shahram Ghandeharizadeh Director of the USC Database Lab Outline A brief history of DBMSs. OSs SQL NoSQL 1960/70 1980+ 2000+ Before Computers Database DBMS/Data Store

More information

Evaluation of NoSQL databases for large-scale decentralized microblogging

Evaluation of NoSQL databases for large-scale decentralized microblogging Evaluation of NoSQL databases for large-scale decentralized microblogging Cassandra & Couchbase Alexandre Fonseca, Anh Thu Vu, Peter Grman Decentralized Systems - 2nd semester 2012/2013 Universitat Politècnica

More information

NoSQL Database Systems and their Security Challenges

NoSQL Database Systems and their Security Challenges NoSQL Database Systems and their Security Challenges Morteza Amini amini@sharif.edu Data & Network Security Lab (DNSL) Department of Computer Engineering Sharif University of Technology September 25 2

More information

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing

More information

Big Data Technologies Compared June 2014

Big Data Technologies Compared June 2014 Big Data Technologies Compared June 2014 Agenda What is Big Data Big Data Technology Comparison Summary Other Big Data Technologies Questions 2 What is Big Data by Example The SKA Telescope is a new development

More information

Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012

Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords From A to Z By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords Big data is one of the, well, biggest trends in IT today, and it has spawned a whole new generation

More information

Referential Integrity in Cloud NoSQL Databases

Referential Integrity in Cloud NoSQL Databases Referential Integrity in Cloud NoSQL Databases by Harsha Raja A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Engineering

More information

nosql and Non Relational Databases

nosql and Non Relational Databases nosql and Non Relational Databases Image src: http://www.pentaho.com/big-data/nosql/ Matthias Lee Johns Hopkins University What NoSQL? Yes no SQL.. Atleast not only SQL Large class of Non Relaltional Databases

More information

Introduction to Apache Cassandra

Introduction to Apache Cassandra Introduction to Apache Cassandra White Paper BY DATASTAX CORPORATION JULY 2013 1 Table of Contents Abstract 3 Introduction 3 Built by Necessity 3 The Architecture of Cassandra 4 Distributing and Replicating

More information

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre NoSQL systems: introduction and data models Riccardo Torlone Università Roma Tre Why NoSQL? In the last thirty years relational databases have been the default choice for serious data storage. An architect

More information

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call

More information

Comparative Analysis of Nosql Specimen with Relational Data Store for Big Data in Cloud

Comparative Analysis of Nosql Specimen with Relational Data Store for Big Data in Cloud Article can be accessed online at http://www.publishingindia.com Comparative Analysis of Nosql Specimen with Relational Data Store for Big Data in Cloud Sangeeta Gupta* Abstract The massive amount of data

More information

A Distributed Network Security Analysis System Based on Apache Hadoop-Related Technologies. Jeff Springer, Mehmet Gunes, George Bebis

A Distributed Network Security Analysis System Based on Apache Hadoop-Related Technologies. Jeff Springer, Mehmet Gunes, George Bebis A Distributed Network Security Analysis System Based on Apache Hadoop-Related Technologies Bingdong Li, Jeff Springer, Mehmet Gunes, George Bebis University of Nevada Reno FloCon 2013 January 7-10, Albuquerque,

More information

Hadoop IST 734 SS CHUNG

Hadoop IST 734 SS CHUNG Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to

More information

CSE-E5430 Scalable Cloud Computing Lecture 6

CSE-E5430 Scalable Cloud Computing Lecture 6 CSE-E5430 Scalable Cloud Computing Lecture 6 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 26.10-2015 1/20 Hard Disk Read Errors Unrecoverable

More information

Getting Started with SandStorm NoSQL Benchmark

Getting Started with SandStorm NoSQL Benchmark Getting Started with SandStorm NoSQL Benchmark SandStorm is an enterprise performance testing tool for web, mobile, cloud and big data applications. It provides a framework for benchmarking NoSQL, Hadoop,

More information

NoSQL Evaluation. A Use Case Oriented Survey

NoSQL Evaluation. A Use Case Oriented Survey 2011 International Conference on Cloud and Service Computing NoSQL Evaluation A Use Case Oriented Survey Robin Hecht Chair of Applied Computer Science IV University ofbayreuth Bayreuth, Germany robin.hecht@uni

More information

Apache Hadoop. Alexandru Costan

Apache Hadoop. Alexandru Costan 1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open

More information

F1: A Distributed SQL Database That Scales. Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013

F1: A Distributed SQL Database That Scales. Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013 F1: A Distributed SQL Database That Scales Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013 What is F1? Distributed relational database Built to replace sharded MySQL back-end of AdWords

More information

Big Data Course Highlights

Big Data Course Highlights Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like

More information

Transactions and ACID in MongoDB

Transactions and ACID in MongoDB Transactions and ACID in MongoDB Kevin Swingler Contents Recap of ACID transactions in RDBMSs Transactions and ACID in MongoDB 1 Concurrency Databases are almost always accessed by multiple users concurrently

More information

An Approach to Implement Map Reduce with NoSQL Databases

An Approach to Implement Map Reduce with NoSQL Databases www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh

More information

www.objectivity.com Choosing The Right Big Data Tools For The Job A Polyglot Approach

www.objectivity.com Choosing The Right Big Data Tools For The Job A Polyglot Approach www.objectivity.com Choosing The Right Big Data Tools For The Job A Polyglot Approach Nic Caine NoSQL Matters, April 2013 Overview The Problem Current Big Data Analytics Relationship Analytics Leveraging

More information

wow CPSC350 relational schemas table normalization practical use of relational algebraic operators tuple relational calculus and their expression in a declarative query language relational schemas CPSC350

More information

these three NoSQL databases because I wanted to see a the two different sides of the CAP

these three NoSQL databases because I wanted to see a the two different sides of the CAP Michael Sharp Big Data CS401r Lab 3 For this paper I decided to do research on MongoDB, Cassandra, and Dynamo. I chose these three NoSQL databases because I wanted to see a the two different sides of the

More information

Speed, scale, query: can NoSQL give us all three? Arun Gupta, @arungupta Matthew Revell, @matthewrevell Couchbase

Speed, scale, query: can NoSQL give us all three? Arun Gupta, @arungupta Matthew Revell, @matthewrevell Couchbase Speed, scale, query: can NoSQL give us all three? Arun Gupta, @arungupta Matthew Revell, @matthewrevell Couchbase The project management triangle 2015 Couchbase Inc. Photo by https://www.flickr.com/photos/centralasian/

More information

Enterprise Operational SQL on Hadoop Trafodion Overview

Enterprise Operational SQL on Hadoop Trafodion Overview Enterprise Operational SQL on Hadoop Trafodion Overview Rohit Jain Distinguished & Chief Technologist Strategic & Emerging Technologies Enterprise Database Solutions Copyright 2012 Hewlett-Packard Development

More information

Summary of Alma-OSF s Evaluation of MongoDB for Monitoring Data Heiko Sommer June 13, 2013

Summary of Alma-OSF s Evaluation of MongoDB for Monitoring Data Heiko Sommer June 13, 2013 Summary of Alma-OSF s Evaluation of MongoDB for Monitoring Data Heiko Sommer June 13, 2013 Heavily based on the presentation by Tzu-Chiang Shen, Leonel Peña ALMA Integrated Computing Team Coordination

More information

NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases

NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases Background Inspiration: postgresapp.com demo.beatstream.fi (modern desktop browsers without

More information

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #13: NoSQL and MapReduce

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #13: NoSQL and MapReduce CS 4604: Introduc0on to Database Management Systems B. Aditya Prakash Lecture #13: NoSQL and MapReduce Announcements HW4 is out You have to use the PGSQL server START EARLY!! We can not help if everyone

More information

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web

More information

NoSQL and Hadoop Technologies On Oracle Cloud

NoSQL and Hadoop Technologies On Oracle Cloud NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath

More information

NoSQL - What we ve learned with mongodb. Paul Pedersen, Deputy CTO paul@10gen.com DAMA SF December 15, 2011

NoSQL - What we ve learned with mongodb. Paul Pedersen, Deputy CTO paul@10gen.com DAMA SF December 15, 2011 NoSQL - What we ve learned with mongodb Paul Pedersen, Deputy CTO paul@10gen.com DAMA SF December 15, 2011 DW2.0 and NoSQL management decision support intgrated access - local v. global - structured v.

More information

Introduction to Polyglot Persistence. Antonios Giannopoulos Database Administrator at ObjectRocket by Rackspace

Introduction to Polyglot Persistence. Antonios Giannopoulos Database Administrator at ObjectRocket by Rackspace Introduction to Polyglot Persistence Antonios Giannopoulos Database Administrator at ObjectRocket by Rackspace FOSSCOMM 2016 Background - 14 years in databases and system engineering - NoSQL DBA @ ObjectRocket

More information

Scalable Architecture on Amazon AWS Cloud

Scalable Architecture on Amazon AWS Cloud Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies kalpak@clogeny.com 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect

More information

Domain driven design, NoSQL and multi-model databases

Domain driven design, NoSQL and multi-model databases Domain driven design, NoSQL and multi-model databases Java Meetup New York, 10 November 2014 Max Neunhöffer www.arangodb.com Max Neunhöffer I am a mathematician Earlier life : Research in Computer Algebra

More information

NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB, Cassandra, and MongoDB

NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB, Cassandra, and MongoDB bankmark UG (haftungsbeschränkt) Bahnhofstraße 1 9432 Passau Germany www.bankmark.de info@bankmark.de T +49 851 25 49 49 F +49 851 25 49 499 NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB,

More information

Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: bdg@qburst.com Website: www.qburst.com

Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: bdg@qburst.com Website: www.qburst.com Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...

More information

A programming model in Cloud: MapReduce

A programming model in Cloud: MapReduce A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value

More information

Big Data Analytics. 6. NoSQL Databases. Lars Schmidt-Thieme

Big Data Analytics. 6. NoSQL Databases. Lars Schmidt-Thieme Big Data Analytics 6. NoSQL Databases Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany original slides by Lucas Rego

More information

The Transition from RDBMS to NoSQL. A Comparative Analysis of Three Popular Non-Relational Solutions: Cassandra, MongoDB and Couchbase

The Transition from RDBMS to NoSQL. A Comparative Analysis of Three Popular Non-Relational Solutions: Cassandra, MongoDB and Couchbase Database Systems Journal vol. V, no. 2/2014 49 The Transition from RDBMS to NoSQL. A Comparative Analysis of Three Popular Non-Relational Solutions: Cassandra, MongoDB and Couchbase Cristina BĂZĂR, Cosmin

More information