these three NoSQL databases because I wanted to see a the two different sides of the CAP

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "these three NoSQL databases because I wanted to see a the two different sides of the CAP"

Transcription

1 Michael Sharp Big Data CS401r Lab 3 For this paper I decided to do research on MongoDB, Cassandra, and Dynamo. I chose these three NoSQL databases because I wanted to see a the two different sides of the CAP theorem that relational databases are not on, as well as I wanted to pick one from a different type of NoSQL database so that I could get a better understanding of the differences between each one, as well as when I should use the different types. I did not choose a graph database because it is the one that I am least likely to use. I also chose these three because they are fairly large players in the realm of NoSQL databases. MongoDB was created by Kevin P. Ryan and Dwight Merriman, the founders of DoubleClick, in fall of 2007 (Chodorow). They left DoubleClick together, and founded multiple new startups, yet as they were doing this, they kept running into the same problems as they were attempting to store their data; they could not find an effective way to be able to store their data in an easily scalable manner. In fall of 2007 they founded a company called 10gen. While working there, they created two new products, one was an app engine, and the other was MongoDB. MongoDB stores data in the form of documents, which are JSON-like field and value pairs. (MongoDB). These documents are very similar to data structures in programming languages that associate a key with some sort of value, like a map or dictionary. These key value combinations are stored in BSON, or a binary representation of JSON, with some additional type information as well. Because they serialize their data into binary, the data it can hold can be a representation of anything from another document to even arrays of documents. This allows for easy storage of non-structured data that can vary from record to record. All of these documents

2 are collected and stored in what is called a collection. This collection is just a group of related documents that have some sort of shared index. Essentially, these collections can be thought of as a table in a relational database. In these collections, one is able to do the normal operations that one would normally be able to do in a relational database, including queries, updates, deletes, and creations. One downside though of storing the documents in a collection is that each operation can only interact with one collection at a time. This means that if you need or want to do cross collection queries, you will need to run multiple queries while storing the intermediate results. The workaround for this is to store as much of the data that you can within the same collection. This is only truly feasible though if the data is truly connected. You can cause many problems by putting non related data together in the same collection. MongoDB stores their data in two different ways in the backend, MMAP v1 and Wired Tiger (MongoDB). MMAP v1 is the default for MongoDB, though as Wired Tiger continues to be improved upon, it may become the new default. MMAP v1 supports database level locking starting from release 2.2 on up, and supports collection level locking in version 3.0 and up, but it does not support document level locking. This means that if someone needs to write to a collection, the whole collection will be locked, and not just the individual document. While MongoDB does support multiple readers at a time, they only allow one writer, who will also block all other writers and all readers as well, and so this can potentially be a bottle neck. Wired tiger fixes some of these issues by fully supporting a document level lock, but it does so by storing the data in a binary tree, and so lookup becomes O(log n) instead of O(1). Hence, MMAP v1 is better for reading, as lookup is faster, yet Wired Tiger is better for writing, as you can log an individual document and still leave the collection open for others to use. One of the main

3 downsides to Wired Tiger that MMAP v1 doesn t have is that there is a possibility that you could lose the last sixty seconds of data if something happened that shut down the database or the journal that logs everything (Peacock). While MongoDB does not support transactions, it does guarantee consistency on the document level, as well as is fully ACID compliant but ONLY on the document level. Not on the database level, not the collection level, only with the individual documents themselves. The amount of data loss that can happen varies based on the storage engine used. MMAP v1 writes all changes to the journal first, so that even if the databases is shut down, MongoDB can go back and fill in the lost changes from the journal, so that no data is ever permanently lost. Wired Tiger on the other hand, does have the possibility that if it gets shut down it can lose the last sixty seconds of data that was written to it. MongoDB is able to scale fairly well for two main different reasons. First, it has replication built into it. Their manual goes over this aspect a fair amount and talks about all the different ways that they use this for data and fault tolerance as well as the ability to read from several nodes at the same time, thus increasing the read speed by a lot. The second way is by supporting sharding. Sharding is a method for storing data across multiple machines. (MongoDB) Sharding is the process of splitting up the data into smaller data sets allowing it to be hosted on multiple smaller servers. This essentially allows for unlimited scaling when combined with replication. Next on my list is Cassandra. Cassandra was developed by Avinash Lakshman and Prashant Malik in 2008 at Facebook. They decided that they needed a more powerful database to power their inbox search feature, and so the idea of Cassandra was conceived. Cassandra, as we know it today, was officially released to the public on April

4 Cassandra stores their data in what are called column families. A column family, also known as a table, resembles a table in an RDBMS. Column families contain rows and columns. Each row is uniquely identified by a row key. Each row has multiple columns, each of which has a name, value, and a timestamp. (Datab.US) While this may sound exactly the same as a traditional relational database, one of the main features that sets it apart is how it actually deals with these tables. Unlike tables in a normal relational database, different rows in the same column family do not have to share the same set of columns, and a column may be added to one or multiple rows at any time. (Datab.US) The similarities do not end there. Even the syntax to manipulate the data is very similar to that of a relational database. And example insert statement is this, INSERT INTO MyColumns (id, Last, First) VALUES ('1', 'Doe', 'John'); As you can see it looks basically identical to a RDBMS. The same is true for the majority of their other operations as well. The only thing this does not hold true for is the fact that Cassandra does not support joins or sub queries, so if these are required they must be done in multiple individual steps. Cassandra is stored in multi-server distribution, with the number of nodes not really having a maximum value. In fact, Apple revealed at the Cassandra Summit San Francisco 2015 that they have over 100,000 Cassandra nodes in their database. Because of this relative ease of adding in additional nodes whenever they are wanted, Cassandra has amazing scaling performance. In a 2012 study, University of Toronto researches said that In terms of scalability, there is a clear winner throughout our experiments. Cassandra achieves the highest throughput for the maximum number of nodes in all experiments (Rabl, Sadoghi and Jacobsen) This amazing scaling though does come at a cost. Of the ACID properties, only atomic, isolated, and durable transactions are fully supported. Cassandra does also support consistency,

5 but it is eventually consistent, and thus does not fully support that property. Due to this, the Toronto study states that [the scaling] comes at the price of high write and read latencies. It is possible, and in fact probably, that people reading from different data centers at the same time will get different results even with the same queries, and this must be considered when thinking about implementing Cassandra. Finally we have DynamoDB. DynamoDB was announced by Amazon and released as a beta version on January 18, 2012 (Amazon). Amazon wanted to launch this in order to make their Amazon Web Services platform have more value, and is one of the few services that they allow you to purchase based on throughput rather than storage amount. Amazon s DynamoDB is a Key Value NoSQL database that provides fast and predictable performance with seamless scalability. (Amazon) An easy way to think of a Key Value store is to think of a map like structure in programming. One of the great things about the key value database system is that the value can be anything that we want it to be. Since every key is unique and can only be mapped to one value, there is no need to have a limit imposed on what can be stored. DynamoDB does not allow most of the operations that you will find in a traditional relational database, it only allows you to lookup values by their key, and then modify the values. There are no joins, no complex queries, just simple key lookups to retrieve or modify the value. Like I said earlier, just imagine you are dealing with a complex map and you will have the image of a key value database in your mind. DynamoDB is stored on multi-server distributions. Since none of the values are connected to anything else, you don t have to worry about what key values go where, and in fact there are many algorithms that will automatically figure out where they need to go and place them there. These same algorithms allow for easy retrieval when you are looking for the key as

6 well, the operation is just reversed and the key location is found. This allows for very quick reads and writes, as it usually only takes constant time to find the key value pair. DynamoDB scales very well. All you have to do is add another node to the total collection, and the database itself will figure out all the complex details of what data to move to the new node as well as what new data will be going there. Because of this easy to scale nature, DynamoDB does lose out on the consistency side of things of the ACID properties. It does not support transactions, but because of the nature of the key value system, it is fairly fault tolerant and will not lose data due to the automatic replication it offers. All of these databases have their pros and cons, and none of them is a silver bullet. MongoDB is great if you want to store data that may not have a super strict schema, yet still has things that bind the data together. Cassandra gives you access to the same rows and columns you are used to seeing in a RDBMS, yet gives you scalability that they cannot give you. Dynamo is great for when you have simple data that needs to have very high read write speeds. Each database is different, and your choice to use one over another will greatly impact how you have to design your schema, as well as the performance that your application will have. As you decide between which database type you will use, make sure you know the primary purpose of the data, as well as the format that it will be coming in. This will allow you to make an educated decision on which type of database is right for you.

7 Works Cited Amazon. Amazon DynamoDB Developers Guide Web site. 20 October < Amazon. Amazon DynamoDB Document History Web site. 20 October < l>. Chodorow, Kristina. History of MongoDB. 23 August Website. 20 October < Datab.US. Apache Cassandra Web site. 20 October < MongoDB. MongoDB Crud Introduction Website. 20 October < MongoDB. MongoDB FAQ Storage Website. 20 October < Peacock, Simon. MongoDB Storage Engines. 2 April Website. 20 October < Rabl, Tilmann, et al. Solving Big Data Challenges for Enterprise Application Performance Management. Toronto: University of Toronto, PDF.

NoSQL Database Options

NoSQL Database Options NoSQL Database Options Introduction For this report, I chose to look at MongoDB, Cassandra, and Riak. I chose MongoDB because it is quite commonly used in the industry. I chose Cassandra because it has

More information

Transactions and ACID in MongoDB

Transactions and ACID in MongoDB Transactions and ACID in MongoDB Kevin Swingler Contents Recap of ACID transactions in RDBMSs Transactions and ACID in MongoDB 1 Concurrency Databases are almost always accessed by multiple users concurrently

More information

An Approach to Implement Map Reduce with NoSQL Databases

An Approach to Implement Map Reduce with NoSQL Databases www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh

More information

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what

More information

Can the Elephants Handle the NoSQL Onslaught?

Can the Elephants Handle the NoSQL Onslaught? Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented

More information

Cassandra A Decentralized, Structured Storage System

Cassandra A Decentralized, Structured Storage System Cassandra A Decentralized, Structured Storage System Avinash Lakshman and Prashant Malik Facebook Published: April 2010, Volume 44, Issue 2 Communications of the ACM http://dl.acm.org/citation.cfm?id=1773922

More information

A survey of big data architectures for handling massive data

A survey of big data architectures for handling massive data CSIT 6910 Independent Project A survey of big data architectures for handling massive data Jordy Domingos - jordydomingos@gmail.com Supervisor : Dr David Rossiter Content Table 1 - Introduction a - Context

More information

Slave. Master. Research Scholar, Bharathiar University

Slave. Master. Research Scholar, Bharathiar University Volume 3, Issue 7, July 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper online at: www.ijarcsse.com Study on Basically, and Eventually

More information

Preparing Your Data For Cloud

Preparing Your Data For Cloud Preparing Your Data For Cloud Narinder Kumar Inphina Technologies 1 Agenda Relational DBMS's : Pros & Cons Non-Relational DBMS's : Pros & Cons Types of Non-Relational DBMS's Current Market State Applicability

More information

NoSQL - What we ve learned with mongodb. Paul Pedersen, Deputy CTO paul@10gen.com DAMA SF December 15, 2011

NoSQL - What we ve learned with mongodb. Paul Pedersen, Deputy CTO paul@10gen.com DAMA SF December 15, 2011 NoSQL - What we ve learned with mongodb Paul Pedersen, Deputy CTO paul@10gen.com DAMA SF December 15, 2011 DW2.0 and NoSQL management decision support intgrated access - local v. global - structured v.

More information

Lecture Data Warehouse Systems

Lecture Data Warehouse Systems Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores

More information

MongoDB Developer and Administrator Certification Course Agenda

MongoDB Developer and Administrator Certification Course Agenda MongoDB Developer and Administrator Certification Course Agenda Lesson 1: NoSQL Database Introduction What is NoSQL? Why NoSQL? Difference Between RDBMS and NoSQL Databases Benefits of NoSQL Types of NoSQL

More information

Big Systems, Big Data

Big Systems, Big Data Big Systems, Big Data When considering Big Distributed Systems, it can be noted that a major concern is dealing with data, and in particular, Big Data Have general data issues (such as latency, availability,

More information

Integrating Big Data into the Computing Curricula

Integrating Big Data into the Computing Curricula Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big

More information

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1 Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots

More information

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems

More information

NoSQL and Hadoop Technologies On Oracle Cloud

NoSQL and Hadoop Technologies On Oracle Cloud NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath

More information

High Throughput Computing on P2P Networks. Carlos Pérez Miguel carlos.perezm@ehu.es

High Throughput Computing on P2P Networks. Carlos Pérez Miguel carlos.perezm@ehu.es High Throughput Computing on P2P Networks Carlos Pérez Miguel carlos.perezm@ehu.es Overview High Throughput Computing Motivation All things distributed: Peer-to-peer Non structured overlays Structured

More information

So What s the Big Deal?

So What s the Big Deal? So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data

More information

INTRODUCTION TO CASSANDRA

INTRODUCTION TO CASSANDRA INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open

More information

MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15

MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15 MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15 1 MongoDB in the NoSQL and SQL world. NoSQL What? Why? - How? Say goodbye to ACID, hello BASE You

More information

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00 Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn

More information

A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA

A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA Ompal Singh Assistant Professor, Computer Science & Engineering, Sharda University, (India) ABSTRACT In the new era of distributed system where

More information

NoSQL Databases. Nikos Parlavantzas

NoSQL Databases. Nikos Parlavantzas !!!! NoSQL Databases Nikos Parlavantzas Lecture overview 2 Objective! Present the main concepts necessary for understanding NoSQL databases! Provide an overview of current NoSQL technologies Outline 3!

More information

NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases

NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases Background Inspiration: postgresapp.com demo.beatstream.fi (modern desktop browsers without

More information

NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015

NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 NoSQL Databases Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 Database Landscape Source: H. Lim, Y. Han, and S. Babu, How to Fit when No One Size Fits., in CIDR,

More information

nosql and Non Relational Databases

nosql and Non Relational Databases nosql and Non Relational Databases Image src: http://www.pentaho.com/big-data/nosql/ Matthias Lee Johns Hopkins University What NoSQL? Yes no SQL.. Atleast not only SQL Large class of Non Relaltional Databases

More information

X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released

X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released General announcements In-Memory is available next month http://www.oracle.com/us/corporate/events/dbim/index.html X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released

More information

Application of NoSQL Database in Web Crawling

Application of NoSQL Database in Web Crawling Application of NoSQL Database in Web Crawling College of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China doi:10.4156/jdcta.vol5.issue6.31 Abstract

More information

Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation

Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation Facebook: Cassandra Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/24 Outline 1 2 3 Smruti R. Sarangi Leader Election

More information

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop

More information

Benchmarking Couchbase Server for Interactive Applications. By Alexey Diomin and Kirill Grigorchuk

Benchmarking Couchbase Server for Interactive Applications. By Alexey Diomin and Kirill Grigorchuk Benchmarking Couchbase Server for Interactive Applications By Alexey Diomin and Kirill Grigorchuk Contents 1. Introduction... 3 2. A brief overview of Cassandra, MongoDB, and Couchbase... 3 3. Key criteria

More information

Distributed Systems. Tutorial 12 Cassandra

Distributed Systems. Tutorial 12 Cassandra Distributed Systems Tutorial 12 Cassandra written by Alex Libov Based on FOSDEM 2010 presentation winter semester, 2013-2014 Cassandra In Greek mythology, Cassandra had the power of prophecy and the curse

More information

On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform

On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform Page 1 of 16 Table of Contents Table of Contents... 2 Introduction... 3 NoSQL Databases... 3 CumuLogic NoSQL Database Service...

More information

Cassandra A Decentralized Structured Storage System

Cassandra A Decentralized Structured Storage System Cassandra A Decentralized Structured Storage System Avinash Lakshman, Prashant Malik LADIS 2009 Anand Iyer CS 294-110, Fall 2015 Historic Context Early & mid 2000: Web applicaoons grow at tremendous rates

More information

Challenges for Data Driven Systems

Challenges for Data Driven Systems Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2

More information

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra dwd@fnal.gov Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359

More information

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre NoSQL systems: introduction and data models Riccardo Torlone Università Roma Tre Why NoSQL? In the last thirty years relational databases have been the default choice for serious data storage. An architect

More information

Introducing DocumentDB

Introducing DocumentDB David Chappell Introducing DocumentDB A NoSQL Database for Microsoft Azure Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Why DocumentDB?... 3 The DocumentDB Data Model...

More information

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3

More information

DD2471: Modern Database Systems and Their Applications Distributed data management using Apache Cassandra

DD2471: Modern Database Systems and Their Applications Distributed data management using Apache Cassandra DD2471: Modern Database Systems and Their Applications Distributed data management using Apache Cassandra Frej Connolly, Erik Ranby, and Alexander Roghult KTH CSC The School of Computer Science and Communication

More information

Referential Integrity in Cloud NoSQL Databases

Referential Integrity in Cloud NoSQL Databases Referential Integrity in Cloud NoSQL Databases by Harsha Raja A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Engineering

More information

Introduction to NOSQL

Introduction to NOSQL Introduction to NOSQL Université Paris-Est Marne la Vallée, LIGM UMR CNRS 8049, France January 31, 2014 Motivations NOSQL stands for Not Only SQL Motivations Exponential growth of data set size (161Eo

More information

Department of Software Systems. Presenter: Saira Shaheen, 227233 saira.shaheen@tut.fi 0417016438 Dated: 02-10-2012

Department of Software Systems. Presenter: Saira Shaheen, 227233 saira.shaheen@tut.fi 0417016438 Dated: 02-10-2012 1 MongoDB Department of Software Systems Presenter: Saira Shaheen, 227233 saira.shaheen@tut.fi 0417016438 Dated: 02-10-2012 2 Contents Motivation : Why nosql? Introduction : What does NoSQL means?? Applications

More information

Understanding NoSQL Technologies on Windows Azure

Understanding NoSQL Technologies on Windows Azure David Chappell Understanding NoSQL Technologies on Windows Azure Sponsored by Microsoft Corporation Copyright 2013 Chappell & Associates Contents Data on Windows Azure: The Big Picture... 3 Windows Azure

More information

Introduction to NoSQL and MongoDB. Kathleen Durant Lesson 20 CS 3200 Northeastern University

Introduction to NoSQL and MongoDB. Kathleen Durant Lesson 20 CS 3200 Northeastern University Introduction to NoSQL and MongoDB Kathleen Durant Lesson 20 CS 3200 Northeastern University 1 Outline for today Introduction to NoSQL Architecture Sharding Replica sets NoSQL Assumptions and the CAP Theorem

More information

NoSQL in der Cloud Why? Andreas Hartmann

NoSQL in der Cloud Why? Andreas Hartmann NoSQL in der Cloud Why? Andreas Hartmann 17.04.2013 17.04.2013 2 NoSQL in der Cloud Why? Quelle: http://res.sys-con.com/story/mar12/2188748/cloudbigdata_0_0.jpg Why Cloud??? 17.04.2013 3 NoSQL in der Cloud

More information

Database Management System Choices. Introduction To Database Systems CSE 373 Spring 2013

Database Management System Choices. Introduction To Database Systems CSE 373 Spring 2013 Database Management System Choices Introduction To Database Systems CSE 373 Spring 2013 Outline Introduction PostgreSQL MySQL Microsoft SQL Server Choosing A DBMS NoSQL Introduction There a lot of options

More information

NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB, Cassandra, and MongoDB

NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB, Cassandra, and MongoDB bankmark UG (haftungsbeschränkt) Bahnhofstraße 1 9432 Passau Germany www.bankmark.de info@bankmark.de T +49 851 25 49 49 F +49 851 25 49 499 NoSQL Performance Test In-Memory Performance Comparison of SequoiaDB,

More information

A Review of Column-Oriented Datastores. By: Zach Pratt. Independent Study Dr. Maskarinec Spring 2011

A Review of Column-Oriented Datastores. By: Zach Pratt. Independent Study Dr. Maskarinec Spring 2011 A Review of Column-Oriented Datastores By: Zach Pratt Independent Study Dr. Maskarinec Spring 2011 Table of Contents 1 Introduction...1 2 Background...3 2.1 Basic Properties of an RDBMS...3 2.2 Example

More information

Big Data Analytics. Rasoul Karimi

Big Data Analytics. Rasoul Karimi Big Data Analytics Rasoul Karimi Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Big Data Analytics Big Data Analytics 1 / 1 Introduction

More information

Structured Data Storage

Structured Data Storage Structured Data Storage Xgen Congress Short Course 2010 Adam Kraut BioTeam Inc. Independent Consulting Shop: Vendor/technology agnostic Staffed by: Scientists forced to learn High Performance IT to conduct

More information

F1: A Distributed SQL Database That Scales. Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013

F1: A Distributed SQL Database That Scales. Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013 F1: A Distributed SQL Database That Scales Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013 What is F1? Distributed relational database Built to replace sharded MySQL back-end of AdWords

More information

Big Data Development CASSANDRA NoSQL Training - Workshop. March 13 to 17-2016 9 am to 5 pm HOTEL DUBAI GRAND DUBAI

Big Data Development CASSANDRA NoSQL Training - Workshop. March 13 to 17-2016 9 am to 5 pm HOTEL DUBAI GRAND DUBAI Big Data Development CASSANDRA NoSQL Training - Workshop March 13 to 17-2016 9 am to 5 pm HOTEL DUBAI GRAND DUBAI ISIDUS TECH TEAM FZE PO Box 121109 Dubai UAE, email training-coordinator@isidusnet M: +97150

More information

The Quest for Extreme Scalability

The Quest for Extreme Scalability The Quest for Extreme Scalability In times of a growing audience, very successful internet applications have all been facing the same database issue: while web servers can be multiplied without too many

More information

NoSQL Data Base Basics

NoSQL Data Base Basics NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS

More information

MONGODB - THE NOSQL DATABASE

MONGODB - THE NOSQL DATABASE MONGODB - THE NOSQL DATABASE Akhil Latta Software Engineer Z Systems, Mohali, Punjab MongoDB is an open source document-oriented database system developed and supported by 10gen. It is part of the NoSQL

More information

The Sierra Clustered Database Engine, the technology at the heart of

The Sierra Clustered Database Engine, the technology at the heart of A New Approach: Clustrix Sierra Database Engine The Sierra Clustered Database Engine, the technology at the heart of the Clustrix solution, is a shared-nothing environment that includes the Sierra Parallel

More information

Big Data Analytics. 6. NoSQL Databases. Lars Schmidt-Thieme

Big Data Analytics. 6. NoSQL Databases. Lars Schmidt-Thieme Big Data Analytics 6. NoSQL Databases Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany original slides by Lucas Rego

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Distributed File Systems and NoSQL Database Distributed

More information

Lecture 10: HBase! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl

Lecture 10: HBase! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl Big Data Processing, 2014/15 Lecture 10: HBase!! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the

More information

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF)

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) Not Relational Models For The Management of Large Amount of Astronomical Data Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) What is a DBMS A Data Base Management System is a software infrastructure

More information

Table of Contents. Développement logiciel pour le Cloud (TLC) Table of Contents. 5. NoSQL data models. Guillaume Pierre

Table of Contents. Développement logiciel pour le Cloud (TLC) Table of Contents. 5. NoSQL data models. Guillaume Pierre Table of Contents Développement logiciel pour le Cloud (TLC) 5. NoSQL data models Guillaume Pierre Université de Rennes 1 Fall 2012 http://www.globule.org/~gpierre/ Développement logiciel pour le Cloud

More information

Advanced Data Management Technologies

Advanced Data Management Technologies ADMT 2014/15 Unit 15 J. Gamper 1/44 Advanced Data Management Technologies Unit 15 Introduction to NoSQL J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE ADMT 2014/15 Unit 15

More information

Introduction to Cassandra

Introduction to Cassandra Introduction to Cassandra DuyHai DOAN, Technical Advocate Agenda! Architecture cluster replication Data model last write win (LWW), CQL basics (CRUD, DDL, collections, clustering column) lightweight transactions

More information

bigdata Managing Scale in Ontological Systems

bigdata Managing Scale in Ontological Systems Managing Scale in Ontological Systems 1 This presentation offers a brief look scale in ontological (semantic) systems, tradeoffs in expressivity and data scale, and both information and systems architectural

More information

Cloud data store services and NoSQL databases. Ricardo Vilaça Universidade do Minho Portugal

Cloud data store services and NoSQL databases. Ricardo Vilaça Universidade do Minho Portugal Cloud data store services and NoSQL databases Ricardo Vilaça Universidade do Minho Portugal Context Introduction Traditional RDBMS were not designed for massive scale. Storage of digital data has reached

More information

Benchmarking and Analysis of NoSQL Technologies

Benchmarking and Analysis of NoSQL Technologies Benchmarking and Analysis of NoSQL Technologies Suman Kashyap 1, Shruti Zamwar 2, Tanvi Bhavsar 3, Snigdha Singh 4 1,2,3,4 Cummins College of Engineering for Women, Karvenagar, Pune 411052 Abstract The

More information

NoSQL Databases. Polyglot Persistence

NoSQL Databases. Polyglot Persistence The future is: NoSQL Databases Polyglot Persistence a note on the future of data storage in the enterprise, written primarily for those involved in the management of application development. Martin Fowler

More information

Hacettepe University Department Of Computer Engineering BBM 471 Database Management Systems Experiment

Hacettepe University Department Of Computer Engineering BBM 471 Database Management Systems Experiment Hacettepe University Department Of Computer Engineering BBM 471 Database Management Systems Experiment Subject NoSQL Databases - MongoDB Submission Date 20.11.2013 Due Date 26.12.2013 Programming Environment

More information

26/05/2015. Relational Databases BIG DATA: STORING STRUCTURED INFORMATION. Information Retrieval: Storing Unstructured Information

26/05/2015. Relational Databases BIG DATA: STORING STRUCTURED INFORMATION. Information Retrieval: Storing Unstructured Information CC5212-1 PROCESAMIENTO MASIVO DE DATOS OTOÑO 2015 Information Retrieal: Storing Unstructured Information Lecture 9: NoSQL I Aidan Hogan aidhog@gmail.com Relational Databases BIG DATA: STORING STRUCTURED

More information

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010 System/ Scale to Primary Secondary Joins/ Integrity Language/ Data Year Paper 1000s Index Indexes Transactions Analytics Constraints Views Algebra model my label 1971 RDBMS O tables sql-like 2003 memcached

More information

Introduction to Apache Cassandra

Introduction to Apache Cassandra Introduction to Apache Cassandra White Paper BY DATASTAX CORPORATION JULY 2013 1 Table of Contents Abstract 3 Introduction 3 Built by Necessity 3 The Architecture of Cassandra 4 Distributing and Replicating

More information

Big Data & Data Science Course Example using MapReduce. Presented by Juan C. Vega

Big Data & Data Science Course Example using MapReduce. Presented by Juan C. Vega Big Data & Data Science Course Example using MapReduce Presented by What is Mongo? Why Mongo? Mongo Model Mongo Deployment Mongo Query Language Built-In MapReduce Demo Q & A Agenda Founders Max Schireson

More information

NoSQL: Going Beyond Structured Data and RDBMS

NoSQL: Going Beyond Structured Data and RDBMS NoSQL: Going Beyond Structured Data and RDBMS Scenario Size of data >> disk or memory space on a single machine Store data across many machines Retrieve data from many machines Machine = Commodity machine

More information

Comparing SQL and NOSQL databases

Comparing SQL and NOSQL databases COSC 6397 Big Data Analytics Data Formats (II) HBase Edgar Gabriel Spring 2015 Comparing SQL and NOSQL databases Types Development History Data Storage Model SQL One type (SQL database) with minor variations

More information

NOSQL, BIG DATA AND GRAPHS. Technology Choices for Today s Mission- Critical Applications

NOSQL, BIG DATA AND GRAPHS. Technology Choices for Today s Mission- Critical Applications NOSQL, BIG DATA AND GRAPHS Technology Choices for Today s Mission- Critical Applications 2 NOSQL, BIG DATA AND GRAPHS NOSQL, BIG DATA AND GRAPHS TECHNOLOGY CHOICES FOR TODAY S MISSION- CRITICAL APPLICATIONS

More information

2.1.5 Storing your application s structured data in a cloud database

2.1.5 Storing your application s structured data in a cloud database 30 CHAPTER 2 Understanding cloud computing classifications Table 2.3 Basic terms and operations of Amazon S3 Terms Description Object Fundamental entity stored in S3. Each object can range in size from

More information

wow CPSC350 relational schemas table normalization practical use of relational algebraic operators tuple relational calculus and their expression in a declarative query language relational schemas CPSC350

More information

Cloud Scale Distributed Data Storage. Jürmo Mehine

Cloud Scale Distributed Data Storage. Jürmo Mehine Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented

More information

A programming model in Cloud: MapReduce

A programming model in Cloud: MapReduce A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value

More information

An Open Source NoSQL solution for Internet Access Logs Analysis

An Open Source NoSQL solution for Internet Access Logs Analysis An Open Source NoSQL solution for Internet Access Logs Analysis A practical case of why, what and how to use a NoSQL Database Management System instead of a relational one José Manuel Ciges Regueiro

More information

Study and Comparison of Elastic Cloud Databases : Myth or Reality?

Study and Comparison of Elastic Cloud Databases : Myth or Reality? Université Catholique de Louvain Ecole Polytechnique de Louvain Computer Engineering Department Study and Comparison of Elastic Cloud Databases : Myth or Reality? Promoters: Peter Van Roy Sabri Skhiri

More information

Cassandra vs MySQL. SQL vs NoSQL database comparison

Cassandra vs MySQL. SQL vs NoSQL database comparison Cassandra vs MySQL SQL vs NoSQL database comparison 19 th of November, 2015 Maxim Zakharenkov Maxim Zakharenkov Riga, Latvia Java Developer/Architect Company Goals Explore some differences of SQL and NoSQL

More information

How to Choose Between Hadoop, NoSQL and RDBMS

How to Choose Between Hadoop, NoSQL and RDBMS How to Choose Between Hadoop, NoSQL and RDBMS Keywords: Jean-Pierre Dijcks Oracle Redwood City, CA, USA Big Data, Hadoop, NoSQL Database, Relational Database, SQL, Security, Performance Introduction A

More information

NoSQL Database Systems and their Security Challenges

NoSQL Database Systems and their Security Challenges NoSQL Database Systems and their Security Challenges Morteza Amini amini@sharif.edu Data & Network Security Lab (DNSL) Department of Computer Engineering Sharif University of Technology September 25 2

More information

Getting Started with MongoDB

Getting Started with MongoDB Getting Started with MongoDB TCF IT Professional Conference March 14, 2014 Michael P. Redlich @mpredli about.me/mpredli/ 1 1 Who s Mike? BS in CS from Petrochemical Research Organization Ai-Logix, Inc.

More information

How graph databases started the multi-model revolution

How graph databases started the multi-model revolution How graph databases started the multi-model revolution Luca Garulli Author and CEO @OrientDB QCon Sao Paulo - March 26, 2015 Welcome to Big Data 90% of the data in the world today has been created in the

More information

The MongoDB Tutorial Introduction for MySQL Users. Stephane Combaudon April 1st, 2014

The MongoDB Tutorial Introduction for MySQL Users. Stephane Combaudon April 1st, 2014 The MongoDB Tutorial Introduction for MySQL Users Stephane Combaudon April 1st, 2014 Agenda 2 Introduction Install & First Steps CRUD Aggregation Framework Performance Tuning Replication and High Availability

More information

Databases 2 (VU) (707.030)

Databases 2 (VU) (707.030) Databases 2 (VU) (707.030) Introduction to NoSQL Denis Helic KMI, TU Graz Oct 14, 2013 Denis Helic (KMI, TU Graz) NoSQL Oct 14, 2013 1 / 37 Outline 1 NoSQL Motivation 2 NoSQL Systems 3 NoSQL Examples 4

More information

.NET User Group Bern

.NET User Group Bern .NET User Group Bern Roger Rudin bbv Software Services AG roger.rudin@bbv.ch Agenda What is NoSQL Understanding the Motivation behind NoSQL MongoDB: A Document Oriented Database NoSQL Use Cases What is

More information

Cassandra. Jonathan Ellis

Cassandra. Jonathan Ellis Cassandra Jonathan Ellis Motivation Scaling reads to a relational database is hard Scaling writes to a relational database is virtually impossible and when you do, it usually isn't relational anymore The

More information

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing

More information

NoSQL. Thomas Neumann 1 / 22

NoSQL. Thomas Neumann 1 / 22 NoSQL Thomas Neumann 1 / 22 What are NoSQL databases? hard to say more a theme than a well defined thing Usually some or all of the following: no SQL interface no relational model / no schema no joins,

More information

Apache HBase. Crazy dances on the elephant back

Apache HBase. Crazy dances on the elephant back Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage

More information

NOSQL INTRODUCTION WITH MONGODB AND RUBY GEOFF LANE <GEOFF@ZORCHED.NET> @GEOFFLANE

NOSQL INTRODUCTION WITH MONGODB AND RUBY GEOFF LANE <GEOFF@ZORCHED.NET> @GEOFFLANE NOSQL INTRODUCTION WITH MONGODB AND RUBY GEOFF LANE @GEOFFLANE WHAT IS NOSQL? NON-RELATIONAL DATA STORAGE USUALLY SCHEMA-FREE ACCESS DATA WITHOUT SQL (THUS... NOSQL) WIDE-COLUMN / TABULAR

More information

Introduction to NoSQL

Introduction to NoSQL Introduction to NoSQL NoSQL Seminar 2012 @ TUT Arto Salminen What is NoSQL? Class of database management systems (DBMS) "Not only SQL" Does not use SQL as querying language Distributed, fault-tolerant

More information

Firebird meets NoSQL (Apache HBase) Case Study

Firebird meets NoSQL (Apache HBase) Case Study Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 thomas.steinmaurer@scch.at www.scch.at Michael Zwick DI

More information

Highly available, scalable and secure data with Cassandra and DataStax Enterprise. GOTO Berlin 27 th February 2014

Highly available, scalable and secure data with Cassandra and DataStax Enterprise. GOTO Berlin 27 th February 2014 Highly available, scalable and secure data with Cassandra and DataStax Enterprise GOTO Berlin 27 th February 2014 About Us Steve van den Berg Johnny Miller Solutions Architect Regional Director Western

More information

Infrastructures for big data

Infrastructures for big data Infrastructures for big data Rasmus Pagh 1 Today s lecture Three technologies for handling big data: MapReduce (Hadoop) BigTable (and descendants) Data stream algorithms Alternatives to (some uses of)

More information