Reservoir Characterization by Seismic Attributes With Vp & Vs Measurement of core samples (a "Rock Physics" study)

Size: px
Start display at page:

Download "Reservoir Characterization by Seismic Attributes With Vp & Vs Measurement of core samples (a "Rock Physics" study)"

Transcription

1 Page 1 of 8 Reservoir Characterization by Seismic Attributes With Vp & Vs Measurement of core samples (a "Rock Physics" study) Saeed Amiri Besheli, S. Saleh Hendi, and Jaafar Vali Geophysics Department, RIPI-NIOC ABSTRACT Seismic reflection methods have been extensively used for the detailed delineation of the subsurface structure for the exploration of hydrocarbon. Recently, the so-called "seismic inversion" technique has been applied not only to an enhancement of the resolution but also to a characterization of the reservoir. In this technique, well data is treated as "hard data", which is fixed throughout the numerical calculation. On the other hand, seismic data is used as "soft data", which is treated as less reliable compared to the well data. Nevertheless, since there are some errors in the well data due to factors such as a large caving of a borehole, a suitable verification is required, especially for the portion of complicated reservoir. Quantitative interpretation of sonic logs using calibrated relationships is an important application of the "Rock Physics Model" for well log formation evaluation. "Rock Physics" plays a fundamental role in the development of many new seismic technologies, such as production and development seismology, seismic monitoring of EOR processes, and direct hydrocarbon and porosity detection. "Rock Physics" not only provides the physical and feasibility basis for developing and using seismic technologies in characterizing reservoirs and reservoir processes, but also bridge exploration, production, and management of reservoir through interpreting seismic results. "Rock Physics Model" doesn t apply in Iranian Reservoir Characterization, because this method needs to install an advance system for core velocity measurements in reservoir conditions. In this paper, we demonstrate one case study basis "Rock Physics Model" on a Carbonate oil field that similar to Iranian Reservoir. Introduction During the past 50 years or so, tremendous progress has been made in studying physical properties of rocks and minerals in relation to seismic exploration and earthquake seismology. During this period, many theories have been developed and many experiments have been carried out. Some of these theories and experimental results have played important roles in advancing earth sciences and exploration technologies. In exploration seismology, seismic waves bring out subsurface rock and fluid information

2 Page 2 of 8 in the form of travel time, reflection amplitude, and phase variations. During the early years of exploration seismology, seismic data were interpreted primarily for structures that might trap hydrocarbons. With the advancement of computing power and seismic processing and interpretation techniques, seismic data are now commonly analyzed for determining lithology, porosity, pore fluids, and saturation. "Rock Physics" bridges seismic data and reservoir properties and parameters, it has been instrumental in recent years in the development of technologies such as 4-D seismic reservoir monitoring, seismic lithology discrimination, and direct hydrocarbon detection with "bright-spot" and angledependent reflectivity analyses. Seismic properties are affected in complex ways by many factors, such as pressure, temperature, saturation, fluid type, porosity, pore type, etc. These factors are often interrelated or coupled in a way that many also change when one factor changes. The effect of these changes on seismic data can be either additive or subtractive. As a result, investigation of the effect of varying a single parameter while fixing others becomes imperative in understanding "Rock Physics" applications to seismic interpretations. Because of the vast amount of information in the literature on "Rock Physics", it is impossible to summarize every theory and every experimental finding in this paper. In this paper, we describe a method in which core and log measurements are used to establish a calibrated "Rock Physics Model" for seismic interpretation. The first part reviews several aspects of the relationships between petrophysical, lithologic, and acoustic properties in Carbonate rocks that justify a need for calibration of seismic interpretation. Using a case study on a Carbonate oil reservoir, We demonstrate in the second part how the calibration method is applied to sonic and seismic measurements and used in a reservoir characterization. Elastic Properties of Carbonate Rocks Many studies have shown that in Carbonate rocks, porosity is the rock parameter that has the most impact on velocity. Hence, characterization lateral variations in porosity within a field from seismic velocities or impedance are potentially feasible and represent a major contribution of seismic techniques for reservoir appraisal. However, because velocities in Carbonate rock also depend on other parameters, such as mineralogy, pore shape, and fluid type, the velocity-porosity trend may be too scattered to permit precise determination of porosity from velocity measurements. To gain insight as to how petrophysical and lithologic parameters can affect the velocity-porosity relationship, one can use the following physically based relationship between the elastic modulus of the skeleton frame of a rock and porosity: (1) Where and are the bulk moduli of the skeletal frame and mineral phase of the rock, respectively, is the porosity, and is the compressibility of the pores. Is related to the and and bulk density (ρ) of an isotropic dry rock according to: (2) From equation (1), we note that the bulk modulus varies with porosity,, but that is also depend on the bulk modulus of the mineral phase,, which varies with mineralogy, and the compressibility of the

3 Page 3 of 8 pores,, which depends mostly on pore shape and aspect ratio. Furthermore, for fluid saturated rocks, the bulk modulus also depends on fluid compressibility and measurement frequency. Hence, precise porosity determination from elastic properties relies on an accurate assessment of the influence of mineralogy, pore shape, and fluid type on elastic properties. Influence of mineralogy The minerals that are commonly found in Carbonate rocks -calcite, dolomite, and aragonite- have a wide range of elastic properties and density. From equation (1), the effect of mineralogy on bulk modulus should correspond to a change in the intercept in the relationship between porosity and the inverse bulk modulus. For calcite and dolomite, the influence of mineralogy on bulk modulus is expected to be negligible, but shear modulus and density are influenced to greater extent by calcite-dolomite content. Consequently, compressional and shear velocities (Vp & Vs) and impedance (Ip & Is) are related to density and elastic moduli through the following equations and should be sensitive to mineralogy because shear modulus (G) and bulk density (ρ) depend on mineral content: (3), (4) (5), (6) Hence, in the process of estimating porosity from velocity or impedance measurement, information about the mineralogy is essential. Influence of pore shape The effect of pore compliance and shape on the elastic properties of rocks has been investigated from both theoretical and experimental standpoints. A self-consistent technique illustrates, for a given velocity, porosity can vary depending on pore shape. Such influence of pore shape on velocity can also be observed qualitatively in core data, for this data set, it is clear that the presence of vuggy porosity strongly influences the velocity-porosity behavior of P- and S-waves. Influence of fluid type In addition to mineralogy and pore type, saturation also influences velocity measurements and hence can affect the velocity-porosity trend. Note that ultrasonic frequency measurements and Gassmann s predictions can be considered as upper and lower boundaries, respectively, for estimating the influence of fluid type on elastic properties or seismic and well-log applications. Case Study: A Carbonate Oil Field This case study on a Tertiary carbonate oil field illustrates a method that uses combined information

4 Page 4 of 8 acquired at core, log, and seismic scales to characterize petrophysical properties from seismic measurements. This oil field under consideration has estimated reservoir of 110 million tones of oil. The main problem confronting development of this filed is the need to characterize reservoir limits and internal reservoir properties more accurately. Information from wells indicates a large variability of porosity, oil saturation, and reservoir thickness across the field. Therefore, this case study examines in detail the influence of this parameters on velocity and impedance in an attempt to determine the possible contribution of seismic measurements to the reservoir model revision. From Core to Log to Seismic To calibrate the seismic attributes, a three-step method based on core and log measurements was developed (Fig. 1.). First," Rock Physics Model" was derived using core measurements, which related Vp & Vs and Impedances to rock properties (porosity & fluid type) and to measurement conditions (frequency & stress). Second, a comparison of core, log, and a seismic measurement was performed to check that the "Rock Physics Model" could be applied with confidence to well log and seismic interpretation. Third, the "Rock Physics Model" was used for quantitative interpretation of sonic and seismic data. If this step is completed successfully and if data quality permits, seismic attributes can be interpreted in quantitative reservoir parameters.

5 Page 5 of 8 Fig.1. Graph of relationships of Core, Log, and Seismic data, showing interpretation of seismic attributes. Core Measurement Result Core measurements included Vp & Vs, porosity, and gas permeability as a function of stress mineral density, and a quantitative petrographic description for each plug. Using these measurements, we were able to establish a "Rock Physics Model" for the influence of porosity, pore shape, mineralogy, saturation, and measurement frequency. To quantify of total porosity, pore shape, and mineralogy on Vp & Vs, constrained the empirical fitting of elastic moduli data using equation (1), in which elastic moduli were computed from velocity and density measurements. The two pore types identified in thin section analysis (Intraparticle & Interparticle) have a distinctly different influence on elastic properties. As total porosity increases, the Intra. Porosity also generally increases. Mineralogy had little impact on the quality of the regression fit between the elastic moduli and the porosity because of the predominance of calcite in this samples. To investigate the influence of fluid type on elastic properties, measurements of Vp & Vs were taken under stress on dry and fully brine-saturated samples at ultrasonic frequencies. Vs measurements are nearly unaffected by fluid type, as predicted by Gassmann s equation. Vp s are greater by about 10% in brine-saturated rocks than in dry rocks. To investigate the influence of frequency, for dry samples no significant discrepancies were found between measurements at sonic and ultrasonic frequencies, suggesting that dispersion is negligible. In contrast, ultrasonic velocities in brinesaturated samples higher than sonic velocities. "Rock Physics Model" describes the influence of porosity, pore shape, mineralogy, fluid type, and measurement frequency on velocity and impedance. Core to Log Seismic Comparison An example of a core-log comparison is shown in Fig.2. In this figure, Vp measured on dry cores at atmospheric pressure ( ) was corrected for stress ( ), saturation ( ), and frequency using the "Rock Physics Model". Furthermore, to allow direct comparison between cores and well log measurements, core data were brought to the scale of resolution of sonic measurements ( ) using an up-scaling procedure. To compare log and seismic measurements, the classic method of comparing synthetic seismograms and seismic traces was used. In this procedure, impedances measured from log data are sampled every 4 ms in the time domain, then converted to reflectivity s (derivatives of impedance), and finally are convolved with seismic traces (Fig.3). In this calibration step, in which we compared core with log data and log with seismic data, no systematic discrepancies were observed between measurements obtained at various scales. This is encouraging for subsequent use of the ""Rock Physics Model" at sonic and seismic scales. Sonic Log Interpretation The "Rock Physics Model" was used in this case study to estimate porosity from sonic measurements on a multiwell basis. Results in Fig. 4. Show good agreement between sonic porosity and core porosity on a multiwell basis. These results confirm (1) the predictive value of "Rock Physics Model" at the sonic scale and (2) the small impact of saturation, mineralogy, and pore shape on porosity determination from velocity measurements. Finally, this study shows that sonic measurements, once properly calibrated, can

6 Page 6 of 8 be used quantitatively for porosity estimation. Fig. 2. Logs of sonic data (solid lines) overprinted with upscale core measurements (dots) showing a comparison of the two data sets. Fig. 3. Comparison between seismic trace (bottom) and synthetic

7 Page 7 of 8 seismogram derived from log data. Fig. 4. Comparison of porosity values calculated using sonic logs (solid lines) with values measured on cores (dots) from three different wells. Seismic Inversion Well data were used to establish a layered initial impedance model. This was done by blocking the impedance logs and extrapolating laterally along interpreted seismic horizons. The acoustic impedance in this initial model range from 11 to 13 km/s g/ in reservoir zone, in the inversion results, a greater variability of impedance is seen from 9 to 13 km/s g/. This suggests that there are stronger variations in porosity than estimated from the initial model, especially in the central zone of the reservoir. Interpretation of Seismic Impedance From the inversion results, two seismic attributes can be accessed: the average impedance and the total traveltime in the reservoir. These attributes are used to estimate porosity and reservoir thickness according the following procedure. Porosity is calculated directly from the relationship between

8 Page 8 of 8 impedance and porosity from the "Rock Physics Model". Traveltimes are used to compute the reservoir thickness, knowing the average velocity in the formation. The average velocity is calculated from impedance at each trace using the relationship between velocity and impedance from "Rock Physics Model". The relationship between impedance and porosity was applied to the inverted seismic impedance to generate a profile of porosity. To obtain results comparable to the reservoir model dimensions, porosity and thickness profiles were averaged over 10 and 40 traces corresponding to 120 And 500 m, respectively. Similarly, using the information contained in impedance and traveltime, a total reservoir thickness profile was obtained. For comparison, the average reservoir porosity values measured were superposed at the wells. The seismically derived properties are coherent at well sites with log observations. In particular, seismic inversion successfully predicts porosity and reservoir thickness at the blind well locations. These results provide confidence in estimating porosity and pay zone away from the well using seismic measurements, with the exception of the zone of poor-quality seismic data. The seismically derived properties were compared with the pervious reservoir model, which was based on well interpolation. There is an overall agreement between the initial reservoir model and the seismic results in the pay zone. Conclusions The validity of the method strongly relies on three factors: 1. Accurate relationships between seismic attributes and rock properties that can be assessed from a detailed laboratory study. 2. Coherency among data acquired at core, log, and seismic scales. 3. Good-quality seismic data, interpretation, and seismic processing and inversion techniques. NIOC-RIPI should install a system for core velocity measurements (Rock Physics Lab), has extensively measured the velocity of elastic waves propagating through core samples in the reservoir conditions to make "Rock Physics Model". That plays very important role in the Iranian reservoir characterization. References 1. Ibrahim Palaz, and Kurt J. Marfurt, 1996, Carbonate Seismology, Society of Exploration Geophysicists. 2. Zhijing Wang, 2001, Fundamental of seismic Rock Physics, Geophysics, Vol. 66,no Amos Nur, and Zhijing Wang, 1989, Seismic and Acoustic Velocities in Reservoir Rocks Volume 1: Experimental Studies, Society of Exploration Geophysicists. 4. Zhijing Wang, and Amos Nur, 1992, Seismic and Acoustic Velocities in Reservoir Rocks Volume 2: Theoretical and Model Studies, Society of Exploration Geophysicists. 5. Zhijing Wang, and Amos Nur, 2000, Seismic & Acoustic Velocities in Reservoir Rocks Volume 3: Recent Developments, Society of Exploration Geophysicists.

Stanford Rock Physics Laboratory - Gary Mavko. Basic Geophysical Concepts

Stanford Rock Physics Laboratory - Gary Mavko. Basic Geophysical Concepts Basic Geophysical Concepts 14 Body wave velocities have form: velocity= V P = V S = V E = K + (4 /3)µ ρ µ ρ E ρ = λ + µ ρ where ρ density K bulk modulus = 1/compressibility µ shear modulus λ Lamé's coefficient

More information

7.2.4 Seismic velocity, attenuation and rock properties

7.2.4 Seismic velocity, attenuation and rock properties 7.2.4 Seismic velocity, attenuation and rock properties Rock properties that affect seismic velocity Porosity Lithification Pressure Fluid saturation Velocity in unconsolidated near surface soils (the

More information

Frio Formation of the Gulf Coast* By Michael D. Burnett 1 and John P. Castagna 2

Frio Formation of the Gulf Coast* By Michael D. Burnett 1 and John P. Castagna 2 GC Advances in Spectral Decomposition and Reflectivity Modeling in the Frio Formation of the Gulf Coast* By Michael D. Burnett 1 and John P. Castagna 2 Search and Discovery Article #40113 (2004) *Adapted

More information

Parameters That Influence Seismic Velocity Conceptual Overview of Rock and Fluid Factors that Impact Seismic Velocity and Impedance

Parameters That Influence Seismic Velocity Conceptual Overview of Rock and Fluid Factors that Impact Seismic Velocity and Impedance Conceptual Overview of Rock and Fluid Factors that Impact Seismic Velocity and Impedance 73 Type of formation P wave velocity (m/s) S wave velocity (m/s) Density (g/cm 3 ) Density of constituent crystal

More information

Which physics for full-wavefield seismic inversion?

Which physics for full-wavefield seismic inversion? Which physics for full-wavefield seismic inversion? M. Warner* (Imperial College London), J. Morgan (Imperial College London), A. Umpleby (Imperial College London), I. Stekl (Imperial College London) &

More information

Periodical meeting CO2Monitor. Leakage characterization at the Sleipner injection site

Periodical meeting CO2Monitor. Leakage characterization at the Sleipner injection site Periodical meeting CO2Monitor Leakage characterization at the Sleipner injection site Stefano Picotti, Davide Gei, Jose Carcione Objective Modelling of the Sleipner overburden to study the sensitivity

More information

Reservoir Modelling and Interpretation with Lamé s Parameters: A Grand Banks Case Study

Reservoir Modelling and Interpretation with Lamé s Parameters: A Grand Banks Case Study Reservoir Modelling and Interpretation with Lamé s Parameters: A Grand Banks Case Study Marco A. Perez* and Rainer Tonn EnCana Corporation, 150 9th Avenue SW, Calgary, AB, T2P 2S5 Marco.Perez@encana.com

More information

Integration of reservoir simulation with time-lapse seismic modelling

Integration of reservoir simulation with time-lapse seismic modelling Integration of reservoir simulation with seismic modelling Integration of reservoir simulation with time-lapse seismic modelling Ying Zou, Laurence R. Bentley, and Laurence R. Lines ABSTRACT Time-lapse

More information

Pore Radius and Permeability Prediction from Sonic Velocity

Pore Radius and Permeability Prediction from Sonic Velocity Downloaded from orbit.dtu.dk on: Jun 12, 2016 Pore Radius and Permeability Prediction from Sonic Velocity Mbia, Ernest Ncha; Fabricius, Ida Lykke Published in: Proceedings of Shale Physics and Shale Chemistry

More information

WELL LOGGING TECHNIQUES WELL LOGGING DEPARTMENT OIL INDIA LIMITED

WELL LOGGING TECHNIQUES WELL LOGGING DEPARTMENT OIL INDIA LIMITED WELL LOGGING TECHNIQUES WELL LOGGING DEPARTMENT OIL INDIA LIMITED The Hydrocarbon E & P Process In the exploration process, a most probable hydrocarbon bearing rock structure is defined based on seismic

More information

Developing integrated amplitude driven solutions for pore content prediction through effective collaboration

Developing integrated amplitude driven solutions for pore content prediction through effective collaboration Developing integrated amplitude driven solutions for pore content prediction through effective collaboration Andries Wever Geophysicist Wintershall Noordzee EBN/TNO workshop 14 January 2010 Outline of

More information

Because rock is heterogeneous at all scales, it is often invalid

Because rock is heterogeneous at all scales, it is often invalid SPECIAL R o c k SECTION: p h y s i Rc s o c k Pp h y s i c s Scale of experiment and rock physics trends JACK DVORKIN, Stanford University and AMOS NUR, Ingrain Because rock is heterogeneous at all scales,

More information

FAN group includes NAMVARAN UPSTREAM,

FAN group includes NAMVARAN UPSTREAM, INTRODUCTION Reservoir Simulation FAN group includes NAMVARAN UPSTREAM, FOLOWRD Industrial Projects and Azmouneh Foulad Co. Which of these companies has their own responsibilities. NAMVARAN is active in

More information

Integrated Reservoir Asset Management

Integrated Reservoir Asset Management Integrated Reservoir Asset Management Integrated Reservoir Asset Management Principles and Best Practices John R. Fanchi AMSTERDAM. BOSTON. HEIDELBERG. LONDON NEW YORK. OXFORD. PARIS. SAN DIEGO SAN FRANCISCO.

More information

Figure 2-10: Seismic Well Ties for Correlation and Modelling. Table 2-2: Taglu Mapped Seismic Horizons

Figure 2-10: Seismic Well Ties for Correlation and Modelling. Table 2-2: Taglu Mapped Seismic Horizons GEOPHYSICAL ANALYSIS Section 2.2 P-03 Synthetic Well Tie P-03 V sh Well Tie (checkshot corrected) Time (s) Velocity Density Impedance V sh Synthetic Seismic (m/s) (g/cm 3 ) HD/KB Trace Number GR 20 30V

More information

Marine broadband seismic: Is the earth response helping the resolution revolution? N. Woodburn*, A. Hardwick, and R. Herring, TGS

Marine broadband seismic: Is the earth response helping the resolution revolution? N. Woodburn*, A. Hardwick, and R. Herring, TGS Marine broadband seismic: Is the earth response helping the resolution revolution? N. Woodburn*, A. Hardwick, and R. Herring, TGS Summary Broadband seismic aims to provide a greater richness of both (a),

More information

TABLE OF CONTENTS PREFACE INTRODUCTION

TABLE OF CONTENTS PREFACE INTRODUCTION TABLE OF CONTENTS PREFACE The Seismic Method, 2 The Near-Surface, 4 The Scope of Engineering Seismology, 12 The Outline of This Book, 22 INTRODUCTION Chapter 1 SEISMIC WAVES 1.0 Introduction, 27 1.1 Body

More information

Travel Time Modelling using Gamma Ray and Resistivity Log in Sand Shale Sequence of Gandhar Field

Travel Time Modelling using Gamma Ray and Resistivity Log in Sand Shale Sequence of Gandhar Field 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 146-151 Travel Time Modelling using Gamma Ray and Resistivity Log in Sand Shale Sequence of Gandhar Field D.N.Tiwary, Birbal

More information

Locating the Epicenter and Determining the Magnitude of an Earthquake

Locating the Epicenter and Determining the Magnitude of an Earthquake Locating the and Determining the Magnitude of an Earthquake Locating the Measuring the S-P time interval There are hundreds of seismic data recording stations throughout the United States and the rest

More information

DecisionSpace. Prestack Calibration and Analysis Software. DecisionSpace Geosciences DATA SHEET

DecisionSpace. Prestack Calibration and Analysis Software. DecisionSpace Geosciences DATA SHEET DATA SHEET DecisionSpace Prestack Calibration and Analysis Software DecisionSpace Geosciences Key Features Large-volume prestack interpretation and analysis suite Advanced prestack analysis workflows native

More information

Auxiliary material for Paper 2004JE002305R Shock Properties of H 2 OIce

Auxiliary material for Paper 2004JE002305R Shock Properties of H 2 OIce Auxiliary material for Paper 2004JE002305R Shock Properties of H 2 OIce 1 Sarah T. Stewart* and Thomas J. Ahrens Lindhurst Laboratory of Experimental Geophysics, California Institute of Technology, Pasadena,

More information

Analysis of GS-11 Low-Resistivity Pay in Main Gandhar Field, Cambay Basin, India A Case Study

Analysis of GS-11 Low-Resistivity Pay in Main Gandhar Field, Cambay Basin, India A Case Study 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 162-166 Analysis of GS-11 Low-Resistivity Pay in Main Gandhar Field, Cambay Basin, India A Case Study Ashok Kumar, J.P. Narayan,

More information

Determination of source parameters from seismic spectra

Determination of source parameters from seismic spectra Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: pb65@gmx.net

More information

An Integrated Rock Catalog for E&P Geotechnologists

An Integrated Rock Catalog for E&P Geotechnologists An Integrated Rock Catalog for E&P Geotechnologists By Graham Cain, Petris Technology, Janusz Buczak, Petris Technology, and Joe Pumphrey, Logicom E&P Presented at Petroleum Network Education Conference

More information

16. THE SONIC OR ACOUSTIC LOG 16.1 Introduction

16. THE SONIC OR ACOUSTIC LOG 16.1 Introduction 16. THE SONIC OR ACOUSTIC LOG 16.1 Introduction The sonic or acoustic log measures the travel time of an elastic wave through the formation. This information can also be used to derive the velocity of

More information

Eagle Ford Shale Exploration Regional Geology meets Geophysical Technology. Galen Treadgold Bruce Campbell Bill McLain

Eagle Ford Shale Exploration Regional Geology meets Geophysical Technology. Galen Treadgold Bruce Campbell Bill McLain Eagle Ford Shale Exploration Regional Geology meets Geophysical Technology Galen Treadgold Bruce Campbell Bill McLain US Shale Plays Unconventional Reservoirs Key Geophysical Technology Seismic Acquisition

More information

Hydrocarbon reservoir modeling: comparison between theoretical and real petrophysical properties from the Namorado Field (Brazil) case study.

Hydrocarbon reservoir modeling: comparison between theoretical and real petrophysical properties from the Namorado Field (Brazil) case study. ANNUAL MEETING MASTER OF PETROLEUM ENGINEERING Hydrocarbon reservoir modeling: comparison between theoretical and real petrophysical properties from the Namorado Field (Brazil) case study. Marcos Deguti

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Article] Soil porosity from seismic velocities Original Citation: Foti S.; Lancellotta R. (24). Soil porosity from seismic velocities. In: GEOTECHNIQUE,

More information

Unconventional Challenges: Integrated Analysis for Unconventional Resource Development Robert Gales VP Resource Development

Unconventional Challenges: Integrated Analysis for Unconventional Resource Development Robert Gales VP Resource Development Unconventional Challenges: Integrated Analysis for Unconventional Resource Development Robert Gales VP Resource Development Opening Remarks The Obvious Fossil fuels will be the main energy supply, accounting

More information

RESERVOIR EVALUATION. The volume of hydrocarbons in a reservoir can be calculated:

RESERVOIR EVALUATION. The volume of hydrocarbons in a reservoir can be calculated: RESERVOIR EVALUATION The volume of hydrocarbons in a reservoir can be calculated: 1. directly by volumetric methods 2. indirectly by material balance methods Volumetrics provide a static measure of oil

More information

Pressure in Fluids. Introduction

Pressure in Fluids. Introduction Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure

More information

Development of EM simulator for sea bed logging applications using MATLAB

Development of EM simulator for sea bed logging applications using MATLAB Indian Journal of Geo-Marine Sciences Vol. 40 (2), April 2011, pp. 267-274 Development of EM simulator for sea bed logging applications using MATLAB Hanita Daud 1*, Noorhana Yahya 2, & Vijanth Asirvadam

More information

Well-logging Correlation Analysis and correlation of well logs in Rio Grande do Norte basin wells

Well-logging Correlation Analysis and correlation of well logs in Rio Grande do Norte basin wells Well-logging Correlation Analysis and correlation of well logs in Rio Grande do Norte basin wells Ricardo Afonso Salvador Pernes (March, 2013) ricardo.pernes@ist.utl.pt Master thesis Abstract During drilling

More information

Application of Nuclear Magnetic Resonance in Petroleum Exploration

Application of Nuclear Magnetic Resonance in Petroleum Exploration Application of Nuclear Magnetic Resonance in Petroleum Exploration Introduction Darko Tufekcic, consultant email: darkotufekcic@hotmail.com Electro-magnetic resonance method (GEO-EMR) is emerging as the

More information

Petrel TIPS&TRICKS from SCM

Petrel TIPS&TRICKS from SCM Petrel TIPS&TRICKS from SCM Knowledge Worth Sharing Create Fault Polygons and Map This is the first in a series of TIPS&TRICKS focused on the geophysical and seismic aspects of Petrel. Petrel combines

More information

RESERVOIR GEOSCIENCE AND ENGINEERING

RESERVOIR GEOSCIENCE AND ENGINEERING RESERVOIR GEOSCIENCE AND ENGINEERING APPLIED GRADUATE STUDIES at IFP School from September to December RGE01 Fundamentals of Geoscience I Introduction to Petroleum Geosciences, Sedimentology RGE02 Fundamentals

More information

Certificate Programs in. Program Requirements

Certificate Programs in. Program Requirements IHRDC Online Certificate Programs in OIL AND GAS MANAGEMENT Program Requirements IHRDC 535 Boylston Street Boston, MA 02116 Tel: 1-617-536-0202 Email: certificate@ihrdc.com Copyright International Human

More information

EarthStudy 360. Full-Azimuth Angle Domain Imaging and Analysis

EarthStudy 360. Full-Azimuth Angle Domain Imaging and Analysis EarthStudy 360 Full-Azimuth Angle Domain Imaging and Analysis 1 EarthStudy 360 A New World of Information for Geoscientists Expanding the Frontiers of Subsurface Exploration Paradigm EarthStudy 360 is

More information

DecisionSpace Earth Modeling Software

DecisionSpace Earth Modeling Software DATA SHEET DecisionSpace Earth Modeling Software overview DecisionSpace Geosciences Flow simulation-ready 3D grid construction with seamless link to dynamic simulator Comprehensive and intuitive geocellular

More information

3D Geomechanical Modeling In The Vaca Muerta Shale: A Predictive Tool For Horizontal Well Landing And Completion Strategy

3D Geomechanical Modeling In The Vaca Muerta Shale: A Predictive Tool For Horizontal Well Landing And Completion Strategy REGIONAL ASSOCIATION OF OIL, GAS & BIOFUELS SECTOR COMPANIES IN LATIN AMERICA AND THE CARIBBEAN 3D Geomechanical Modeling In The Vaca Muerta Shale: A Predictive Tool For Horizontal Well Landing And Completion

More information

DEPARTMENT OF PETROLEUM ENGINEERING Graduate Program (Version 2002)

DEPARTMENT OF PETROLEUM ENGINEERING Graduate Program (Version 2002) DEPARTMENT OF PETROLEUM ENGINEERING Graduate Program (Version 2002) COURSE DESCRIPTION PETE 512 Advanced Drilling Engineering I (3-0-3) This course provides the student with a thorough understanding of

More information

Tutorial. Phase, polarity and the interpreter s wavelet. tutorial. Rob Simm 1 & Roy White 2

Tutorial. Phase, polarity and the interpreter s wavelet. tutorial. Rob Simm 1 & Roy White 2 first break volume 2.5 May 22 Tutorial If terms like integration and multi-disciplinary are to have meaning, then the geoscience and engineering community needs to share a common language. Our suspicion

More information

Petrophysical Well Log Analysis for Hydrocarbon exploration in parts of Assam Arakan Basin, India

Petrophysical Well Log Analysis for Hydrocarbon exploration in parts of Assam Arakan Basin, India 10 th Biennial International Conference & Exposition P 153 Petrophysical Well Log Analysis for Hydrocarbon exploration in parts of Assam Arakan Basin, India Summary Ishwar, N.B. 1 and Bhardwaj, A. 2 *

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

Shuey s Two-Term Approximation

Shuey s Two-Term Approximation INTERPRETER S Principles of AVO crossplotting JOHN P. CASTAGNA, University of Oklahoma, Norman, Oklahoma HERBERT W. SWAN, ARCO Exploration and Production Technology, Plano, Texas Hy d rocarbon related

More information

GRADATION OF AGGREGATE FOR CONCRETE BLOCK

GRADATION OF AGGREGATE FOR CONCRETE BLOCK GRADATION OF AGGREGATE FOR CONCRETE BLOCK Although numerous papers have been written concerning the proper gradation for concrete mixes, they have generally dealt with plastic mixes, and very little published

More information

Name: Date: Class: Finding Epicenters and Measuring Magnitudes Worksheet

Name: Date: Class: Finding Epicenters and Measuring Magnitudes Worksheet Example Answers Name: Date: Class: Finding Epicenters and Measuring Magnitudes Worksheet Objective: To use seismic data and an interactive simulation to triangulate the location and measure the magnitude

More information

General. Type of porosity logs

General. Type of porosity logs Porosity Logs General Type of porosity logs Sonic log Density log Neutron log None of these logs measure porosity directly The density and neutron logs are nuclear measurements The sonic log use acoustic

More information

HDD High Definition Data. defining a new standard for Open Hole, Cased Hole & Production Logging

HDD High Definition Data. defining a new standard for Open Hole, Cased Hole & Production Logging HDD High Definition Data defining a new standard for Open Hole, Cased Hole & Production Logging Get More Accurate Data At No Extra Cost From RECON s Standard Logging Service At 10 samples per foot (33

More information

14.2 Theory 14.2.1 Compton Scattering and Photo-Electric Absorption

14.2 Theory 14.2.1 Compton Scattering and Photo-Electric Absorption 14. THE LITHO-DENSITY LOG 14.1 Introduction The litho-density log is a new form of the formation density log with added features. It is typified by Schlumberger s Litho-Density Tool (LDT). These tools

More information

Lists of estimated quantities to be performed and prices Estimated quantities to be performed. Prices

Lists of estimated quantities to be performed and prices Estimated quantities to be performed. Prices Schedule No. 2 Payment Schedule Task number according to Schedule No. 1 Scope of task Lists of estimated quantities to be performed and prices Estimated quantities to be performed Prices Date of execution

More information

Tight Gas Reservoir Characterization

Tight Gas Reservoir Characterization المعهد الجزاي ري للبترول INSTITUT ALGERIEN DU PETROLE JOURNEES D ETUDES TIGHT & SHALE RESERVOIRS 17-18 Septembre 2013 Sheraton, Alger Tight Gas Reservoir Characterization PRÉSENTATEUR : M. Farid CHEGROUCHE

More information

The Influence of Porosity & Aspect Ratio on the Compressive Behavior of Pervious Concrete. Alexander Hango

The Influence of Porosity & Aspect Ratio on the Compressive Behavior of Pervious Concrete. Alexander Hango The Influence of Porosity & Aspect Ratio on the Compressive Behavior of Pervious Concrete by Alexander Hango 1 Clarkson University The Influence of Porosity & Aspect Ratio on the Compressive Behavior of

More information

United States Patent im Anderson

United States Patent im Anderson United States Patent im Anderson [ii] 3,94,16 [4] Mar. 290, 1976 [4] METHODS AND APPARATUS FOR DETERMINING CHARACTERISTICS OF SUBSURFACE EARTH FORMATIONS [7] Inventor: Ronald A. Anderson, Houston, Tex.

More information

Shale Field Development Workflow. Ron Dusterhoft

Shale Field Development Workflow. Ron Dusterhoft Shale Field Development Workflow Ron Dusterhoft The Unique Challenges of Shale NO TWO SHALE PLAYS ARE ALIKE 2 Reservoir-Focused Completion-Driven Design Maximize Stimulation Potential Each Shale will have

More information

Abstract. 1. Introduction

Abstract. 1. Introduction IBP3328_10 IMPROVING HORIZONTAL WELL PLANNING AND EXECUTION USING AN INTEGRATED PLANNING APPROACH AND GEOSTEERING A CASE STUDY EXAMPLE IN BRAZIL DEEP WATER Rajeev Samaroo 1, Gregory Stewart 2, Paolo Ferraris

More information

Experiment 3 Lenses and Images

Experiment 3 Lenses and Images Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently

More information

PROHITECH WP3 (Leader A. IBEN BRAHIM) A short Note on the Seismic Hazard in Israel

PROHITECH WP3 (Leader A. IBEN BRAHIM) A short Note on the Seismic Hazard in Israel PROHITECH WP3 (Leader A. IBEN BRAHIM) A short Note on the Seismic Hazard in Israel Avigdor Rutenberg and Robert Levy Technion - Israel Institute of Technology, Haifa 32000, Israel Avi Shapira International

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

DIELECTRIC SPECTROSCOPY AS A DIAGNOSTIC TEST METHOD FOR THE DETERMINATION OF MECHANICAL DAMAGE IN MARBLE SAMPLES

DIELECTRIC SPECTROSCOPY AS A DIAGNOSTIC TEST METHOD FOR THE DETERMINATION OF MECHANICAL DAMAGE IN MARBLE SAMPLES The 10 th International Conference of the Slovenian Society for Non-Destructive Testing»Application of Contemporary Non-Destructive Testing in Engineering«September 1-3, 2009, Ljubljana, Slovenia, 415-421

More information

Building the Wireline Database and Calculation of Reservoir Porosity

Building the Wireline Database and Calculation of Reservoir Porosity This presentation is a publication of the Bureau of Economic Geology at The University of Texas at Austin. Although it is posted here as a source of public information, those wishing to use information

More information

EARTHQUAKES. Compressional Tensional Slip-strike

EARTHQUAKES. Compressional Tensional Slip-strike Earthquakes-page 1 EARTHQUAKES Earthquakes occur along faults, planes of weakness in the crustal rocks. Although earthquakes can occur anywhere, they are most likely along crustal plate boundaries, such

More information

Broadband seismic to support hydrocarbon exploration on the UK Continental Shelf

Broadband seismic to support hydrocarbon exploration on the UK Continental Shelf Broadband seismic to support hydrocarbon exploration on the UK Continental Shelf Gregor Duval 1 1 CGGVeritas Services UK Ltd, Crompton Way, Manor Royal Estate, Crawley, RH10 9QN, UK Variable-depth streamer

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

Groundwater flow systems theory: an unexpected outcome of

Groundwater flow systems theory: an unexpected outcome of Groundwater flow systems theory: an unexpected outcome of early cable tool drilling in the Turner Valley oil field K. Udo Weyer WDA Consultants Inc. weyer@wda-consultants.com Introduction The Theory of

More information

REPORT. Results of petrological and petrophysical investigation of rock samples from the Siljan impact crater (Mora area)

REPORT. Results of petrological and petrophysical investigation of rock samples from the Siljan impact crater (Mora area) REPORT Results of petrological and petrophysical investigation of rock samples from the Siljan impact crater (Mora area) Flotten AB Stockholm, March 2015 This report is the result of the petrological and

More information

MILLER AND LENTS, LTD.

MILLER AND LENTS, LTD. MILLER AND LENTS, LTD. INTRODUCTION HISTORY Miller and Lents, Ltd., a United States Corporation chartered under the laws of the State of Delaware, is an oil and gas consulting firm offering services and

More information

Earthquakes Natural and Induced. Rick Aster Professor of Geophysics and Department Head Geosciences Department Colorado State University

Earthquakes Natural and Induced. Rick Aster Professor of Geophysics and Department Head Geosciences Department Colorado State University Earthquakes Natural and Induced Rick Aster Professor of Geophysics and Department Head Geosciences Department Colorado State University Overview What causes earthquakes? How do we detect, locate, and measure

More information

FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FIFTH GRADE VOLCANOES WEEK 1. PRE: Exploring the rocks produced by volcanoes. LAB: Comparing igneous rocks.

More information

Figure 1: 3D realisation of AST electrode firing head discarging high voltage charge within borehole.

Figure 1: 3D realisation of AST electrode firing head discarging high voltage charge within borehole. : crosswell seismic tomography using a repeatable downhole sparker source. William Wills, Roger Marriage*, Avalon Sciences Ltd, James Verdon, Outer Limits Geophysics LLP. Summary Velocity model errors

More information

Th-07-03 Salt Exit Velocity Retrieval Using Full-waveform Inversion

Th-07-03 Salt Exit Velocity Retrieval Using Full-waveform Inversion Th-07-03 Salt Exit Velocity Retrieval Using Full-waveform Inversion W. Huang (WesternGeco), K. Jiao (westerngeco), D. Vigh (westerngeco), J. Kapoor* (westerngeco), H. Ma (westerngeco), X. Cheng (westerngeco)

More information

SPE 54005. Copyright 1999, Society of Petroleum Engineers Inc.

SPE 54005. Copyright 1999, Society of Petroleum Engineers Inc. SPE 54005 Volatile Oil. Determination of Reservoir Fluid Composition From a Non-Representative Fluid Sample Rafael H. Cobenas, SPE, I.T.B.A. and Marcelo A. Crotti, SPE, Inlab S.A. Copyright 1999, Society

More information

Introduction to Petroleum Geology and Geophysics

Introduction to Petroleum Geology and Geophysics GEO4210 Introduction to Petroleum Geology and Geophysics Geophysical Methods in Hydrocarbon Exploration About this part of the course Purpose: to give an overview of the basic geophysical methods used

More information

GAS WELL/WATER WELL SUBSURFACE CONTAMINATION

GAS WELL/WATER WELL SUBSURFACE CONTAMINATION GAS WELL/WATER WELL SUBSURFACE CONTAMINATION Rick Railsback Professional Geoscientist CURA Environmental & Emergency Services rick@curaes.com And ye shall know the truth and the truth shall make you free.

More information

Seismic Waves Practice

Seismic Waves Practice 1. Base your answer to the following question on the diagram below, which shows models of two types of earthquake waves. Model A best represents the motion of earthquake waves called 1) P-waves (compressional

More information

Layers of the Earth s Interior

Layers of the Earth s Interior Layers of the Earth s Interior 1 Focus Question How is the Earth like an ogre? 2 Objectives Explain how geologists have learned about the interior of the Earth. Describe the layers of the Earth s interior.

More information

BS PROGRAM IN PETROLEUM ENGINEERING (VERSION 2010) Course Descriptions

BS PROGRAM IN PETROLEUM ENGINEERING (VERSION 2010) Course Descriptions BS PROGRAM IN PETROLEUM ENGINEERING (VERSION 2010) Course Descriptions PETE201 Introduction to Petroleum Engineering (Core) (1-0-1) The course's main goal is to provide the student with an overview of

More information

The successful integration of 3D seismic into the mining process: Practical examples from Bowen Basin underground coal mines

The successful integration of 3D seismic into the mining process: Practical examples from Bowen Basin underground coal mines Geophysics 165 Troy Peters The successful integration of 3D seismic into the mining process: Practical examples from Bowen Basin underground coal mines This paper discusses how mine staff from a number

More information

14TH INTERNATIONAL CONGRESS OF THE BRAZILIAN GEOPHYSICAL SOCIETY AND EXPOGEF

14TH INTERNATIONAL CONGRESS OF THE BRAZILIAN GEOPHYSICAL SOCIETY AND EXPOGEF 14 TH INTERNATIONAL CONGRESS OF THE BRAZILIAN GEOPHYSICAL SOCIETY AND EXPOGEF August 3 6, 2015 I Rio de Janeiro, RJ Sulamérica Convention Center, Booth #49 Solving challenges. Theatre Schedule: Booth #49

More information

Reservoir Characterization of Gandhar Pay Sands by integrating NMR log data with conventional open hole logs A Case Study.

Reservoir Characterization of Gandhar Pay Sands by integrating NMR log data with conventional open hole logs A Case Study. Reservoir Characterization of Gandhar Pay Sands by integrating NMR log data with conventional open hole logs A Case Study. Summary S.K.Dhar* Well Logging Services, Ankleshwar Asset, ONGC Email ID: samirdhar@spemail.org

More information

Graduate Courses in Petroleum Engineering

Graduate Courses in Petroleum Engineering Graduate Courses in Petroleum Engineering PEEG 510 ADVANCED WELL TEST ANALYSIS This course will review the fundamentals of fluid flow through porous media and then cover flow and build up test analysis

More information

Seismically Driven Characterization of Unconventional Shale Plays

Seismically Driven Characterization of Unconventional Shale Plays FOCUS ARTICLE Coordinated by David Close / Cheran Mangat Seismically Driven Characterization of Unconventional Shale Plays Ahmed Ouenes Sigma 3 Integrated Reservoir Solutions, Denver, Colorado, USA Introduction

More information

MONITORING OF CO 2 INJECTED AT SLEIPNER USING TIME LAPSE SEISMIC DATA

MONITORING OF CO 2 INJECTED AT SLEIPNER USING TIME LAPSE SEISMIC DATA C1-1 MONITORING OF CO 2 INJECTED AT SLEIPNER USING TIME LAPSE SEISMIC DATA R. Arts 1, O. Eiken 2, A. Chadwick 3, P. Zweigel 4, L. van der Meer 1, B. Zinszner 5 1 Netherlands Institute of Applied Geoscience

More information

Laboratory scale electrical resistivity measurements to monitor the heat propagation within porous media for low enthalpy geothermal applications

Laboratory scale electrical resistivity measurements to monitor the heat propagation within porous media for low enthalpy geothermal applications 32 CONVEGNO NAZIONALE 19-21 Novembre 2013 TRIESTE Laboratory scale electrical resistivity measurements to monitor the heat propagation within porous media for low enthalpy geothermal applications N. Giordano

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #2: Aquifers, Porosity, and Darcy s Law. Lake (Exposed Water Table)

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #2: Aquifers, Porosity, and Darcy s Law. Lake (Exposed Water Table) 1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #2: Aquifers, Porosity, and Darcy s Law Precipitation Infiltration Lake (Exposed Water Table) River Water table Saturated zone - Aquifer

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

A Time b). Redatuming Direct with Ghost by Correlation T AB + T BC

A Time b). Redatuming Direct with Ghost by Correlation T AB + T BC STRT Monitoring oilfield reservoirs by downhole seismic arrays typically consists of picking traveltimes of direct arrivals and locating the hypocenter of the fracturing rock. The 3-component array typically

More information

Name Date Class. By studying the Vocabulary and Notes listed for each section below, you can gain a better understanding of this chapter.

Name Date Class. By studying the Vocabulary and Notes listed for each section below, you can gain a better understanding of this chapter. CHAPTER 7 VOCABULARY & NOTES WORKSHEET Earthquakes By studying the Vocabulary and Notes listed for each section below, you can gain a better understanding of this chapter. SECTION 1 Vocabulary In your

More information

Ultrasonic Technique and Device for Residual Stress Measurement

Ultrasonic Technique and Device for Residual Stress Measurement Ultrasonic Technique and Device for Residual Stress Measurement Y. Kudryavtsev, J. Kleiman Integrity Testing Laboratory Inc. 80 Esna Park Drive, Units 7-9, Markham, Ontario, L3R 2R7 Canada ykudryavtsev@itlinc.com

More information

Sonic Logging in Deviated Boreholes of an Anisotropic Formation: Laboratory Study

Sonic Logging in Deviated Boreholes of an Anisotropic Formation: Laboratory Study Sonic Logging in Deviated Boreholes of an Anisotropic Formation: Laboratory Study Zhenya Zhu, Shihong Chi, and M. Nafi Toksöz Earth Resources Laboratory Dept. of Earth, Atmospheric, and Planetary Sciences

More information

sufilter was applied to the original data and the entire NB attribute volume was output to segy format and imported to SMT for further analysis.

sufilter was applied to the original data and the entire NB attribute volume was output to segy format and imported to SMT for further analysis. Channel and fracture indicators from narrow-band decomposition at Dickman field, Kansas Johnny Seales*, Tim Brown and Christopher Liner Department of Earth and Atmospheric Sciences, University of Houston,

More information

Understanding Porosity and Permeability using High-Pressure MICP Data: Insights into Hydrocarbon Recovery*

Understanding Porosity and Permeability using High-Pressure MICP Data: Insights into Hydrocarbon Recovery* Understanding Porosity and Permeability using High-Pressure MICP Data: Insights into Hydrocarbon Recovery* John S. Sneider 1 and George W. Bolger 2 Search and Discovery Article #40345 (2008) Posted October

More information

FAULT SEAL ANALYSIS: Mapping & modelling. EARS5136 slide 1

FAULT SEAL ANALYSIS: Mapping & modelling. EARS5136 slide 1 FAULT SEAL ANALYSIS: Mapping & modelling EARS5136 slide 1 Hydrocarbon field structure Compartments 1 km Depth ~2.5km How to produce field? EARS5136 slide 2 Predict flow patterns and communication Fault

More information

ADX ENERGY. Sidi Dhaher Well test Briefing Live Webcast, 4 July 2012. Wolfgang Zimmer, Paul Fink

ADX ENERGY. Sidi Dhaher Well test Briefing Live Webcast, 4 July 2012. Wolfgang Zimmer, Paul Fink ADX ENERGY Sidi Dhaher Well test Briefing Live Webcast, 4 July 2012 Wolfgang Zimmer, Paul Fink Decision to test ASX announcement, 3 October 2011 2 Decision to test: First Evidence Wellsite geologists (highly

More information

Unit 4 Lesson 6 Measuring Earthquake Waves. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 6 Measuring Earthquake Waves. Copyright Houghton Mifflin Harcourt Publishing Company Shake, Rattle, and Roll What happens during an earthquake? As plates of the lithosphere move, the stress on rocks at or near the edges of the plates increases. This stress causes faults to form. A fault

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

EnerCom The Oil & Gas Conference. An Integrated Workflow for Unconventional Reservoirs

EnerCom The Oil & Gas Conference. An Integrated Workflow for Unconventional Reservoirs EnerCom The Oil & Gas Conference An Integrated Workflow for Unconventional Reservoirs August 20, 2015 1 Current Situation Oakspring Overview Oakspring Energy, LLC ( Oakspring ) has been formed by Brycap

More information

Full azimuth angle domain decomposition and imaging: A comprehensive solution for anisotropic velocity model determination and fracture detection

Full azimuth angle domain decomposition and imaging: A comprehensive solution for anisotropic velocity model determination and fracture detection P-403 Full azimuth angle domain decomposition and imaging: A comprehensive solution for anisotropic velocity model determination and fracture detection Summary Zvi Koren, Paradigm A new subsurface angle

More information

Operations in the Arctic areas? New challenges: Exploration Development Production

Operations in the Arctic areas? New challenges: Exploration Development Production Operations in the Arctic areas? New challenges: Exploration Development Production The oil and gas cycle Life cycle of oil and gas (time) 1) 2) 3) 4) 5) 6) Activity In-house study and get licenses: Find

More information

Search and Discovery Article #40256 (2007) Posted September 5, 2007. Abstract

Search and Discovery Article #40256 (2007) Posted September 5, 2007. Abstract Evaluating Water-Flooding Incremental Oil Recovery Using Experimental Design, Middle Miocene to Paleocene Reservoirs, Deep-Water Gulf of Mexico* By Richard Dessenberger 1, Kenneth McMillen 2, and Joseph

More information