Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Size: px
Start display at page:

Download "Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall"

Transcription

1 Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

2 The Generative Model POV We think of the data as being generated from some process. We assume this process can be modeled statistically as an underlying distribution. We often assume a parametric distribution, like a Gaussian, because they re easier to represent. We infer model parameters from the data. Then we can use the model to classify/cluster or even generate data. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

3 Probability density Parametric Distribution Represent the underlying probability distribution with a parametric density function. Machine learning students Height (cm) Gaussian (normal) distribution, two parameters: p x; μ, σ 2 1 (x μ) 2 = 2πσ e 2σ 2 View each point as generated from p x; μ, σ 2. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

4 Using Generative Models for Classification Gaussians whose means and variances were learned from data Machine learning students BA players Height (cm) ew point. Which group does he belong to? Answer: the group (class) that calls the new point most probable. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

5 Maximum Likelihood Estimation Our hypothesis space is Gaussian distributions. Find parameter(s) θ that make a Gaussian most likely to generate data X = (x 1,, x n ). Likelihood function: l θ X p X; θ = p x i ; θ i=1 θ ={μ, σ 2 } Only if X is i.i.d. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

6 Likelihood Function l θ X p X; θ = p x i ; θ i=1 In our Gaussian example, x i is a continuous variable, p x i ; θ is the probability density function (pdf). It is meaningless to talk about probability mass here, as the probability mass at any value of x i is zero. If x i is a discrete variable (e.g. binary), p x i ; θ should be replaced by the probability mass function P x i ; θ. It is meaningless to talk about probability density p here, as the density will be infinite at the value of each data point. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

7 Log-likelihood Function Likelihood function l θ X p X; θ = p x i ; θ Log-likelihood function i=1 L θ X log l θ X = log p x i ; θ i=1 Maximizing Log-likelihood maximizing likelihood Easier to optimize Prevents underflow!!! What happens when multiplying 1000 probabilities? Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

8 Example Gaussian Log-likelihood Log-likelihood function L θ X log l θ X = log p x i ; θ Recall Gaussian dist. (probability density function) p x; μ, σ 2 1 (x μ) 2 = 2πσ e 2σ 2 So the log-likelihood of Gaussian would be: L μ, σ 2 X = 2 log(2π) log σ i=1 x i μ 2 2σ 2 i=1 a constant term Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

9 Maximizing Log-likelihood Log-likelihood of Gaussian: L μ, σ 2 X = C log σ i=1 2σ 2 x i μ 2 Take the partial derivatives w.r.t μ and σ and set them to 0, i.e. let L L = 0 and = 0. μ σ Then solve (try it yourself), we get μ = 1 x i ; σ 2 = 1 i=1 i=1 x i μ 2 Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

10 What if the data distribution can t be well represented by a single Gaussian? Can we model more complex distributions using multiple Gaussians? Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

11 Gaussian Mixture Model (GMM) Machine learning students & BA players Two Gaussian components Represent the dist. with a mixture of Gaussians z: a membership r.v. indicating which Gaussian that x belongs to Height (cm) K p x = P(z = j)p x z = j j=1 Weight of j-th Gaussian. Often notated as w j z is a discrete variable, so we use probability mass P The j-th Gaussian, parameter:(μ j, σ 2 j ) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

12 Generative Process for GMM Machine learning students & BA players Height (cm) K p x = P(z = j)p x z = j j= Randomly pick a component j, according to P z = j ; 2. Generate x according to p(x z = j). Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

13 What are we optimizing? GMM distribution: K p x = P(z = j)p x z = j j=1 K = w j j=1 1 e (x μ j ) 2 2σ 2 j 2πσ j Three parameters per Gaussian in the mixture w j, μ j, σ 2 K j, where j=1 w j = 1. Find parameters that maximize data likelihood. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

14 Maximum Likelihood Estimation of GMM Given X = (x 1,, x n ), x i ~p x, log-likelihood is L θ X = log p x i i=1 K = log P z i = j p x i z i = j i=1 j=1 K = log w j i=1 j=1 1 e (x i μ j ) 2 2σ 2 j 2πσ j Try to solve parameters μ j, σ 2 j, w j by setting their partial derivatives to 0? o closed form solution. (Try it yourself) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

15 Why is ML hard for GMM? Each data point x i has a membership random variable z i, indicating which Gaussian it comes from. But the value of z i cannot be observed as x i, i.e. we are uncertain about which Gaussian x i comes from. z i is a latent variable because we can t observe it. Latent variables can also be viewed as missing data, data that we didn t observe. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

16 If we know what value z i takes, ML is easy Machine learning students & BA players Height (cm) w j = 1 μ j = σ 2 j = i i i 1 z i = j 1 z i=j 1 z i =j x i i 1 z i=j x i μ 2 1 z i =j i Indicator function: 1 z i = j = 1, if z i = j; 0, if z i j. = number of training examples Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

17 Illustration of Soft Membership Which component does the point i come from? The probability that it comes from j: q i (j) P z i = j x i 1 st component 2 nd component From 1 st : 0.99 From 2 nd : st : nd : st : nd : 0.9 Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

18 Improving our posterior probability The posterior probability of a Gaussian is the probability that this Gaussian generated the data we observe. Let s find a way to use posterior probabilities to make an algorithm that automatically creates a set of Gaussians that would have been very likely to generate this data. 18

19 Expectation Maximization (EM) Instead of analytically solving the maximum likelihood parameter estimation problem of GMM, we seek an alternative way, EM algorithm. EM algorithm updates parameters iteratively. In each iteration, the likelihood value increases (at least it doesn t decrease). EM algorithm always converges (to some local optimum), i.e. likelihood value and parameters converge. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

20 EM Algorithm Summary Initialize parameters. w j, μ j, σ 2 j for each Gaussian j in our model. E step: calculate posterior dist. of latent variables probability that these Gaussians generated the data M step: update parameters. update w j, μ j, σ 2 j for each Gaussian j Repeat E and M steps until convergence. go until parameters don t change much It converges to some local optimum. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

21 EM for GMM - Initialization Start by choosing the number of Gaussian components K. Also, choose an initialization of parameters of all components w j, μ j, σ 2 j for j = 1,, K. Make sure K j=1 w j = 1. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

22 EM for GMM Expectation step For each x i, calculate its soft membership, i.e. the posterior dist. of z i, using current parameters. Bayes rule q i (j) P z i = j x i = P z i = j, x i p x i = p x i z i = j P z i = j K p x i z i = l P z i = l l=1 Prior dist. of component j ote: we are guessing the distribution (i.e. a soft membership) of z i, instead of a hard membership. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

23 EM for GMM Maximization step M step: update parameters. Recall q i (j) is the soft membership of x i of the j-th Gaussian. σ 2 j = w j = 1 μ j = i=1 (j) q i i=1 i=1 q (j) i x i q (j) i=1 i q i (j) x i μ j 2 i=1 q i (j) Average of their membership Weighted average using membership Weighted variance using membership Repeat E step and M step until convergence. Convergence criterion in practice: compare with the previous iteration, the likelihood value doesn t increase much, or the parameters don t change much. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

24 EM Algorithm Summary Initialize parameters. w j, μ j, σ 2 j for each Gaussian j in our model. E step: calculate posterior dist. of latent variables probability that these Gaussians generated the data M step: update parameters. update w j, μ j, σ 2 j for each Gaussian j Repeat E and M steps until convergence. go until parameters don t change much It converges to some local optimum. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

25 What if our data isn t just scalars, but each data point has multiple dimensions? Can we generalize to multiple dimensions? Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

26 Multivariate Gaussian Mixture μ j, a mean vector, marks the center of a ellipse. Second dimension K p x = w j j=1 1 2π d 2 S j 1 2 exp 1 2 x μ j T Sj 1 x μ j K Parameters: μ j, S j, w j for j = 1,, K, with j=1 w j = 1. How many parameters? means covariance's d(d + 1) dk + K + K 2 S j, the covariance matrix (d d), describes the shape and orientation of a ellipse. First dimension d: dimensionality weights Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

27 Example: Initialization (Illustration from Andrew Moore's tutorial slides on GMM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

28 After Iteration #1 (Illustration from Andrew Moore's tutorial slides on GMM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

29 After Iteration #2 (Illustration from Andrew Moore's tutorial slides on GMM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

30 After Iteration #3 (Illustration from Andrew Moore's tutorial slides on GMM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

31 After Iteration #4 (Illustration from Andrew Moore's tutorial slides on GMM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

32 After Iteration #5 (Illustration from Andrew Moore's tutorial slides on GMM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

33 After Iteration #6 (Illustration from Andrew Moore's tutorial slides on GMM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

34 After Iteration #20 (Illustration from Andrew Moore's tutorial slides on GMM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

35 GMM Remarks GMM is powerful: any density function can be arbitrarily-well approximated by a GMM with enough components. If the number of components K is too large, data will be overfitted. Likelihood increases with K. Extreme case: Gaussians for data points, with variances 0, then likelihood. How to choose K? Use domain knowledge. Validate through visualization. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

36 GMM is a soft version of K-means Similarity K needs to be specified. Converges to some local optima. Initialization matters final results. One would want to try different initializations. Differences GMM Assigns soft labels to instances. GMM Considers variances in addition to means. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

37 GMM for Classification 1. Given D = x i, y i, where y i 1,, C. 2. Model p x y = l with a GMM, for each l. 3. Calculate class posterior probability. p x y = l P(y = l) P y = l x = p x y = k P(y = k) C k=1 Bayes optimal classifier 4. Classify x to the class having largest posterior. (illustration from Leon Bottou s slides on EM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

38 GMM for Regression Given D = x i, y i, where y i R. Model p x, y with a GMM. Compute f x = E y x, conditional expectation (illustration from Leon Bottou s slides on EM) Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

39 You Should Know How to do maximum likelihood (ML) estimation? GMM models data dist. with a mixture of K Gaussians, with para μ j, S j, w j, for j = 1,, K. o closed form solution for ML estimation of GMM parameters. How to estimate GMM parameters with EM algorithm? How is GMM related to K-means? How to use GMM for clustering, classification and regression? Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

More information

1 Maximum likelihood estimation

1 Maximum likelihood estimation COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N

More information

Bayes and Naïve Bayes. cs534-machine Learning

Bayes and Naïve Bayes. cs534-machine Learning Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

More information

Lecture 9: Introduction to Pattern Analysis

Lecture 9: Introduction to Pattern Analysis Lecture 9: Introduction to Pattern Analysis g Features, patterns and classifiers g Components of a PR system g An example g Probability definitions g Bayes Theorem g Gaussian densities Features, patterns

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Gaussian Mixture Models Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

Dirichlet Processes A gentle tutorial

Dirichlet Processes A gentle tutorial Dirichlet Processes A gentle tutorial SELECT Lab Meeting October 14, 2008 Khalid El-Arini Motivation We are given a data set, and are told that it was generated from a mixture of Gaussian distributions.

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part X Factor analysis Whenwehavedatax (i) R n thatcomesfromamixtureofseveral Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting, we usually

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /

More information

Christfried Webers. Canberra February June 2015

Christfried Webers. Canberra February June 2015 c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic

More information

HT2015: SC4 Statistical Data Mining and Machine Learning

HT2015: SC4 Statistical Data Mining and Machine Learning HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric

More information

Classification Problems

Classification Problems Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur

Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur Probabilistic Linear Classification: Logistic Regression Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 18, 2016 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification:

More information

Linear Classification. Volker Tresp Summer 2015

Linear Classification. Volker Tresp Summer 2015 Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong

More information

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html 10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

More information

Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on

Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on Pa8ern Recogni6on and Machine Learning Chapter 4: Linear Models for Classifica6on Represen'ng the target values for classifica'on If there are only two classes, we typically use a single real valued output

More information

Designing a learning system

Designing a learning system Lecture Designing a learning system Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x4-8845 http://.cs.pitt.edu/~milos/courses/cs750/ Design of a learning system (first vie) Application or Testing

More information

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

More information

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian

More information

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York BME I5100: Biomedical Signal Processing Linear Discrimination Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not

More information

11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial Least Squares Regression

11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial Least Squares Regression Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics Chap. c11 2013/9/9 page 221 le-tex 221 11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial

More information

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision

More information

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

More information

Semi-Supervised Support Vector Machines and Application to Spam Filtering

Semi-Supervised Support Vector Machines and Application to Spam Filtering Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery

More information

Bayesian Classifier for a Gaussian Distribution, Decision Surface Equation, with Application

Bayesian Classifier for a Gaussian Distribution, Decision Surface Equation, with Application Iraqi Journal of Statistical Science (18) 2010 p.p. [35-58] Bayesian Classifier for a Gaussian Distribution, Decision Surface Equation, with Application ABSTRACT Nawzad. M. Ahmad * Bayesian decision theory

More information

Classification Techniques for Remote Sensing

Classification Techniques for Remote Sensing Classification Techniques for Remote Sensing Selim Aksoy Department of Computer Engineering Bilkent University Bilkent, 06800, Ankara saksoy@cs.bilkent.edu.tr http://www.cs.bilkent.edu.tr/ saksoy/courses/cs551

More information

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j What is Kiva? An organization that allows people to lend small amounts of money via the Internet

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,

More information

Bayesian networks - Time-series models - Apache Spark & Scala

Bayesian networks - Time-series models - Apache Spark & Scala Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly

More information

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September

More information

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert.schuff@ucsf.edu

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert.schuff@ucsf.edu Norbert Schuff Professor of Radiology Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics 2012, N.Schuff Course # 170.03 Slide 1/67 Overview Definitions Role of Segmentation Segmentation

More information

Probabilistic Latent Semantic Analysis (plsa)

Probabilistic Latent Semantic Analysis (plsa) Probabilistic Latent Semantic Analysis (plsa) SS 2008 Bayesian Networks Multimedia Computing, Universität Augsburg Rainer.Lienhart@informatik.uni-augsburg.de www.multimedia-computing.{de,org} References

More information

Data, Measurements, Features

Data, Measurements, Features Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Part III: Machine Learning. CS 188: Artificial Intelligence. Machine Learning This Set of Slides. Parameter Estimation. Estimation: Smoothing

Part III: Machine Learning. CS 188: Artificial Intelligence. Machine Learning This Set of Slides. Parameter Estimation. Estimation: Smoothing CS 188: Artificial Intelligence Lecture 20: Dynamic Bayes Nets, Naïve Bayes Pieter Abbeel UC Berkeley Slides adapted from Dan Klein. Part III: Machine Learning Up until now: how to reason in a model and

More information

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives

More information

MACHINE LEARNING IN HIGH ENERGY PHYSICS

MACHINE LEARNING IN HIGH ENERGY PHYSICS MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!

More information

Introduction to Logistic Regression

Introduction to Logistic Regression OpenStax-CNX module: m42090 1 Introduction to Logistic Regression Dan Calderon This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Gives introduction

More information

Introduction to nonparametric regression: Least squares vs. Nearest neighbors

Introduction to nonparametric regression: Least squares vs. Nearest neighbors Introduction to nonparametric regression: Least squares vs. Nearest neighbors Patrick Breheny October 30 Patrick Breheny STA 621: Nonparametric Statistics 1/16 Introduction For the remainder of the course,

More information

Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. Philip Kostov and Seamus McErlean

Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. Philip Kostov and Seamus McErlean Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. by Philip Kostov and Seamus McErlean Working Paper, Agricultural and Food Economics, Queen

More information

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus 1. Introduction Facebook is a social networking website with an open platform that enables developers to extract and utilize user information

More information

Introduction to Learning & Decision Trees

Introduction to Learning & Decision Trees Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

More information

Linear Discrimination. Linear Discrimination. Linear Discrimination. Linearly Separable Systems Pairwise Separation. Steven J Zeil.

Linear Discrimination. Linear Discrimination. Linear Discrimination. Linearly Separable Systems Pairwise Separation. Steven J Zeil. Steven J Zeil Old Dominion Univ. Fall 200 Discriminant-Based Classification Linearly Separable Systems Pairwise Separation 2 Posteriors 3 Logistic Discrimination 2 Discriminant-Based Classification Likelihood-based:

More information

Comparative Analysis of EM Clustering Algorithm and Density Based Clustering Algorithm Using WEKA tool.

Comparative Analysis of EM Clustering Algorithm and Density Based Clustering Algorithm Using WEKA tool. International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 19-24 Comparative Analysis of EM Clustering Algorithm

More information

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of

More information

BAYESIAN CLASSIFICATION USING GAUSSIAN MIXTURE MODEL AND EM ESTIMATION: IMPLEMENTATIONS AND COMPARISONS

BAYESIAN CLASSIFICATION USING GAUSSIAN MIXTURE MODEL AND EM ESTIMATION: IMPLEMENTATIONS AND COMPARISONS LAPPEENRANTA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY BAYESIAN CLASSIFICATION USING GAUSSIAN MIXTURE MODEL AND ESTIMATION: IMPLENTATIONS AND COMPARISONS Information Technology Project

More information

Neural Networks Lesson 5 - Cluster Analysis

Neural Networks Lesson 5 - Cluster Analysis Neural Networks Lesson 5 - Cluster Analysis Prof. Michele Scarpiniti INFOCOM Dpt. - Sapienza University of Rome http://ispac.ing.uniroma1.it/scarpiniti/index.htm michele.scarpiniti@uniroma1.it Rome, 29

More information

MUSICAL INSTRUMENT FAMILY CLASSIFICATION

MUSICAL INSTRUMENT FAMILY CLASSIFICATION MUSICAL INSTRUMENT FAMILY CLASSIFICATION Ricardo A. Garcia Media Lab, Massachusetts Institute of Technology 0 Ames Street Room E5-40, Cambridge, MA 039 USA PH: 67-53-0 FAX: 67-58-664 e-mail: rago @ media.

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany carl@tuebingen.mpg.de WWW home page: http://www.tuebingen.mpg.de/ carl

More information

Semi-Supervised Learning in Inferring Mobile Device Locations

Semi-Supervised Learning in Inferring Mobile Device Locations Semi-Supervised Learning in Inferring Mobile Device Locations Rong Duan, Olivia Hong, Guangqin Ma rduan,ohong,gma @research.att.com AT&T Labs 200 S Laurel Ave Middletown, NJ 07748 Abstract With the development

More information

Monotonicity Hints. Abstract

Monotonicity Hints. Abstract Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: joe@cs.caltech.edu Yaser S. Abu-Mostafa EE and CS Deptartments California Institute of Technology

More information

Supervised Feature Selection & Unsupervised Dimensionality Reduction

Supervised Feature Selection & Unsupervised Dimensionality Reduction Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or

More information

Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit scoring, contracting.

Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit scoring, contracting. Prof. Dr. J. Franke All of Statistics 1.52 Binary response variables - logistic regression Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit

More information

Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan

Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan Data Mining: An Overview David Madigan http://www.stat.columbia.edu/~madigan Overview Brief Introduction to Data Mining Data Mining Algorithms Specific Eamples Algorithms: Disease Clusters Algorithms:

More information

Programming Exercise 3: Multi-class Classification and Neural Networks

Programming Exercise 3: Multi-class Classification and Neural Networks Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks

More information

Course: Model, Learning, and Inference: Lecture 5

Course: Model, Learning, and Inference: Lecture 5 Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 yuille@stat.ucla.edu Abstract Probability distributions on structured representation.

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/313/5786/504/dc1 Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks G. E. Hinton* and R. R. Salakhutdinov *To whom correspondence

More information

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its

More information

Clustering. 15-381 Artificial Intelligence Henry Lin. Organizing data into clusters such that there is

Clustering. 15-381 Artificial Intelligence Henry Lin. Organizing data into clusters such that there is Clustering 15-381 Artificial Intelligence Henry Lin Modified from excellent slides of Eamonn Keogh, Ziv Bar-Joseph, and Andrew Moore What is Clustering? Organizing data into clusters such that there is

More information

Mixtures of Robust Probabilistic Principal Component Analyzers

Mixtures of Robust Probabilistic Principal Component Analyzers Mixtures of Robust Probabilistic Principal Component Analyzers Cédric Archambeau, Nicolas Delannay 2 and Michel Verleysen 2 - University College London, Dept. of Computer Science Gower Street, London WCE

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard

More information

Question 2 Naïve Bayes (16 points)

Question 2 Naïve Bayes (16 points) Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the

More information

Highly Efficient Incremental Estimation of Gaussian Mixture Models for Online Data Stream Clustering

Highly Efficient Incremental Estimation of Gaussian Mixture Models for Online Data Stream Clustering Highly Efficient Incremental Estimation of Gaussian Mixture Models for Online Data Stream Clustering Mingzhou Song a,b and Hongbin Wang b a Department of Computer Science, Queens College of CUNY, Flushing,

More information

Item selection by latent class-based methods: an application to nursing homes evaluation

Item selection by latent class-based methods: an application to nursing homes evaluation Item selection by latent class-based methods: an application to nursing homes evaluation Francesco Bartolucci, Giorgio E. Montanari, Silvia Pandolfi 1 Department of Economics, Finance and Statistics University

More information

Likelihood, MLE & EM for Gaussian Mixture Clustering. Nick Duffield Texas A&M University

Likelihood, MLE & EM for Gaussian Mixture Clustering. Nick Duffield Texas A&M University Likelihood, MLE & EM for Gaussian Mixture Clustering Nick Duffield Texas A&M University Probability vs. Likelihood Probability: predict unknown outcomes based on known parameters: P(x θ) Likelihood: eskmate

More information

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

More information

Tutorial on Markov Chain Monte Carlo

Tutorial on Markov Chain Monte Carlo Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,

More information

Natural Language Processing. Today. Logistic Regression Models. Lecture 13 10/6/2015. Jim Martin. Multinomial Logistic Regression

Natural Language Processing. Today. Logistic Regression Models. Lecture 13 10/6/2015. Jim Martin. Multinomial Logistic Regression Natural Language Processing Lecture 13 10/6/2015 Jim Martin Today Multinomial Logistic Regression Aka log-linear models or maximum entropy (maxent) Components of the model Learning the parameters 10/1/15

More information

CHAPTER 2 Estimating Probabilities

CHAPTER 2 Estimating Probabilities CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a

More information

BayesX - Software for Bayesian Inference in Structured Additive Regression

BayesX - Software for Bayesian Inference in Structured Additive Regression BayesX - Software for Bayesian Inference in Structured Additive Regression Thomas Kneib Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich

More information

203.4770: Introduction to Machine Learning Dr. Rita Osadchy

203.4770: Introduction to Machine Learning Dr. Rita Osadchy 203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if

More information

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014 Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about

More information

LCs for Binary Classification

LCs for Binary Classification Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it

More information

Machine Learning. CS 188: Artificial Intelligence Naïve Bayes. Example: Digit Recognition. Other Classification Tasks

Machine Learning. CS 188: Artificial Intelligence Naïve Bayes. Example: Digit Recognition. Other Classification Tasks CS 188: Artificial Intelligence Naïve Bayes Machine Learning Up until now: how use a model to make optimal decisions Machine learning: how to acquire a model from data / experience Learning parameters

More information

Machine Learning Logistic Regression

Machine Learning Logistic Regression Machine Learning Logistic Regression Jeff Howbert Introduction to Machine Learning Winter 2012 1 Logistic regression Name is somewhat misleading. Really a technique for classification, not regression.

More information

Bayesian probability theory

Bayesian probability theory Bayesian probability theory Bruno A. Olshausen arch 1, 2004 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using probability. The foundations

More information

L4: Bayesian Decision Theory

L4: Bayesian Decision Theory L4: Bayesian Decision Theory Likelihood ratio test Probability of error Bayes risk Bayes, MAP and ML criteria Multi-class problems Discriminant functions CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna

More information

A Procedure for Classifying New Respondents into Existing Segments Using Maximum Difference Scaling

A Procedure for Classifying New Respondents into Existing Segments Using Maximum Difference Scaling A Procedure for Classifying New Respondents into Existing Segments Using Maximum Difference Scaling Background Bryan Orme and Rich Johnson, Sawtooth Software March, 2009 Market segmentation is pervasive

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

How To Solve The Cluster Algorithm

How To Solve The Cluster Algorithm Cluster Algorithms Adriano Cruz adriano@nce.ufrj.br 28 de outubro de 2013 Adriano Cruz adriano@nce.ufrj.br () Cluster Algorithms 28 de outubro de 2013 1 / 80 Summary 1 K-Means Adriano Cruz adriano@nce.ufrj.br

More information

Logistic Regression (1/24/13)

Logistic Regression (1/24/13) STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

More information

Sections 2.11 and 5.8

Sections 2.11 and 5.8 Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

More information

Employer Health Insurance Premium Prediction Elliott Lui

Employer Health Insurance Premium Prediction Elliott Lui Employer Health Insurance Premium Prediction Elliott Lui 1 Introduction The US spends 15.2% of its GDP on health care, more than any other country, and the cost of health insurance is rising faster than

More information