Module 3 Introduction to GIS. Lecture 7 GIS data

Size: px
Start display at page:

Download "Module 3 Introduction to GIS. Lecture 7 GIS data"

Transcription

1 Module 3 Introduction to GIS Lecture 7 GIS data

2 What do we know about GIS so far It allows to work with geospatial data to solve spatial problems (to know where it is, what happens somewhere and what changes integration and spatial analysis) It can be used for many different applications provided geospatial data exist, presented with the correct coordinate system It needs at least 5 components to work properly (Hardware, Software, Data, Procedures, People) not only software! Many GIS software available (open-source source code is freely available to view, edit, and redistribute) All GIS software provide basic GIS tools: projection transformation, spatial analysis; surface creation; data management; selection and extraction operations. With any GIS software we can visualize the data and create maps

3 What can we do with GIS Quick and easy access to large volumes of data Search and select data and information Link or merge one dataset with another (integration of spatial and non-spatial data) Update data quickly and cheaply Spatial analysis (with existing data) and modelling (creating new data and information) Generate outputs (maps and tables)

4 GIS data model A simplified representation of the real-world

5 GIS data model GIS data model is a simplified view of the real world. A data model defines how spatial features are represented and stored in GIS. We can visualize this data model as a set of layers that represent each real world feature (data model organizes and stores geospatial data). Each layer overlays perfectly on top of each other so that every location is precisely matched.

6 GIS data model for each application, different thematic layers

7 Different thematic layers displayed in GIS software

8 Is the geographic world a jig-saw puzzle of polygons or a club-sandwich of data layers? (Couclelis, 1992) The real-world geographic space can be perceived as being occupied by entities or as a field representing a continuous variation of an attribute. Entities (objects, discrete data) are described by their attributes and its position can be mapped using a coordinate system. Entity Defining and recognizing the entity (a house? a river? a forest?) is the first step, listing its attributes, defining its boundaries and its location is the second.

9 GIS data model (applied to entities/objects) Real-world Simplification Database (Attributes) Model Geospatial data acquisition Location Type of representation Classification (what it is?) ID X Y Name Data Model Map

10 for the mindless mechanical eye everything in the world is just another array of pixels (Couclelis, 1992) Fields are described by the smooth and continuous variation of attributes over a space with continuous coordinates. Fields are created by modelling continuous data. Field

11 GIS data models Two GIS data models: VECTOR more appropriate for mapping discrete geographic entities RASTER most appropriate for modelling continuous geographic phenomena

12 GIS data models choice There are many possible views for the same reality depending on the abilities and preferences of the GIS user. Switzerland example (Burrough & McDonell, 1998): Should Switzerland be recognized as a land of individual mountain entities (vector) or as a land in which the attribute elevation demonstrates extreme variation (raster)?

13 GIS data models choice Opting for an entity approach to mountain peaks will provide an excellent basis for a system that records who climbed the mountain and when but it will not provide information for computing slopes for its sides. Choosing a continuous representation allows the calculation of slopes but does not gives names for the peaks.

14 GIS data models choice The decision will be based on the aim to be achieved and the database needed. The choice of the conceptual model determines how information can later be derived. It depends on the scientific or technical discipline of the user Heywood, Cornelius & Carver,

15 GIS database Attribute table

16 GIS data model storage database / attribute table GIS data model = spatial data (geometry, location) + non-spatial data (attribute) A GIS database compiles attribute data and stores it in tables, organized by rows and columns. Each row represents a spatial feature (normally with an ID), each column describes a characteristic. A row is also called a record and a column is also called a field. Attribute tables are different for vector and raster.

17 Database / attribute table Attributes are inserted and displayed as tables. The type of attribute data provided for a spatial feature can determine the utility of datasets in GIS analysis - the scale of measurement (nominal, ordinal, interval and ratio) used to record attribute data is important Nominal and ordinal data are introduce as character strings and are used as categorical data in GIS operations ( soil types or levels of soil erosion). Interval and ratio data will be introduced as integers or float (if decimal digits are included)

18 Database / attribute table Attribute tables are also used for a number of GIS operations. Attribute tables are often joined or related to spatial data layers, and the attribute values they contain can be used to find, query, and symbolize features (vector) or raster cells. It is possible to have attribute tables that are not linked to spatial features GIS software a database management system to relate the non-spatial attributes with the spatial data.

19 Queries - GIS analysis based on the database/attribute table Queries are questions that you ask of the data (related to the data model and geospatial data used) Queries can be spatial or aspatial, e.g. Where have major traffic accidents occurred in the last five years? (spatial), What percentage of traffic accidents involved alcohol? (aspatial). Basic queries using the Identify tool in GIS. Advanced queries using Query Builder in GIS to build queries to select only features that satisfy some criteria (using basic maths operators or Boolean operators).

20 Spatial analysis using GIS database Queries

21 Basic Query Identify tool The result of clicking on a feature using the Identify tool: The fields are the attributes of the record in this particular layer

22 Advanced Query Query Builder tool

23 Advanced Query Query Builder tool The basic operators in a query are =, <>, <, >,,, like. Equal to (=), not equal to (<>) ( CNTRY_NAME = Australia ) Less than (<), less than or equal to ( ) ( POP2005 < ) Greater than (>), greater than or equal to ( ) ( SQKM > ) Like Begins with or contains, used in conjunction with * wildcard ( CNTRY_NAME like Al* - Selects Algeria, Albania Queries examples Show all polygons where soil type is silty loam Show all census districts where population is less than 1000 Find all locations where elevation is less than or equal to 100m and annual rainfall is between 1200 and 1800mm

24 Advanced Query Query Builder tool The Boolean operators are and, or, not - used to create compound queries. AND all criteria must be satisfied ( POP AND SQKM ) OR at least one criteria must be satisfied ( STATUS = National capital OR STATUS = Provincial capital ) NOT negation (NAME = Mexico AND NOT STATUS = City includes results contains: New Mexico; the nation of Mexico but does not return Mexico City)

25 Advanced Query Query Builder tool Combine operators to make complex queries: (CNTRY_NAME = Australia OR CNTRY_NAME = New Zealand ) AND CITY_NAME like A* ) The syntax of the queries is important (how the query is written). In different GIS software the syntax will probably be slightly different. The results of the query can be visualized in the layer view. Results of query: Cities in NSW with population >= 20,000 shown in green

26 GIS Vector Geometry, location, attribute table

27 Vector data model The vector data model represents space as a series of discrete entity-defined point, line and polygons which are geographically referenced. Besides geometry and location, an attribute table is also associated with each vector feature. Vector data is scale-dependent and the user must take this into consideration when choosing the appropriate entity (point, line or polygon) to represent a feature. For example, a city on a 1: map may appear as a point but the same city may appear as a polygon on a 1: map. But if it was not defined as a polygon initially the scale might change but the representation would always be a point (maybe, in this case, a huge point on a map).

28 Vector entity: Point Points are stored as a pair of x-y coordinates. An attribute table containing point information only needs three columns namely x, y and a description. A point can be used to represent features such as a power pole, a tree, a sample location or a town. GPS locations can be imported to GIS as points.

29 Vector entity: Line A line has at least two points joined by a line. A line has length and a direction from start node to end node. The shape of a line may be a smooth curve or a connection of straight-line segments with vertices. A polyline is a feature made of lines. Lines can be used to represent features such as a river, a road, a fence line or a contour. Most GIS software have an editing toolbox that allows the user to create line features. This is useful when digitizing maps to create lines.

30 Vector entity: Polygon A polygon is a two-dimensional feature and has the properties of area such as size and perimeter, in addition to location. A polygon can be used to represent features such as a lake, a building, a soil class, a local government area or a state boundary. Polygon features can also be created using the editing toolbox.

31 Vector entities: Point, Line and Polygon ml&ei=vthfvz_lbotcmwxso4dqaw&bvm=bv ,d.dgy&psig=afqjcngqls0zkngotwdahg9y97qlcsysxa&ust=

32 Vector data requires Topology Topology is the arrangement that defines how point, line, and polygon features share coincident geometry. For example, adjacent polygons representing states share their common boundaries. Topology ensures data quality and integrity (for example, enables detection of lines that do not meet correctly). Topology can enhance GIS analysis (because it defines correctly the position and direction of features). Topology rules: Counties must not overlap; Countour lines must not intersect; Label points must be inside polygons.

33 Applications using vector Use vector data maps as topographic maps (to locate feature). Use vector data for spatial analysis (buffer, proximity, overlay ) to generate new data. Vector data is the base for network analysis (plan routes, calculate drivetimes, locate facilities, least-cost path from a destination point to the nearest least-cost source).

34 Composite vector data: TIN Composite features are built on points, lines and polygons such as the triangulated irregular network (TIN) which approximates the terrain (surface) with a set of non-overlapping triangles based on an irregular network of elevation points (from GPS, LIDAR, surveys, DEM) Because nodes can be placed irregularly over a surface, TINs can have a higher resolution in areas where a surface is highly variable or where more detail is desired and a lower resolution in areas that are less variable. TIN s are used to create Digital Terrain Models for GIS terrain mapping and analysis.

35 GIS Raster Grid, cells, resolution

36 Raster data model Raster data is made up of regular cells coloured according to some value. A raster is a two-dimensional grid where the basic unit is a cell. The resolution of a raster is determined by the grid cell size. Each cell represents a continuous feature (such as elevation and precipitation) and corresponds to the value of the spatial phenomenon at the cell location.

37 Raster Cells must be aligned to the coordinate system Cell start locations can not be offset Grid is not normally at an angle Cell is also called a pixel The resolution of the raster is dependent on the size of the cell. The finer the cell resolution and the greater the number of cells that represent small areas, the more accurate the representation.

38 Raster values Depending on the coding of each cell value, a raster can be either an integer or a floating-point raster(if presented with decimal digits). Integer cell values usually represent categorical data. A common example is the land cover raster that codes land use as 1 forest, 2 agricultural, 3 water. Floating point cell data represents continuous numeric data. Cells can also have a NoData value to represent the absence of data.

39 Raster attribute table The attribute table displays the cell values (corresponding to the value of a continuous feature at the cell location) and their frequencies (counts).

40 Applications using Raster Raster as basemaps Remote sensing (satellite) images, aerial photographs, scanned maps can be used as a background display for other feature layers. For example, we can create a the boundary of a lake as a polygon using its displayed image in a basemap.

41 Applications using Raster Raster as surface maps Rasters is used as regularly spaced representation of surfaces. Elevation values measured from the earth's surface are the most common application of surface maps, but other values, such as rainfall, temperature, concentration, and population density, can also define surfaces that can be spatially analyzed. A DEM (Digital Elevation Model) is very used as raster data in GIS digital terrain mapping and analysis. It represents a regular array of elevation points converted into surfaces (each elevation point is the center of a cell).

42 Applications using Raster Raster as thematic maps Rasters representing thematic data can be derived from analyzing other data. A common analysis application is classifying a satellite image by land-cover categories. Thematic maps can also result from geoprocessing to create a raster dataset that maps suitability for a specific activity. Satellite image Land use raster map

43 Vector vs Raster

44 Raster is faster, but vector is corrector (Berry, 1995) Vector Can represent point, line and polygon features much more accurately Require less disk storage space Complex data structure (topology) High quality outputs Enables network design Complex database Raster Spatial inaccuracies due to the limits imposed by the raster dataset cell dimensions Depending on the resolution, large size files requiring more disk storage space Simple data structure Easy to manipulate for analysis Great diversity of raster data sources

45 Vector Raster conversion

46 Conversion between models Depending on the GIS operation to perform it might be necessary to convert vector into raster and vice-versa. Rasterization (converts vector to raster) Vectorization (converts raster to vector). Giscommons.org

47 Rasterization A grid is placed over the vector and if the cell contains the underlying vector then it is coded as such. With polygons: difficult to decide whether to classify the boundary cells as part of the polygon or not.

48 Vectorization Raster to vector requires thinning (to provide width to the line), extraction (determining where individual lines begin and end) and topological reconstruction (to connect lines and find errors). Converting from raster to vector is will almost always result in a coarser vector with square edges, depending on the resolution of the raster. Chang, 2014

49 More about GIS data acquisition next week SCI103 notes: Start planning Assessment 6

Representing Geography

Representing Geography 3 Representing Geography OVERVIEW This chapter introduces the concept of representation, or the construction of a digital model of some aspect of the Earth s surface. The geographic world is extremely

More information

Understanding Raster Data

Understanding Raster Data Introduction The following document is intended to provide a basic understanding of raster data. Raster data layers (commonly referred to as grids) are the essential data layers used in all tools developed

More information

Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS?

Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS? Introduction to GIS (Basics, Data, Analysis) & Case Studies 13 th May 2004 Content Introduction to GIS Data concepts Data input Analysis Applications selected examples What is GIS? Geographic Information

More information

What is GIS? Geographic Information Systems. Introduction to ArcGIS. GIS Maps Contain Layers. What Can You Do With GIS? Layers Can Contain Features

What is GIS? Geographic Information Systems. Introduction to ArcGIS. GIS Maps Contain Layers. What Can You Do With GIS? Layers Can Contain Features What is GIS? Geographic Information Systems Introduction to ArcGIS A database system in which the organizing principle is explicitly SPATIAL For CPSC 178 Visualization: Data, Pixels, and Ideas. What Can

More information

WHAT IS GIS - AN INRODUCTION

WHAT IS GIS - AN INRODUCTION WHAT IS GIS - AN INRODUCTION GIS DEFINITION GIS is an acronym for: Geographic Information Systems Geographic This term is used because GIS tend to deal primarily with geographic or spatial features. Information

More information

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 Contents GIS and maps The visualization process Visualization and strategies

More information

Raster Data Structures

Raster Data Structures Raster Data Structures Tessellation of Geographical Space Geographical space can be tessellated into sets of connected discrete units, which completely cover a flat surface. The units can be in any reasonable

More information

GIS: Geographic Information Systems A short introduction

GIS: Geographic Information Systems A short introduction GIS: Geographic Information Systems A short introduction Outline The Center for Digital Scholarship What is GIS? Data types GIS software and analysis Campus GIS resources Center for Digital Scholarship

More information

Introduction to GIS. http://libguides.mit.edu/gis

Introduction to GIS. http://libguides.mit.edu/gis Introduction to GIS http://libguides.mit.edu/gis 1 Overview What is GIS? Types of Data and Projections What can I do with GIS? Data Sources and Formats Software Data Management Tips 2 What is GIS? 3 Characteristics

More information

GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION

GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus - Version 1.2 January 2007 Copyright AICA-CEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed

More information

Tutorial 8 Raster Data Analysis

Tutorial 8 Raster Data Analysis Objectives Tutorial 8 Raster Data Analysis This tutorial is designed to introduce you to a basic set of raster-based analyses including: 1. Displaying Digital Elevation Model (DEM) 2. Slope calculations

More information

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS KEY CONCEPTS: In this session we will look at: Geographic information systems and Map projections. Content that needs to be covered for examination

More information

GIS Data in ArcGIS. Pay Attention to Data!!!

GIS Data in ArcGIS. Pay Attention to Data!!! GIS Data in ArcGIS Pay Attention to Data!!! 1 GIS Data Models Vector Points, lines, polygons, multi-part, multi-patch Composite & secondary features Regions, dynamic segmentation (routes) Raster Grids,

More information

Raster to Vector Conversion for Overlay Analysis

Raster to Vector Conversion for Overlay Analysis Raster to Vector Conversion for Overlay Analysis In some cases, it may be necessary to perform vector-based analyses on a raster data set, or vice versa. The types of analyses that can be performed on

More information

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension 3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension R.Queen Suraajini, Department of Civil Engineering, College of Engineering Guindy, Anna University, India, suraa12@gmail.com

More information

ANALYSIS 3 - RASTER What kinds of analysis can we do with GIS?

ANALYSIS 3 - RASTER What kinds of analysis can we do with GIS? ANALYSIS 3 - RASTER What kinds of analysis can we do with GIS? 1. Measurements 2. Layer statistics 3. Queries 4. Buffering (vector); Proximity (raster) 5. Filtering (raster) 6. Map overlay (layer on layer

More information

Create a folder on your network drive called DEM. This is where data for the first part of this lesson will be stored.

Create a folder on your network drive called DEM. This is where data for the first part of this lesson will be stored. In this lesson you will create a Digital Elevation Model (DEM). A DEM is a gridded array of elevations. In its raw form it is an ASCII, or text, file. First, you will interpolate elevations on a topographic

More information

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere Master s Thesis: ANAMELECHI, FALASY EBERE Analysis of a Raster DEM Creation for a Farm Management Information System based on GNSS and Total Station Coordinates Duration of the Thesis: 6 Months Completion

More information

SPATIAL DATA MODELS AND SPATIAL DATA

SPATIAL DATA MODELS AND SPATIAL DATA SPATIAL DATA MODELS AND SPATIAL DATA STRUCTURES TABLE OF CONTENTS 1 Spatial data models: an introduction... 2 2 Geometric entities... 2 2.1 Problems with the entity definition process...5 3 Spatial data

More information

GIS Spatial Data Standards

GIS Spatial Data Standards GIS Spatial Data Standards Manatee County, FL GIS Section, Information Services Department TABLE OF CONTENTS I. Introduction 2 A. Purpose 2 B. Reference 2 II. Spatial Reference Information 2 A. Projection:

More information

NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc.

NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc. NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc. EXISTING CABLE ROUTE PLANNING TOOLS In recent years, methods used for submarine cable

More information

Raster: The Other GIS Data

Raster: The Other GIS Data 04-Raster_Tutorial_Arcgis_93.Doc Page 1 of 11 Raster: The Other GIS Data Objectives Understand the raster format and how it is used to model continuous geographic phenomena Understand how projections &

More information

Request for Proposals for Topographic Mapping. Issued by: Teton County GIS and Teton County Engineering Teton County, Wyoming

Request for Proposals for Topographic Mapping. Issued by: Teton County GIS and Teton County Engineering Teton County, Wyoming Request for Proposals for Topographic Mapping Issued by: Teton County GIS and Teton County Engineering Teton County, Wyoming Proposals due: 2:00PM MDT July 1, 2015 Proposals may be delivered to: Teton

More information

A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION

A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION Zeshen Wang ESRI 380 NewYork Street Redlands CA 92373 Zwang@esri.com ABSTRACT Automated area aggregation, which is widely needed for mapping both natural

More information

A GIS helps you answer questions and solve problems by looking at your data in a way that is quickly understood and easily shared.

A GIS helps you answer questions and solve problems by looking at your data in a way that is quickly understood and easily shared. A Geographic Information System (GIS) integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. GIS allows us to view,

More information

Spatial Analyst Tutorial

Spatial Analyst Tutorial Copyright 1995-2010 Esri All rights reserved. Table of Contents About the ArcGIS Spatial Analyst Tutorial......................... 3 Exercise 1: Preparing for analysis............................ 5 Exercise

More information

Implementation Planning

Implementation Planning Implementation Planning presented by: Tim Haithcoat University of Missouri Columbia 1 What is included in a strategic plan? Scale - is this departmental or enterprise-wide? Is this a centralized or distributed

More information

Data Visualization. Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004

Data Visualization. Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004 Data Visualization Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004 Contents Brief Overview of ArcMap Goals of the Exercise Computer

More information

BASICS OF PRECISION AGRICULTURE (PA)

BASICS OF PRECISION AGRICULTURE (PA) BASICS OF PRECISION AGRICULTURE (PA) specific production on particular place specific production, from foot to foot... Same sense: data collection and decision making for small pieces of the field. Particular

More information

Working with Digital Elevation Models and Digital Terrain Models in ArcMap 9

Working with Digital Elevation Models and Digital Terrain Models in ArcMap 9 Working with Digital Elevation Models and Digital Terrain Models in ArcMap 9 1 TABLE OF CONTENTS INTRODUCTION...3 WORKING WITH DIGITAL TERRAIN MODEL (DTM) DATA FROM NRVIS, CITY OF KITCHENER, AND CITY OF

More information

Introduction to Imagery and Raster Data in ArcGIS

Introduction to Imagery and Raster Data in ArcGIS Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Introduction to Imagery and Raster Data in ArcGIS Simon Woo slides Cody Benkelman - demos Overview of Presentation

More information

Chapter Contents Page No

Chapter Contents Page No Chapter Contents Page No Preface Acknowledgement 1 Basics of Remote Sensing 1 1.1. Introduction 1 1.2. Definition of Remote Sensing 1 1.3. Principles of Remote Sensing 1 1.4. Various Stages in Remote Sensing

More information

Image Analysis CHAPTER 16 16.1 ANALYSIS PROCEDURES

Image Analysis CHAPTER 16 16.1 ANALYSIS PROCEDURES CHAPTER 16 Image Analysis 16.1 ANALYSIS PROCEDURES Studies for various disciplines require different technical approaches, but there is a generalized pattern for geology, soils, range, wetlands, archeology,

More information

Working with the Raster Calculator

Working with the Raster Calculator Working with the Raster Calculator The Raster Calculator provides you a powerful tool for performing multiple tasks. You can perform mathematical calculations using operators and functions, set up selection

More information

Files Used in this Tutorial

Files Used in this Tutorial Generate Point Clouds Tutorial This tutorial shows how to generate point clouds from IKONOS satellite stereo imagery. You will view the point clouds in the ENVI LiDAR Viewer. The estimated time to complete

More information

GIS EXAM #2 QUERIES. Attribute queries only looks at the records in the attribute tables to some kind of

GIS EXAM #2 QUERIES. Attribute queries only looks at the records in the attribute tables to some kind of GIS EXAM #2 QUERIES - Queries extracts particular records from a table or feature class for use; - Queries are an essential aspect of GIS analysis, and allows us to interrogate a dataset and look for patterns;

More information

GIS 101 - Introduction to Geographic Information Systems Last Revision or Approval Date - 9/8/2011

GIS 101 - Introduction to Geographic Information Systems Last Revision or Approval Date - 9/8/2011 Page 1 of 10 GIS 101 - Introduction to Geographic Information Systems Last Revision or Approval Date - 9/8/2011 College of the Canyons SECTION A 1. Division: Mathematics and Science 2. Department: Earth,

More information

Spatial data analysis: retrieval, (re)classification and measurement operations

Spatial data analysis: retrieval, (re)classification and measurement operations CHAPTER 7 Spatial data analysis: retrieval, (re)classification and measurement operations In chapter 5 you used a number of table window operations, such as calculations, aggregations, and table joining,

More information

SPATIAL DATA ANALYSIS

SPATIAL DATA ANALYSIS SPATIAL DATA ANALYSIS P.L.N. Raju Geoinformatics Division Indian Institute of Remote Sensing, Dehra Dun Abstract : Spatial analysis is the vital part of GIS. Spatial analysis in GIS involves three types

More information

Lesson 15 - Fill Cells Plugin

Lesson 15 - Fill Cells Plugin 15.1 Lesson 15 - Fill Cells Plugin This lesson presents the functionalities of the Fill Cells plugin. Fill Cells plugin allows the calculation of attribute values of tables associated with cell type layers.

More information

FOR375 EXAM #2 STUDY SESSION SPRING 2016. Lecture 14 Exam #2 Study Session

FOR375 EXAM #2 STUDY SESSION SPRING 2016. Lecture 14 Exam #2 Study Session FOR375 EXAM #2 STUDY SESSION SPRING 2016 Lecture 14 Exam #2 Study Session INTRODUCTION TO REMOTE SENSING TYPES OF REMOTE SENSING Ground based platforms Airborne based platforms Space based platforms TYPES

More information

Government 98dn Mapping Social and Environmental Space

Government 98dn Mapping Social and Environmental Space Government 98dn Mapping Social and Environmental Space LAB EXERCISE 5: The Analysis of Fields Objectives of this lab: Visualizing raster data Using Spatial Analyst functions to create new data Analysis

More information

Geography 3251: Mountain Geography Assignment III: Natural hazards A Case Study of the 1980s Mt. St. Helens Eruption

Geography 3251: Mountain Geography Assignment III: Natural hazards A Case Study of the 1980s Mt. St. Helens Eruption Name: Geography 3251: Mountain Geography Assignment III: Natural hazards A Case Study of the 1980s Mt. St. Helens Eruption Learning Objectives: Assigned: May 30, 2012 Due: June 1, 2012 @ 9 AM 1. Learn

More information

Optimal Cell Towers Distribution by using Spatial Mining and Geographic Information System

Optimal Cell Towers Distribution by using Spatial Mining and Geographic Information System World of Computer Science and Information Technology Journal (WCSIT) ISSN: 2221-0741 Vol. 1, No. 2, -48, 2011 Optimal Cell Towers Distribution by using Spatial Mining and Geographic Information System

More information

Symbolizing your data

Symbolizing your data Symbolizing your data 6 IN THIS CHAPTER A map gallery Drawing all features with one symbol Drawing features to show categories like names or types Managing categories Ways to map quantitative data Standard

More information

Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class

More information

Data source, type, and file naming convention

Data source, type, and file naming convention Exercise 1: Basic visualization of LiDAR Digital Elevation Models using ArcGIS Introduction This exercise covers activities associated with basic visualization of LiDAR Digital Elevation Models using ArcGIS.

More information

This high level land planning and design system will replace the land

This high level land planning and design system will replace the land Performance Planning System () The following is a v1.3 feature analysis, which clarifies differences, between and American Planning Association (APA) Land Based Classification Standards (LBCS) for color

More information

Lecture 9: Geometric map transformations. Cartographic Transformations

Lecture 9: Geometric map transformations. Cartographic Transformations Cartographic Transformations Analytical and Computer Cartography Lecture 9: Geometric Map Transformations Attribute Data (e.g. classification) Locational properties (e.g. projection) Graphics (e.g. symbolization)

More information

LIDAR and Digital Elevation Data

LIDAR and Digital Elevation Data LIDAR and Digital Elevation Data Light Detection and Ranging (LIDAR) is being used by the North Carolina Floodplain Mapping Program to generate digital elevation data. These highly accurate topographic

More information

Lecture 3: Models of Spatial Information

Lecture 3: Models of Spatial Information Lecture 3: Models of Spatial Information Introduction In the last lecture we discussed issues of cartography, particularly abstraction of real world objects into points, lines, and areas for use in maps.

More information

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model Spatial Information in Natural Resources FANR 3800 Raster Analysis Objectives Review the raster data model Understand how raster analysis fundamentally differs from vector analysis Become familiar with

More information

Mosaicking and Subsetting Images

Mosaicking and Subsetting Images Mosaicking and Subsetting Images Using SAGA GIS Tutorial ID: IGET_RS_005 This tutorial has been developed by BVIEER as part of the IGET web portal intended to provide easy access to geospatial education.

More information

CityGML goes to Broadway

CityGML goes to Broadway CityGML goes to Broadway Thomas H. Kolbe, Barbara Burger, Berit Cantzler Chair of Geoinformatics thomas.kolbe@tum.de September 11, 2015 Photogrammetric Week 2015, Stuttgart The New York City Open Data

More information

http://www.esri.com/bia

http://www.esri.com/bia ArcGIS for Tribal Transportation Management David Gadsden Federal Account Manager dgadsden@esri.com d d 1 David Gadsden GIS Background UW Geography (1995) Peace Corps Tanzania Environmental Social Science

More information

Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite

Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite R.Manonmani, G.Mary Divya Suganya Institute of Remote Sensing, Anna University, Chennai 600 025

More information

A HYDROLOGIC NETWORK SUPPORTING SPATIALLY REFERENCED REGRESSION MODELING IN THE CHESAPEAKE BAY WATERSHED

A HYDROLOGIC NETWORK SUPPORTING SPATIALLY REFERENCED REGRESSION MODELING IN THE CHESAPEAKE BAY WATERSHED A HYDROLOGIC NETWORK SUPPORTING SPATIALLY REFERENCED REGRESSION MODELING IN THE CHESAPEAKE BAY WATERSHED JOHN W. BRAKEBILL 1* AND STEPHEN D. PRESTON 2 1 U.S. Geological Survey, Baltimore, MD, USA; 2 U.S.

More information

Introduction to GIS. Dr F. Escobar, Assoc Prof G. Hunter, Assoc Prof I. Bishop, Dr A. Zerger Department of Geomatics, The University of Melbourne

Introduction to GIS. Dr F. Escobar, Assoc Prof G. Hunter, Assoc Prof I. Bishop, Dr A. Zerger Department of Geomatics, The University of Melbourne Introduction to GIS 1 Introduction to GIS http://www.sli.unimelb.edu.au/gisweb/ Dr F. Escobar, Assoc Prof G. Hunter, Assoc Prof I. Bishop, Dr A. Zerger Department of Geomatics, The University of Melbourne

More information

Gunnison County Web Map

Gunnison County Web Map Gunnison County Web Map Find Data - Find data - Navigate tools - Mouse over tooltip Make Maps - Layers - Legend - Drawing tools - Printing Analysis - Measurement - Selecting - Queries Spatial SQL - Basic

More information

Plan Plus Volume 1 No 1 2002 (117-123)

Plan Plus Volume 1 No 1 2002 (117-123) Plan Plus Volume 1 No 1 2002 (117-123) APPLICATION OF GIS (GEOGRAPHIC INFORMATION SYSTEM) FOR LANDSLIDE HAZARD ZONATION AND MAPPING DISASTER PRONE AREA: A STUDY OF KULEKHANI WATERSHED, NEPAL Purna Chandra

More information

Using ArcGIS ModelBuilder to batch process files

Using ArcGIS ModelBuilder to batch process files The ArcGIS Model Builder is a tool you can use to help process a large number of files in an automated fashion. To open a new ModelBuilder document, either choose ModelBuilder from the Geoprocessing menu,

More information

New Features in TerraScan. Arttu Soininen Software developer Terrasolid Ltd

New Features in TerraScan. Arttu Soininen Software developer Terrasolid Ltd New Features in TerraScan Arttu Soininen Software developer Terrasolid Ltd Version 013.xxx Computer ID changes in licenses Send new computer ID to Terrasolid if using: Server pool licenses (server ID and

More information

A Method Using ArcMap to Create a Hydrologically conditioned Digital Elevation Model

A Method Using ArcMap to Create a Hydrologically conditioned Digital Elevation Model A Method Using ArcMap to Create a Hydrologically conditioned Digital Elevation Model High resolution topography derived from LiDAR data is becoming more readily available. This new data source of topography

More information

Institute of Natural Resources Departament of General Geology and Land use planning Work with a MAPS

Institute of Natural Resources Departament of General Geology and Land use planning Work with a MAPS Institute of Natural Resources Departament of General Geology and Land use planning Work with a MAPS Lecturers: Berchuk V.Y. Gutareva N.Y. Contents: 1. Qgis; 2. General information; 3. Qgis desktop; 4.

More information

Reading Questions. Lo and Yeung, 2007: 2 19. Schuurman, 2004: Chapter 1. 1. What distinguishes data from information? How are data represented?

Reading Questions. Lo and Yeung, 2007: 2 19. Schuurman, 2004: Chapter 1. 1. What distinguishes data from information? How are data represented? Reading Questions Week two Lo and Yeung, 2007: 2 19. Schuurman, 2004: Chapter 1. 1. What distinguishes data from information? How are data represented? 2. What sort of problems are GIS designed to solve?

More information

REGIONAL CENTRE FOR TRAINING IN AEROSPACE SURVEYS (RECTAS) MASTER IN GEOINFORMATION PRODUCTION AND MANAGEMENT

REGIONAL CENTRE FOR TRAINING IN AEROSPACE SURVEYS (RECTAS) MASTER IN GEOINFORMATION PRODUCTION AND MANAGEMENT REGIONAL CENTRE FOR TRAINING IN AEROSPACE SURVEYS (RECTAS) MASTER IN GEOINFORMATION PRODUCTION AND MANAGEMENT PROGRAMME DESCRIPTION October 2014 1. The programme The academic programme shall be referred

More information

Crime Mapping Methods. Assigning Spatial Locations to Events (Address Matching or Geocoding)

Crime Mapping Methods. Assigning Spatial Locations to Events (Address Matching or Geocoding) Chapter 15 Crime Mapping Crime Mapping Methods Police departments are never at a loss for data. To use crime mapping is to take data from myriad sources and make the data appear on the computer screen

More information

Using Google Earth for Environmental Science Research

Using Google Earth for Environmental Science Research Using Google Earth for Environmental Science Research This document is up-to-date as of August 2013. If you have any questions or additions to this material please email dan.friess@nus.edu.sg. Note: this

More information

This is Geospatial Analysis II: Raster Data, chapter 8 from the book Geographic Information System Basics (index.html) (v. 1.0).

This is Geospatial Analysis II: Raster Data, chapter 8 from the book Geographic Information System Basics (index.html) (v. 1.0). This is Geospatial Analysis II: Raster Data, chapter 8 from the book Geographic Information System Basics (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Lab 3. GIS Data Entry and Editing.

Lab 3. GIS Data Entry and Editing. Lab 3. GIS Data Entry and Editing. The goal: To learn about the vector (arc/node) and raster data types entry and editing. Objective: Create vector and raster datasets and visualize them. Software for

More information

John F. Cotton College of Architecture & Environmental Design California Polytechnic State University San Luis Obispo, California JOHN F.

John F. Cotton College of Architecture & Environmental Design California Polytechnic State University San Luis Obispo, California JOHN F. SO L I DMO D E L I N GAS A TO O LFO RCO N S T RU C T I N SO G LA REN V E LO PE S by John F. Cotton College of Architecture & Environmental Design California Polytechnic State University San Luis Obispo,

More information

The Structure of Geographic Data

The Structure of Geographic Data 3 The Structure of Geographic Data Geographic data come from a variety of sources, such as digitized maps, aerial photography, GPS, and field data. Valid geographic data serve as a collective true marker

More information

GIS. Digital Humanities Boot Camp Series

GIS. Digital Humanities Boot Camp Series GIS Digital Humanities Boot Camp Series GIS Fundamentals GIS Fundamentals Definition of GIS A geographic information system (GIS) is used to describe and characterize spatial data for the purpose of visualizing

More information

APPLY EXCEL VBA TO TERRAIN VISUALIZATION

APPLY EXCEL VBA TO TERRAIN VISUALIZATION APPLY EXCEL VBA TO TERRAIN VISUALIZATION 1 2 Chih-Chung Lin( ), Yen-Ling Lin ( ) 1 Secretariat, National Changhua University of Education. General Education Center, Chienkuo Technology University 2 Dept.

More information

3-D Object recognition from point clouds

3-D Object recognition from point clouds 3-D Object recognition from point clouds Dr. Bingcai Zhang, Engineering Fellow William Smith, Principal Engineer Dr. Stewart Walker, Director BAE Systems Geospatial exploitation Products 10920 Technology

More information

3D Building Roof Extraction From LiDAR Data

3D Building Roof Extraction From LiDAR Data 3D Building Roof Extraction From LiDAR Data Amit A. Kokje Susan Jones NSG- NZ Outline LiDAR: Basics LiDAR Feature Extraction (Features and Limitations) LiDAR Roof extraction (Workflow, parameters, results)

More information

Digital Cadastral Maps in Land Information Systems

Digital Cadastral Maps in Land Information Systems LIBER QUARTERLY, ISSN 1435-5205 LIBER 1999. All rights reserved K.G. Saur, Munich. Printed in Germany Digital Cadastral Maps in Land Information Systems by PIOTR CICHOCINSKI ABSTRACT This paper presents

More information

APLS 2011. GIS Data: Classification, Potential Misuse, and Practical Limitations

APLS 2011. GIS Data: Classification, Potential Misuse, and Practical Limitations APLS 2011 GIS Data: Classification, Potential Misuse, and Practical Limitations GIS Data: Classification, Potential Misuse, and Practical Limitations Goals & Objectives Develop an easy to use geospatial

More information

Applying GIS Analysis to Archaeological Research in Canada

Applying GIS Analysis to Archaeological Research in Canada Applying GIS Analysis to Archaeological Research in Canada T A L K B Y D R. K I S H A S U P E R N A N T P R E S E N T E D A T G E O A L B E R T A 2 0 1 3 S E P T E M B E R 2 3, 2 0 1 3 Overview Review

More information

University of Arkansas Libraries ArcGIS Desktop Tutorial. Section 2: Manipulating Display Parameters in ArcMap. Symbolizing Features and Rasters:

University of Arkansas Libraries ArcGIS Desktop Tutorial. Section 2: Manipulating Display Parameters in ArcMap. Symbolizing Features and Rasters: : Manipulating Display Parameters in ArcMap Symbolizing Features and Rasters: Data sets that are added to ArcMap a default symbology. The user can change the default symbology for their features (point,

More information

Creating Slope-Enhanced Shaded-Relief Using Global Mapper

Creating Slope-Enhanced Shaded-Relief Using Global Mapper Creating Slope-Enhanced Shaded-Relief Using Global Mapper Kent D. Brown Utah Geological Survey Introduction The purpose of this document is to demonstrate that slope-enhanced hillshade, or shaded-relief

More information

GEOGRAPHIC INFORMATION SYSTEMS

GEOGRAPHIC INFORMATION SYSTEMS GIS GEOGRAPHIC INFORMATION SYSTEMS FOR CADASTRAL MAPPING Chapter 7 2015 Cadastral Mapping Manual 7-0 GIS - GEOGRAPHIC INFORMATION SYSTEMS What is GIS For a long time people have sketched, drawn and studied

More information

INTRODUCTION TO ARCGIS SOFTWARE

INTRODUCTION TO ARCGIS SOFTWARE INTRODUCTION TO ARCGIS SOFTWARE I. History of Software Development a. Developer ESRI - Environmental Systems Research Institute, Inc., in 1969 as a privately held consulting firm that specialized in landuse

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

Can GIS Help You Manage Water Resources? Erika Boghici Texas Natural Resources Information Systems

Can GIS Help You Manage Water Resources? Erika Boghici Texas Natural Resources Information Systems Can GIS Help You Manage Water Resources? Erika Boghici Texas Natural Resources Information Systems Hydrologic Information System Hydrologic Modeling Arc Hydro Geodatabase Arc Hydro Data Model: combination

More information

Getting Started with the ArcGIS Predictive Analysis Add-In

Getting Started with the ArcGIS Predictive Analysis Add-In Getting Started with the ArcGIS Predictive Analysis Add-In Table of Contents ArcGIS Predictive Analysis Add-In....................................... 3 Getting Started 4..............................................

More information

EEOS 381 -Spatial Databases and GIS Applications

EEOS 381 -Spatial Databases and GIS Applications EEOS 381 -Spatial Databases and GIS Applications Lecture 3 GIS Data Models Data Formats Overview GIS Data Models Common GIS Data Formats EEOS 381 - Spring 2015: Lecture 3 2 Overview Key points: It is important

More information

SPATIAL ANALYSIS IN GEOGRAPHICAL INFORMATION SYSTEMS. A DATA MODEL ORffiNTED APPROACH

SPATIAL ANALYSIS IN GEOGRAPHICAL INFORMATION SYSTEMS. A DATA MODEL ORffiNTED APPROACH POSTER SESSIONS 247 SPATIAL ANALYSIS IN GEOGRAPHICAL INFORMATION SYSTEMS. A DATA MODEL ORffiNTED APPROACH Kirsi Artimo Helsinki University of Technology Department of Surveying Otakaari 1.02150 Espoo,

More information

Introduction to PostGIS

Introduction to PostGIS Tutorial ID: IGET_WEBGIS_002 This tutorial has been developed by BVIEER as part of the IGET web portal intended to provide easy access to geospatial education. This tutorial is released under the Creative

More information

Topographic Change Detection Using CloudCompare Version 1.0

Topographic Change Detection Using CloudCompare Version 1.0 Topographic Change Detection Using CloudCompare Version 1.0 Emily Kleber, Arizona State University Edwin Nissen, Colorado School of Mines J Ramón Arrowsmith, Arizona State University Introduction CloudCompare

More information

ADWR GIS Metadata Policy

ADWR GIS Metadata Policy ADWR GIS Metadata Policy 1 PURPOSE OF POLICY.. 3 INTRODUCTION.... 4 What is metadata?... 4 Why is it important? 4 When to fill metadata...4 STANDARDS. 5 FGDC content standards for geospatial metadata...5

More information

Appendix C - Risk Assessment: Technical Details. Appendix C - Risk Assessment: Technical Details

Appendix C - Risk Assessment: Technical Details. Appendix C - Risk Assessment: Technical Details Appendix C - Risk Assessment: Technical Details Page C1 C1 Surface Water Modelling 1. Introduction 1.1 BACKGROUND URS Scott Wilson has constructed 13 TUFLOW hydraulic models across the London Boroughs

More information

Cookbook 23 September 2013 GIS Analysis Part 1 - A GIS is NOT a Map!

Cookbook 23 September 2013 GIS Analysis Part 1 - A GIS is NOT a Map! Cookbook 23 September 2013 GIS Analysis Part 1 - A GIS is NOT a Map! Overview 1. A GIS is NOT a Map! 2. How does a GIS handle its data? Data Formats! GARP 0344 (Fall 2013) Page 1 Dr. Carsten Braun 1) A

More information

Impact of water harvesting dam on the Wadi s morphology using digital elevation model Study case: Wadi Al-kanger, Sudan

Impact of water harvesting dam on the Wadi s morphology using digital elevation model Study case: Wadi Al-kanger, Sudan Impact of water harvesting dam on the Wadi s morphology using digital elevation model Study case: Wadi Al-kanger, Sudan H. S. M. Hilmi 1, M.Y. Mohamed 2, E. S. Ganawa 3 1 Faculty of agriculture, Alzaiem

More information

Geographical Information Systems (GIS) and Economics 1

Geographical Information Systems (GIS) and Economics 1 Geographical Information Systems (GIS) and Economics 1 Henry G. Overman (London School of Economics) 5 th January 2006 Abstract: Geographical Information Systems (GIS) are used for inputting, storing,

More information

Image Draping & navigation within Virtual GIS

Image Draping & navigation within Virtual GIS Image Draping & navigation within Virtual GIS Draping of Geo Corrected data such as aerial imagery or map data enables virtual 3D field tours to be conducted in an area of interest. This document covers

More information

Syllabus AGET 782. GIS for Agricultural and Natural Resources Management

Syllabus AGET 782. GIS for Agricultural and Natural Resources Management Syllabus AGET 782 Course Title: GIS for Agricultural and Natural Resources Management Course Abbreviation: AGET 782 Course Credits: Instructor: Course Description: Required Text: 3 hours Timothy N. Burcham,

More information

GEOGRAPHIC INFORMATION SYSTEMS

GEOGRAPHIC INFORMATION SYSTEMS GIS GEOGRAPHIC INFORMATION SYSTEMS FOR CADASTRAL MAPPING Chapter 6 2015 Cadastral Mapping Manual 6-0 GIS - GEOGRAPHIC INFORMATION SYSTEMS What is GIS For a long time people have sketched, drawn and studied

More information

Fort Dodge Stormwater Master Planning. Prepared By: Ralph C. Stark, Jr., P.E., C.F.M. Joel N. Krause, P.E., C.F.M.

Fort Dodge Stormwater Master Planning. Prepared By: Ralph C. Stark, Jr., P.E., C.F.M. Joel N. Krause, P.E., C.F.M. Fort Dodge Stormwater Master Planning Prepared By: Ralph C. Stark, Jr., P.E., C.F.M. Joel N. Krause, P.E., C.F.M. Project Location Project Background Flooding History Localized flooding and storm sewer

More information

PART 1. Representations of atmospheric phenomena

PART 1. Representations of atmospheric phenomena PART 1 Representations of atmospheric phenomena Atmospheric data meet all of the criteria for big data : they are large (high volume), generated or captured frequently (high velocity), and represent a

More information