AP Biology Lab #5: Cell Respiration

Size: px
Start display at page:

Download "AP Biology Lab #5: Cell Respiration"

Transcription

1 AP Biology Lab #5: Cell Respiration OVERVIEW: In this experiment you will work with seeds that are living but dormant. A seed contains an embryo plant and a food supply surrounded by a seed coat. When the necessary conditions are met, germination occurs and the rate of cellular respiration greatly increases. In this lab you will: 1) Measure oxygen consumption during germination. 2) Measure the in gas volume in respirometers containing either germinating or nongerminating pea seeds. 3) Measure the rate of respiration of these peas at two different temperatures. OBJECTIVES: Before doing this lab you should understand: A) Respiration, dormancy, and germination. B) How a respirometers works in terms of the gas laws. C) The general processes of metabolism in living organisms. D) How the rate of cellular respiration relates to the amount of activity in a cell. After doing this lab you should be able to: A) Calculate the rate of cell respiration form experimental data. B) Relate gas production to respiration rate. C) Test the ate of cellular respiration in germinating versus nongerminating seeds in a controlled experiment. D) Test the effect of temperature on the rate of cell respiration in germinating versus nongerminating seeds in a controlled experiment. INTRODUCTION: Respiration refers to two different but related processes: one is the active acquisition of gaseous oxygen by an organism and the other is the release of energy from organic compounds within a cell. The latter process, a chemical oxidation, is more commonly referred to as cellular respiration. The chemical equation for the complete oxidation of glucose is shown below. Note that oxygen is required for this energy-releasing process to occur. C 6 H 12 O O 2 6 CO H 2 O kilocalories of energy/mole glucose oxidized The chemical formula gives some clues as to how you might study the rate of cellular respiration. You could measure the consumption of oxygen (i.e., how many molecules of oxygen are consumed when 1 molecule of glucose is oxidized?), the production of carbon dioxide (i.e., how many molecules of carbon dioxide are produced when 1 molecule of glucose is oxidized?), or the consumption of oxygen and the release of carbon dioxide (i.e., how many molecules of carbon dioxide are produced for every molecule of oxygen consumed?). In this laboratory exercise, you will measure the relative volume of oxygen consumed by germinating and nongerminating (dry) pea seeds at two different temperatures over time. A number of physical laws relating to gases are important to the understanding of how the apparatus that you will use in this exercise works. The laws are summarized in the general gas law that states: PV=nRT Where P is the pressure of the gas, V is the volume of the gas, n is the number of molecules of gas, R is the gas constant, and T is the temperature of the gas (in K) In order to measure the volume of oxygen consumed over time you must eliminate all the carbon dioxide produced by the reaction. In this experiment, the carbon dioxide will be removed by reacting with potassium hydroxide (KOH) to form solid potassium carbonate (K 2 CO 3 ). CO KOH K 2 CO 3 + H 2 O

2 Therefore, if the temperature and volume in the experimental apparatus remain constant, any gas volume will be due to the amount of oxygen consumed. A control apparatus will be used to detect any experimental results due to atmospheric pressure or temperature. In the experimental apparatus below, if water temperature and volume remain constant, the water will move toward the region of lower pressure. During respiration, oxygen will be consumed. Its volume will be reduced, because the CO 2 produced is being converted to a solid. The net result is a decrease in gas volume within the tube and a related decrease in pressure in the tube. The vial with glass beads alone will permit detection of any s in volume due to atmospheric pressure s or temperature s. The amount of O 2 consumed will be measures over a period of time. Six respirometers should be set up as follows: Table 1 Respirometer Temperature Contents 1 Room Germinating Seeds 2 Room Dry Seeds + Beads 3 Room Beads 4 10 C Germinating Seeds 5 10 C Dry Seeds + Beads 6 10 C Beads PROCEDURE: Both a room temperature bath and a 10 C bath will be set up in plastic pans. Add ice to attain the 10 C bath. (If your teacher assigns different groups to only one temperature, you need only set up only one bath.) Part A. Determining Pea Volume 1. While the baths are equilibrating, obtain a 100 ml graduated cylinder and fill it with 50 ml of tap water. Drop in 25 germination peas and determine their volume by measuring the amount of water that was displaced. Record the volume of the 25 germinating peas, then remove them and place them on a paper towel. They will be used in Respirometer Refill the graduated cylinder with 50 ml of water. Drop 25 dormant (dry) peas into the graduated cylinder and then add enough plastic beads to attain a volume equal to that of the germinating peas. Remove the peas and beads and place them on a paper towel. They will be used in Respirometer Refill the graduated cylinder with 50 ml of water. Determine how many plastic beads alone are required to attain a volume equal to the germinating peas. Remove the beads and place them on a paper towel. They will be used in Respirometer 3.

3 4. If you are testing for both temperature conditions, repeat Procedures 13 above to prepare a second set of germinating peas, dormant peas and beads, and beads only for use in Respirometers 4, 5, and 6 respectively. Part B. Setting up the Apparatus 1. To assemble the respirometers, obtain 6 test tubes (3 if your class is dividing experimental treatments) and 6 (3) stoppers with attached pipette. Place a small wad of absorbent cotton in the bottom of each test tube and, using a Pasteur pipette, saturate the cotton with 15% KOH solution. Make sure that the respirometer tubes are dry on the inside; do not get KOH on the sides of the respirometer. Place nonabsorbent cotton on top of the KOH-soaked absorbent cotton. 2. Label the respirometer tubes with appropriate numbers and then place one set of germinating peas, dry peas and beads, and beads in Tubes 1, 2, and 3 respectively. (Place the second set of germinating peas, dry peas and beads, and beads in tubes 4, 5, and 6 respectively if you are doing both temperature experiments.) Insert the stoppers fitted with calibrated pipettes. 3. Make a sling of masking tape attached to each side of the water baths to hold the pipettes out of water during an equilibration period of 7 minutes. Place the respirometers in the water bath. (See Figure 1 below.) Attach weights to the respirometers according to your teacher's directions. Respirometers 1, 2, and 3 should rest in the room temperature water bath and Respirometers 4, 5, and 6 should rest in the 10C water bath. Part C. Collecting Data 1. After an equilibration period of 7 minutes, immerse all respirometers entirely in their water baths. Water will enter the pipettes for a short distance and then stop. (If the water continues to move into a pipette check for leaks in the respirometer.) Working swiftly, arrange the pipettes so that they can be read through the water at the beginning of the experiment. They should not be shifted during the experiment. Keep your hands out of the water bath after the experiment has started. Make sure that a constant temperature is maintained. 2. Allow the respirometers to equilibrate for 3 minutes and then record, to the nearest 0.01 ml, the initial position of water in each pipette (time = 0). Check the temperature in both baths. Record the s in the water's position in each pipette every 5 minutes for 20 minutes. Data can be recorded in a table similar to Table 1 below. Table 2. Measurement of oxygen consumption by germinating and dry pea seeds at room temperature (25 C) and at 10 C using volumetric methods.

4 TEMP ( o C) TIME (min.) Beads alone Germinating Peas Dry Peas and Beads time x time x corrected time x corrected initial initial Share data with other class teams. 4. Graph the results for germinating peas and dry peas at both room temperature and 10 C. Place time in minutes on the x-axis and ml of O 2 consumed on the y-axis. From the graphs, determine the rate of oxygen consumption of germinating and dry peas at each temperature. PROCEDURE (CALCULATORS): 1. Connect the plastic tubing to the valve on the Gas Pressure Sensor. If your sensors have blue plastic valves on them, place the valve in the position shown in Figure Plug the first Gas Pressure Sensor into Channel 1 of the LabPro CBL interface. Plug the second Gas Pressure Sensor into Channel 2. Use the link cable to connect the TI Graphing Calculator to the interface. Firmly press in the cable ends. 3. Turn on the calculator and start the DATAMATE program. Press CLEAR to reset the program. 4. Set up the calculator and interface for two Gas Pressure Sensors. a. If the calculator displays PRESS (KPA) in CH 1 and CH 2, proceed directly to Step 5. If it does not, continue with this step to set up your sensors manually. b. Select SETUP from the main screen. c. Press ENTER to select CH 1. d. Select PRESSURE from the SELECT SENSOR menu. e. Select the correct pressure sensor from the PRESSURE menu. f. Select the calibration listing for (KPA). g. Press once, then press ENTER to select CH2. h. Select PRESSURE from the SELECT SENSOR menu. i. Select the correct pressure sensor from the PRESSURE menu. j. Select the calibration listing for (KPA). k. Select OK to return to the main screen.

5 5. To test whether germinating peas undergo cellular respiration, you will need to Set up two water baths. Prepare a respirometer for the germinating peas. Prepare a second, control respirometer containing glass beads. 6. Set up two water baths, one at about 25 C and one at about 10 C. Obtain two 1-liter beakers and place about 800 ml of water in each. Add ice to attain the 10 C water bath. 7. To be sure the volumes of air in all respirometers are equal, you will need to measure the volume of the twenty-five peas that will be in the experimental respirometer. The control respirometer must have an equal volume of glass beads (or other non-oxygen consuming material) to make the air volume equal to the respirometer with germinating peas. Similarly, glass beads will be used to account for any volume difference between the germinating and non-germinating peas. 8. Obtain three test tubes and label them T1, T2, and T3. 9. Place a 3-cm wad of absorbent cotton in the bottom of each test tube. Using a dropper pipette, carefully add a sufficient amount of KOH to the cotton to completely saturate it. Do not put so much that liquid can easily run out of the tube. Note: Do not allow any of the KOH to touch the sides of the test tube. The sides should be completely dry, or the KOH may damage the peas. CAUTION: Potassium hydroxide solution is caustic. Avoid spilling it on your clothes or skin. 10. Prepare the test tube containing germinating peas (T1): a. Add 50 ml of water to a 100-mL graduated cylinder. b. Place 25 germinating peas into the water. c. Measure the volume of the peas by water displacement. Record that volume in Table 1. d. Gently remove the peas from the graduated cylinder and blot them dry with a paper towel. e. Add a small wad of non-absorbent dry cotton to the bottom of the test tube to prevent the peas from touching the KOH saturated cotton. f. Add these germinating peas to the respirometer labeled T Prepare the test tube containing non-germinating peas (T2): a. Refill the graduated cylinder with 50 ml of water. b. Place 25 non-germinating peas into the water. c. Measure the volume of the peas by water displacement. Record the volume in Table 1. Peas Cotton non-absorbent Cotton with KOH Figure 3 d. Add a sufficient number of glass beads to the non-germinating peas and water until they displace exactly the same volume of water as the germinating peas. e. Gently remove the peas and glass beads from the graduated cylinder and dry them with a paper towel. f. Add a small wad of dry non-absorbent cotton to the bottom of the test tube to prevent the peas from touching the KOH saturated cotton. g. Add the non-germinating peas and glass beads to the respirometer labeled T Prepare the test tube containing glass beads (T3): a. Refill the graduated cylinder with 50 ml of water. b. Add a sufficient number of glass beads to the water until they displace exactly the same volume of water as the germinating peas. c. Remove the glass beads from the graduated cylinder and dry them. d. Add a small wad of dry non-absorbent cotton to the bottom of the test tube to prevent the peas from touching the KOH saturated cotton.

6 e. Add the glass beads to the respirometer labeled T3. Part I Germinating peas, room temperature 13. Insert a single-holed rubber-stopper into test tube T1 and T3. Note: Firmly twist the stopper for an airtight fit. Secure each test tube with a utility clamp and ring-stand as shown in Figure Arrange test tubes T1 and T3 in the warm water bath using the apparatus shown in Figure 1. Incubate the test tube for 10 minutes in the water bath. Be sure to keep the temperature of the water bath constant. If you need to add more hot or cold water, first remove about as much water as you will be adding, or the beaker may overflow. Use a basting bulb to remove excess water. Record the resulting temperature of the water bath once incubation has finished in Table 2. Note: Be sure the tubes are submerged to an equal depth, just up to the rubber stoppers. The temperature of the air in the tube must be constant for this experiment to work well. 15. When incubation has finished, connect the free-end of the plastic tubing to the connector in the rubber stopper as shown in Figure Select START to begin data collection. Maintain the temperature of the water bath during the course of the experiment. 17. Data collection will end after 15 minutes. Monitor the pressure readings displayed on the calculator screen. If the pressure exceeds 130 kpa, the pressure inside the tube will be too great and the rubber stopper is likely to pop off. Disconnect the plastic tubing from the Gas Pressure Sensor if the pressure exceeds 130 kpa. 18. When data collection has finished, an auto-scaled graph of pressure vs. time will be displayed on the calculator screen. As you move the cursor right or left, the time (X) and pressure (Y) values of each data point are displayed below the graph. 19. Press ENTER, then select QUIT from the main screen to exit the DATAMATE program. Figure To account for any pressure s due to experimental error, it is necessary to create a new data column. This new column will consist of the experimental data subtracted from the control data. 83 Plus Calculators: Press 2nd L3 2nd L2 STO 2nd L2, then press ENTER. The adjusted pressure is now stored in list L Start the DATAMATE program. 22. Perform a linear regression to calculate the rate of respiration. a. Select ANALYZE from the main screen. b. Select CURVE FIT from the ANALYZE OPTIONS menu. c. Select LINEAR (CH 1 VS TIME) from the CURVE FIT menu. d. The linear-regression statistics for these two lists are displayed for the equation in the form: Y=A X+B e. Enter the absolute value of the slope, A, as the rate of respiration in Table 2. f. Press ENTER to view a graph of the data and the regression line. g. Press ENTER to return to the ANALYZE menu. h. Select RETURN TO MAIN SCREEN from the ANALYZE menu. Part II Non-germinating peas, room temperature 23. Disconnect the plastic tubing connectors from the rubber stoppers. Remove the rubber stopper from each test tube.

7 24. Repeat Steps 13 22, using test tubes T2 and T3. Part III Germinating peas, cool temperatures 25. Disconnect the plastic tubing connectors from the rubber stoppers. Remove the rubber stopper from each test tube. 26. Repeat Steps 13 22, using test tubes T1 and T3 in a cold water bath. DATA Table 1 Peas Volume (ml) Germinating Non-germinating Table 2 Water bath Temperature ( C) warm cool Table 3 Peas Rate of respiration (kpa/s) Germinated, room temperature Non-germinated, room temperature Germinated, cool temperature DISCUSSION: 1. Would you expect a difference in cellular respiration rate between germinating and dormant pea seeds? Why/why not? 2. Would you expect a difference in cellular respiration rate between pea seeds at different temperatures? Why/why not? 3. Why was it necessary to equalize the pea volumes in each respirometer? 4. Why were plastic beads used to equalize the pea volumes instead of using more peas? 5. Why was it important not to leave KOH on the test tube sides? 6. Why was it necessary to absorb all of the carbon dioxide produced by the reaction? 7. What function did Respirometers 3 and 6 serve? 8. Students often get pressure s in Respirometers 3 and 6. Would you predict such a for inert plastic beads? What could be causing this?

8

2 CELLULAR RESPIRATION

2 CELLULAR RESPIRATION 2 CELLULAR RESPIRATION What factors affect the rate of cellular respiration in multicellular organisms? BACKGROUND Living systems require free energy and matter to maintain order, to grow, and to reproduce.

More information

ENZYME ACTION: TESTING CATALASE ACTIVITY

ENZYME ACTION: TESTING CATALASE ACTIVITY ENZYME ACTION: TESTING CATALASE ACTIVITY LAB ENZ 1.CALC From Biology with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically.

More information

Photosynthesis and Respiration

Photosynthesis and Respiration Photosynthesis and Respiration Experiment 31C Plants make sugar, storing the energy of the sun into chemical energy, by the process of photosynthesis. When they require energy, they can tap the stored

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

6 H2O + 6 CO 2 (g) + energy

6 H2O + 6 CO 2 (g) + energy AEROBIC RESPIRATION LAB DO 2.CALC From Biology with Calculators, Vernier Software & Technology, 2000. INTRODUCTION Aerobic cellular respiration is the process of converting the chemical energy of organic

More information

Photosynthesis and Respiration

Photosynthesis and Respiration Photosynthesis and Respiration Experiment 31C Plants make sugar, storing the energy of the sun into chemical energy, by the process of photosynthesis. When they require energy, they can tap the stored

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity DataQuest 12 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and

More information

PHOTOSYNTHESIS AND RESPIRATION

PHOTOSYNTHESIS AND RESPIRATION PHOTOSYNTHESIS AND RESPIRATION STANDARDS: 3.2.10.B.3, 3.2.10.C.4 3.3.10.B.4 Westminster College INTRODUCTION Plants make sugar, storing the energy of the sun as chemical energy, by the process of photosynthesis.

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Mixing Warm and Cold Water

Mixing Warm and Cold Water Mixing Warm and Cold Water A Continuing Investigation of Thermal Pollution By Kevin White 1 Context: This lesson is intended for students conducting an ongoing study of thermal pollution. Perhaps, students

More information

Seed Respiration. Biology Individual or teams of 2. Grade 10-12 DESCRIPTION LEARNING OUTCOMES MATERIALS READINESS ACTIVITIES.

Seed Respiration. Biology Individual or teams of 2. Grade 10-12 DESCRIPTION LEARNING OUTCOMES MATERIALS READINESS ACTIVITIES. Seed Respiration Science Grade 10-12 Lab Individual or teams of 2 DESCRIPTION Plants generate Oxygen, which is essential for humans to survive. However, plants also consume Oxygen during respiration. It

More information

Enzyme Action: Testing Catalase Activity 50 Points

Enzyme Action: Testing Catalase Activity 50 Points Names: LabQuest Enzyme Action: Testing Catalase Activity 50 Points 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the

More information

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar

More information

Osmosis. Evaluation copy

Osmosis. Evaluation copy Osmosis Computer 5 In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.

More information

Name Section Lab 5 Photosynthesis, Respiration and Fermentation

Name Section Lab 5 Photosynthesis, Respiration and Fermentation Name Section Lab 5 Photosynthesis, Respiration and Fermentation Plants are photosynthetic, which means that they produce their own food from atmospheric CO 2 using light energy from the sun. This process

More information

Experiment 3 Limiting Reactants

Experiment 3 Limiting Reactants 3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The

More information

The Molar Mass of a Gas

The Molar Mass of a Gas The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar

More information

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS LAB PH 8 From Chemistry with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Phosphoric acid is one of several weak acids that present

More information

Biology for Science Majors

Biology for Science Majors Biology for Science Majors Lab 10 AP BIOLOGY Concepts covered Respirometers Metabolism Glycolysis Respiration Anaerobic vs. aerobic respiration Fermentation Lab 5: Cellular Respiration ATP is the energy

More information

RESPIRATION and METABOLIC RATE page 43

RESPIRATION and METABOLIC RATE page 43 RESPIRATION and METABOLIC RATE page 43 Objectives 1. Review the net process of respiration and the concept of energy metabolism. 2. Review factors that affect metabolic rate, including body size (Kleiber

More information

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!**** AP BIOLOGY BIOCHEMISTRY ACTIVITY #9 NAME DATE HOUR CATALASE LAB INTRODUCTION Hydrogen peroxide (H 2 O 2 ) is a poisonous byproduct of metabolism that can damage cells if it is not removed. Catalase is

More information

Physical Properties of a Pure Substance, Water

Physical Properties of a Pure Substance, Water Physical Properties of a Pure Substance, Water The chemical and physical properties of a substance characterize it as a unique substance, and the determination of these properties can often allow one to

More information

CO 2 Gas Sensor. (Order Code CO2-BTA or CO2-DIN)

CO 2 Gas Sensor. (Order Code CO2-BTA or CO2-DIN) CO 2 Gas Sensor (Order Code CO2-BTA or CO2-DIN) The Vernier CO 2 Gas Sensor is used to monitor gaseous carbon dioxide levels in a variety of biology and chemistry experiments. It can measure small changes

More information

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory. Molar Volume of Carbon Dioxide Reading assignment: Julia Burdge, Chemistry 3rd edition, Chapter 10. Goals To determine the molar volume of carbon dioxide gas and the amount of sodium carbonate in a sample.

More information

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

More information

Experiment 6 Coffee-cup Calorimetry

Experiment 6 Coffee-cup Calorimetry 6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined

More information

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0 ACID-BASE TITRATION LAB PH 2.PALM INTRODUCTION Acids and bases represent a major class of chemical substances. We encounter them every day as we eat, clean our homes and ourselves, and perform many other

More information

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy 2-1 Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy Introduction: The kinetics of a decomposition reaction involving hydroxide ion and crystal violet, an organic dye used

More information

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed: Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams

More information

Energy Content of Fuels

Energy Content of Fuels Experiment 9 Energy content is an important property of fuels. This property helps scientists and engineers determine the usefulness of a fuel. Energy content is the amount of heat produced by the burning

More information

Cellular Processes: Energy and Communication

Cellular Processes: Energy and Communication Cellular Processes: Energy and Communication investigation 6 CELLULAR RESPIRATION* What factors affect the rate of cellular respiration in multicellular organisms? Big Idea 2 BACKGROUND Living systems

More information

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

More information

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility. THE SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES 2007, 1995, 1991 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included. OBJECTIVE To measure

More information

Teacher Demo: Photosynthesis and Respiration: Complementary Processes

Teacher Demo: Photosynthesis and Respiration: Complementary Processes SNC1D/1P Sustainable Ecosystems/ Sustainable Ecosystems and Human Activity Teacher Demo: Photosynthesis and Respiration: Complementary Processes Topics photosynthesis and respiration gas tests for oxygen

More information

DETERMINING THE MOLAR MASS OF CARBON DIOXIDE

DETERMINING THE MOLAR MASS OF CARBON DIOXIDE DETERMINING THE MOLAR MASS OF CARBON DIOXIDE PURPOSE: The goal of the experiment is to determine the molar mass of carbon dioxide and compare the experimentally determined value to the theoretical value.

More information

Appendix C. Vernier Tutorial

Appendix C. Vernier Tutorial C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer

More information

THE ACTIVITY OF LACTASE

THE ACTIVITY OF LACTASE THE ACTIVITY OF LACTASE Lab VIS-8 From Juniata College Science in Motion Enzymes are protein molecules which act to catalyze the chemical reactions in living things. These chemical reactions make up the

More information

Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer

Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer VAPOR PRESSURE OF WATER Introduction At very low temperatures (temperatures near the freezing point), the rate of evaporation of water (or any liquid) is negligible. But as its temperature increases, more

More information

Metabolism: Cellular Respiration, Fermentation and Photosynthesis

Metabolism: Cellular Respiration, Fermentation and Photosynthesis Metabolism: Cellular Respiration, Fermentation and Photosynthesis Introduction: All organisms require a supply of energy and matter to build themselves and to continue to function. To get that supply of

More information

18 Conductometric Titration

18 Conductometric Titration Lab Activity 18 CONDUCTOMETRIC TITRATION LAB ACTIVITY 18 Conductometric Titration Background Titration is the a method of determining the concentration of an unknown solution (the analyte) by reacting

More information

Reflectivity of Light

Reflectivity of Light Reflectivity of Light Experiment 23 Light is reflected differently from various surfaces and colors. An understanding of these differences is useful in choosing colors and materials for clothing, in choosing

More information

Determining Equivalent Weight by Copper Electrolysis

Determining Equivalent Weight by Copper Electrolysis Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

This laboratory explores the affects ph has on a reaction rate. The reaction

This laboratory explores the affects ph has on a reaction rate. The reaction Joy Paul Enzyme Catalyst lab Abstract: This laboratory explores the affects ph has on a reaction rate. The reaction studied was the breakdown of hydrogen peroxide catalyzed by the enzyme peroxidase. Three

More information

Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2

Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2 Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most

More information

How Dense is SALT WATER? Focus Question What is the relationship between density and salinity?

How Dense is SALT WATER? Focus Question What is the relationship between density and salinity? Focus Question What is the relationship between density and salinity? Activity Overview Fresh water from the Mississippi River pours into the salty ocean water in the Gulf of Mexico. More than 152,400

More information

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. Titration Curves PURPOSE To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. GOALS 1 To gain experience performing acid-base titrations with a ph meter. 2

More information

Leaving Cert Biology. Prepare and Show the Production of Alcohol by Yeast. Experiments

Leaving Cert Biology. Prepare and Show the Production of Alcohol by Yeast. Experiments Leaving Cert Biology Prepare and Show the Production of Alcohol by Yeast Experiments Prepare and Show the Production of Alcohol by Yeast Materials/Equipment Yeast Glucose Distilled water Sodium hypochlorite

More information

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Enzyme Pre-Lab Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Background: In this investigation, you will study several

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS 1 To measure the molar solubility of a sparingly soluble salt in water.

More information

The Analytical Balance

The Analytical Balance Chemistry 119: Experiment 1 The Analytical Balance Operation of the Single-Pan Analytical Balance Receive instruction from your teaching assistant concerning the proper operation of the Sartorius BP 210S

More information

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. LIGHTSTICK KINETICS From Advancing Science, Gettysburg College INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. THE RATE LAW: The rate of a chemical reaction

More information

Class Copy! Class Copy! The process of photosynthesis can be expressed by the following word equation and chemical equation.

Class Copy! Class Copy! The process of photosynthesis can be expressed by the following word equation and chemical equation. Floating Leaf Disk Photosynthesis Lab Introduction: Photosynthesis is a process that converts carbon dioxide into sugars such as glucose using energy from the sun. When light is absorbed by pigments in

More information

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide. The Empirical Formula of a Copper Oxide Reading assignment: Chang, Chemistry 10 th edition, pp. 55-58. Goals The reaction of hydrogen gas with a copper oxide compound will be studied quantitatively. By

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

The Determination of Carbon Dioxide in Exhaled Air A Calculator-Based Laboratory Experiment

The Determination of Carbon Dioxide in Exhaled Air A Calculator-Based Laboratory Experiment The Determination of Carbon Dioxide in Exhaled Air A Calculator-Based Laboratory Experiment James Gordon * and Nathaniel Barbe Division of Science and Mathematics, Central Methodist University, Fayette,

More information

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long

More information

Laboratory 5: Properties of Enzymes

Laboratory 5: Properties of Enzymes Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge

More information

Biology 3A Laboratory: Enzyme Function

Biology 3A Laboratory: Enzyme Function Biology 3A Laboratory: Enzyme Function Objectives To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate the effect

More information

PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION

PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION PURPOSE: To identify the products of yeast cultures grown under aerobic and anaerobic conditions STUDENTS' ENTERING COMPETENCIES: Before doing this lab, students

More information

Molar Mass of Butane

Molar Mass of Butane Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

More information

Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry

Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry Introduction The combustion reaction of hydrogen and oxygen is used to produce

More information

Experiment 6 Titration II Acid Dissociation Constant

Experiment 6 Titration II Acid Dissociation Constant 6-1 Experiment 6 Titration II Acid Dissociation Constant Introduction: An acid/base titration can be monitored with an indicator or with a ph meter. In either case, the goal is to determine the equivalence

More information

1. The Determination of Boiling Point

1. The Determination of Boiling Point 1. The Determination of Boiling Point Objective In this experiment, you will first check your thermometer for errors by determining the temperature of two stable equilibrium systems. You will then use

More information

Mixtures and Pure Substances

Mixtures and Pure Substances Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

CSUS Department of Chemistry Experiment 8 Chem.1A

CSUS Department of Chemistry Experiment 8 Chem.1A EXPERIMENT #8 Name: PRE-LABORATORY ASSIGNMENT: Lab Section 1. The alkali metals are so reactive that they react directly with water in the absence of acid. For example, potassium reacts with water as follows:

More information

Extraction: Separation of Acidic Substances

Extraction: Separation of Acidic Substances Extraction: Separation of Acidic Substances Chemists frequently find it necessary to separate a mixture of compounds by moving a component from one solution or mixture to another. The process most often

More information

Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids

Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids Partner: Jack 17 November 2011 Determination of the Molar Mass of Volatile Liquids Purpose: The purpose of this experiment is to determine the molar mass of three volatile liquids. The liquid is vaporized

More information

CONDUCTIVITY SENSOR. Description D0382. Figure 1. The Conductivity Sensor

CONDUCTIVITY SENSOR. Description D0382. Figure 1. The Conductivity Sensor CONDUCTIVITY SENSOR Description D0382 Figure 1. The Conductivity Sensor Short Description The Conductivity Sensor can be used to measure either solution conductivity or total ion concentration of aqueous

More information

A SWELL LAB Yeast Fermentation. Science in the Real World Microbes In Action

A SWELL LAB Yeast Fermentation. Science in the Real World Microbes In Action A SWELL LAB Yeast Fermentation Science in the Real World Microbes In Action A SWELL LAB is a curriculum unit developed as part of the Science In The Real World: Microbes In Action Program. The curriculum

More information

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration. S HIFT INTO NEUTRAL 15. Acid-Base Titration Shift into Neutral Student Instruction Sheet Challenge Discover the concentration of an unknown acid solution using acid-base titration. Equipment and Materials

More information

EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT

EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT Textbook reference: pp103-105 Purpose: In this Activity, students determine how many calories are released per gram when cashews burn

More information

Experiment 12- Classification of Matter Experiment

Experiment 12- Classification of Matter Experiment Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.

More information

Process of Science: Using Diffusion and Osmosis

Process of Science: Using Diffusion and Osmosis Process of Science: Using Diffusion and Osmosis OBJECTIVES: 1. To understand one way to approach the process of science through an investigation of diffusion and osmosis. 2. To explore how different molecules

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

Experiment 9 Electrochemistry I Galvanic Cell

Experiment 9 Electrochemistry I Galvanic Cell 9-1 Experiment 9 Electrochemistry I Galvanic Cell Introduction: Chemical reactions involving the transfer of electrons from one reactant to another are called oxidation-reduction reactions or redox reactions.

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

IDEAL AND NON-IDEAL GASES

IDEAL AND NON-IDEAL GASES 2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to

More information

ph Measurements of Common Substances

ph Measurements of Common Substances Chem 100 Section Experiment 10 Name Partner s Name Introduction ph Measurements of Common Substances The concentration of an acid or base is frequently expressed as ph. Historically, ph stands for the

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when

More information

Experiment HE-8: Regulation of Body Temperature and the Respiratory Exchange Ratio (RER)

Experiment HE-8: Regulation of Body Temperature and the Respiratory Exchange Ratio (RER) Experiment HE-8: Regulation of Body and the Respiratory Exchange Ratio (RER) Note: Read the procedures for each exercise completely before beginning the experiment. Have a good understanding of how to

More information

Respiration and Photosynthesis

Respiration and Photosynthesis Respiration and Photosynthesis Topic Plants and animals carry out cellular respiration, but only plants conduct photosynthesis. Introduction Cellular respiration is the process in which a cell uses oxygen

More information

LAB 24 Transpiration

LAB 24 Transpiration Name: AP Biology Lab 24 LAB 24 Transpiration Objectives: To understand how water moves from roots to leaves in terms of the physical/chemical properties of water and the forces provided by differences

More information

PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE

PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE Test Procedure for PARTICLE SIZE ANALYSIS OF SOILS TxDOT Designation: Tex-110-E Effective Date: August 1999 1. SCOPE 1.1 This method covers the quantitative determination of the distribution of particle

More information

CONVECTION CURRENTS AND ANOMALOUS BEHAVIOUR OF WATER

CONVECTION CURRENTS AND ANOMALOUS BEHAVIOUR OF WATER CONVECTION CURRENTS AND ANOMALOUS BEHAVIOUR OF WATER Objective: To compare the thermal behaviour of water with that of other liquids, specifically alcohol and edible oil. To point out the anomaly of water

More information

Cells, Diffusion, Osmosis, and Biological Membranes

Cells, Diffusion, Osmosis, and Biological Membranes Cells, Diffusion, Osmosis, and Biological Membranes A. Objectives Upon completion of this lab activity, you should be able to: 1. Define and correctly use the following terms: solute, solvent, selectively

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Pressure in Fluids. Introduction

Pressure in Fluids. Introduction Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure

More information

Small Animal Respiratory Exchange Ratio (RER)

Small Animal Respiratory Exchange Ratio (RER) iworx Physiology Lab Experiment Experiment AMe-1 Small Animal Respiratory Exchange Ratio (RER) Note: The lab presented here is intended for evaluation purposes only. iworx users should refer to the User

More information

Experiment 17: Potentiometric Titration

Experiment 17: Potentiometric Titration 1 Experiment 17: Potentiometric Titration Objective: In this experiment, you will use a ph meter to follow the course of acid-base titrations. From the resulting titration curves, you will determine the

More information

Experiment 4 (Future - Lab needs an unknown)

Experiment 4 (Future - Lab needs an unknown) Experiment 4 (Future - Lab needs an unknown) USING A ph TITRATION TO DETERMINE THE ACID CONTENT OF SOFT DRINKS 2 lab periods Reading: Chapter 9, 185-197; Chapter 10, pg 212-218; Chapter 14 pg 317-323,

More information

Solubility Curve of Sugar in Water

Solubility Curve of Sugar in Water Solubility Curve of Sugar in Water INTRODUCTION Solutions are homogeneous mixtures of solvents (the larger volume of the mixture) and solutes (the smaller volume of the mixture). For example, a hot chocolate

More information

Practical 1: Measure the molar volume of a gas

Practical 1: Measure the molar volume of a gas Practical Student sheet Practical : Wear eye protection. Ensure the delivery tube does not become blocked. Ethanoic acid will sting if it gets into cuts in the skin. Equipment boiling tube stand and clamp

More information

Phase Diagram of tert-butyl Alcohol

Phase Diagram of tert-butyl Alcohol Phase Diagram of tert-butyl Alcohol Bill Ponder Department of Chemistry Collin College Phase diagrams are plots illustrating the relationship of temperature and pressure relative to the phase (or state

More information

Determination of the Percentage Oxygen in Air

Determination of the Percentage Oxygen in Air CHEM 121L General Chemistry Laboratory Revision 1.1 Determination of the Percentage Oxygen in Air In this laboratory exercise we will determine the percentage by volume of Oxygen in Air. We will do this

More information