Using FPGAs for Software-Defined Radio Systems: a PHY layer for an transceiver.

Size: px
Start display at page:

Download "Using FPGAs for Software-Defined Radio Systems: a PHY layer for an transceiver."

Transcription

1 Using FPGAs for Software-Defined Radio Systems: a PHY layer for an transceiver. Eloi Ramon Dept. d Enginyeria Electrònica Universitat Autònoma de Barcelona ETS d Enginyeria Bellaterra Eloi.Ramon@uab.es Jordi Carrabina Dept. de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona ETS d Enginyeria Bellaterra Jordi.Carrabina@uab.es Abstract During the last decade, designers have used ASICs and DSPs to handle nearly all of the signalprocessing functions associated with radio communications. Latest generation of FPGAs are so powerful that they're now displacing both ASICs and DSPs in software-radio applications. Software radio is an emerging technology, aimed to build flexible radio systems, which are multiple-service, multi-standard, multi-band, reconfigurable and re-programmable, by software. In this paper we present the state-of-the-art in Software-Defined Radio Systems and a PHY layer for an transceiver. 1. Introduction 1.1. Software-Defined Radio Systems (SDR) Software Radio can be described as radio functionalities defined by software [1]. Currently the radio interface in wireless systems is usually implemented by dedicated hardware. The presence of software defining the radio interface implies the use of DSPs replacing dedicated hardware to execute, in real time, the radio functionalities by software [2]. The most common definitions of SDR systems are [3]: Flexible transceiver architecture, controlled and programmable by software Signal processing able to replace, as much as possible, radio functionalities air-interface-download ability: dynamically re-configurable radio equipment by downloadable software, at every level of the protocol stack Software realization of terminals multi-mode/ multi-standard Transceiver where frequency band & radio channel bandwidth, modulation & coding scheme and radio resource and mobility management protocols can be defined by software. System where parameters can be adapted and changed by network operator, service provider or final user. A wireless receiver developed as a softwaredefined radio system consists of just a few components: an analog RF front-end, an analogto-digital converter (ADC) and a demodulator + decoder. The RF front-end is easy to use from a wide number of companies providing analog integrated down-converters in some of the most used ranges of frequencies (from ISM to DVB terrestrial or satellite). Due to high frequencies used in most of the commonly used frequency ranges, RF frontend can t be digital. A lot of experiences have been reported in lower frequencies (commercial AM and FM, et cetera) due that these frequencies are still in the working range of commercial analog-to-digital converters (ADC). In the cases of higher frequencies, an analog down-converter is required to translate frequencies (hundreds of MHz to some GHz) to an intermediate frequency (IF) or baseband (BB). At lower frequencies the used bandwidth of channel can be processed in a standard ADC.

2 Next task is IF processing, consisting normally of filtering and down-sampling at the high speed generated for the ADC (14 bits at 30 to 80 MHz typically). IF processing is a suitable application for FPGA since its computational requirements are relatively simple and its speed requirement is high [4]. Antenna RF downconverter Analysis & control DSP required features Front End A/D converter Digital downconverter Decode Digital Local Oscillator Digital Mixer Low Pass Filter Demod Figure 1. Standard functions for Software Radio Devices At the end, baseband demodulation and decoding need a computation-intensive algorithm often implemented in a DSP. Actually, new generations of FPGAs with DSP blocks, as the Altera Stratix devices included in our development board, allow implementing these tasks and to join all digital processing is a single chip. The main objectives of an LR-WPAN are ease of installation, reliable data transfer, short-range operation, extremely low cost, and a reasonable battery life, while maintaining a simple and flexible protocol. Some of the characteristics of an LR-WPAN are: Over-the-air data rates of 250 kb/s, 40 kb/s, and 20 kb/s using a Direct Sequence Spread Spectrum (DSSS) modulation Star or peer-to-peer operation Allocated 16 bit short or 64 bit extended addresses Carrier sense multiple access with collision avoidance (CSMA-CA) channel access Allocation of guaranteed time slots (GTSs) Energy detection (ED) Link quality indication (LQI) 16 channels in the 2450 MHz band, 10 channels in the 915 MHz band, and 1 channel in the 868 MHz band In the IEEE Standard, two different device types can participate in an LR-WPAN network; a full-function device (FFD) and a reduced-function device (RFD). The FFD can operate in three modes serving as a personal area network (PAN) coordinator, a coordinator, or a device. An FFD can talk to RFDs or other FFDs, while an RFD can talk only to an FFD. An RFD is intended for applications that are extremely simple, such as a light switch or a passive infrared sensor; they do not have the need to send large amounts of data and may only associate with a single FFD at a time. Consequently, the RFD can be implemented using minimal resources and memory capacity IEEE Standard Wireless personal area networks (WPANs) are used to transmit information over relatively short distances defines a standard for an ultralow complexity, ultra-low cost, ultra-low power consumption, and low data rate (LR-WPAN) wireless connectivity among inexpensive devices. The raw data rate is high enough (maximum of 250 kb/s) to satisfy a set of simple needs but scalable down to the needs of sensor and automation needs (20 kb/s or below) for wireless communications. Figure 2. Star and peer-to-peer topology examples (Source: IEEE Specifications)

3 An LR-WPAN device comprises a PHY, which contains the radio frequency (RF) transceiver along with its low-level control mechanism, and a MAC sublayer that provides access to the physical channel for all types of transfer. The PHY is responsible for the following tasks [5]: Activation and deactivation of the radio transceiver Energy Detection within the current channel Link Quality Indication for received packets Clear Channel Assessment for CSMA-CA Channel frequency selection Data transmission and reception The upper layers, shown in figure3 in a graphical representation, consist of a network layer, which provides network configuration, manipulation, and message routing, and an application layer, which provides the intended function of the device. In this paper we will introduce the PHY layer for the 2.4 GHz ISM band. The paper is structured as follows. Next section describes the architecture of the transceiver. The implementation issues are presented afterwards. In the concluding section we outline the main features of the designed system and discuss on their application scope and future work. 2. Architecture of transceiver 2.1. RF Front-end Currently transmitters and receivers are based on the traditional super heterodyne scheme (Figure 4). The RF and IF stages are completely analog. Figure 3. LR-WPAN device architecture (Source: IEEE Specifications) The MAC sublayer handles all access to the physical radio channel and is responsible for the following tasks [5]: Generating network beacons if the device is a coordinator Synchronizing to the beacons Supporting PAN association and disassociation Supporting device security Employing the CSMA-CA mechanism for channel access Handling and maintaining the Guaranteed Time Slot (GTS) mechanism Providing a reliable link between two peer MAC entities Figure 4. Traditional heterodyne receiver Only the BB stage is digital, usually built in dedicated hardware. In Figure 4 the signal is picked up by the antenna. The next step is to filter the signal with a band-pass filter (BPF) and to amplify it with a low-noise amplifier (LNA). The resulting system band is converted to a lower frequency band by multiplying it with a local oscillator (LO). A low-pass filter (LPF) isolates the down-converted system band. Then the analog gain control (AGC) block tries to normalize the signal power for an optimal use of the analog digital converter (ADC). The next step is to isolate one channel from the system band. First the signal

4 is multiplied with a voltage-controlled oscillator (VCO). The Digital-Base-Band block controls this VCO. A digital analog converter (DAC) is used to convert the digital control signal of the Digital- Base-Band block to an analog signal. This analog signal controls the VCO. After the signal is multiplied with the VCO, the signal is filtered with a LPF and finally sampled (ADC). Because some mobile system standards use quadrature modulation techniques, both the inphase (I) and quadrature-phase (Q) component are extracted and sampled. These two bit streams are sent to the digital base band processing. The ideal software-radio receiver is shown in Figure 5. The analog stage is as small as possible. MAXIM Semiconductor disposes of a wide variety of Low Noise Amplifiers (LNAs), Power Amplifiers (PAs), down-converters and upconverters in the range of 2,4 GHz ISM band, with a very small footprints and low cost. Figure 6. Digital software-defined radio receiver 2.2. IF Stage Figure 5. The ideal software-radio receiver The analog stage consists only of the antenna, the BPF and the LNA. The A/D conversion (ADC) is done immediately after the LNA, in order maximize the re-programmability of the system. At this moment, the ideal software radio is not realizable. There are several matters, which cause this [6]. For example it is impossible to build antennas and LNAs on a working bandwidth ranging from hundreds MHz to units or tens of GHz. The only way to guarantee the multi-band feature is to have more RF stages. Also, jitter effects limit the possibility of A/D conversion directly at the RF band. The most promising solution for the moment is known as Digital Radio receiver, shown in Figure 6. In this solution, the RF stage is still completely analog, but the A/D converter samples the spectrum allocated at IF immediately after the RF stage. The IF stage of the Digital Radio transceiver consists of the programmable down-converter (PDC) which provides the following operations [2]: down conversion: digital conversion from IF to BB, by using a look-up table containing the samples of a sinusoidal carrier. The lookup table replaces the local oscillator used in the analog down converter. channelization: selection of the carrier and channel which is performed by digital filtering. In analog receivers, analog filters with very stringent requirements are used. sample-rate adaptation: under-sampling of the channelization-filter-signal output, to match the sample rate to the selected channel bandwidth. The bandwidth of a channel is compared to the spectrum of the A/D input signal a narrow-band signal. Therefore the sample rate can be much lower to accomplish the required processing power. The local oscillator or NCO consists of a phase accumulator, which is just a register, and an adder, both available as standard library blocks for virtually all FPGAs. The phase value in the accumulator drives a sine/cosine lookup table, which you can implement in a simple ROM. The mixer is nothing more than a pair of digital multipliers, now available as dedicated hardware resources in the latest generation FPGAs.

5 2.3. Demodulation and decoding The 2450 MHz PHY employs a 16-ary quasiorthogonal modulation technique. During each data symbol period, four information bits are used to select one of 16 nearly orthogonal pseudorandom noise (PN) sequences to be transmitted. The PN sequences for successive data symbols are concatenated, and the aggregate chip sequence is modulated onto the carrier using offset quadrature phase-shift keying (O-QPSK). Software radio technology requires the use of transmitter and receiver pulse-shaping filters to compensate for the non-ideal frequency response of wireless channels. Pulses transmitted through a channel are usually smeared, and these smeared pulses can cause intersymbol interference (ISI). ISI occurs when neighboring symbols interfere with the detection of each desired symbol. Transmitter and receiver pulse-shaping filters are used to mitigate intersymbol interference by limiting the bandwidth of the transmitted signal. The raised-cosine filter is a commonly used pulse-shaping filter. By controlling the filter s roll-off factor β, the design can be optimized for less excess bandwidth (β closer to 0) or for less ISI (β closer to 1). The modulation scheme for each wireless standard requires a different roll-off factor. In a multi-standard software radio, the pulseshaping filter structure remains constant while the coefficients and the roll-off factor must be fieldprogrammable. Similarly, the key parameters of other components need to be re-programmed to meet the specifications of each supported standard and to handle variations in operating conditions. Altera, and tested the model in normal mode, which resulted in hybrid models and simulations that were easier to debug. As a final step, we targeted the whole process to hardware to verify that hardware computation was as expected. To develop the system a DSP development board Stratix professional edition has been used with the following features: Stratix EP1S80B956 device Two-channel, 12-bit, 125 million samples per second (MSPS) analog-to-digital (A/D) Two-channel, 14-bit, 165 MSPS digital-toanalog (D/A) Two Mbytes of 7.5-ns synchronous SRAM The system developed is a 40MHz-IF DSSS/QPSK transceiver. In the transmitter side both signals in-phase and in-quadrature are converted using the onboard D/A converters to IF signals connected again to onboard A/D converters to be demodulated and decoded. 4. Results Simulations made in MATLAB/Simulink environment obtained a BER < 10-5 for Eb/No between 4 and 20 db through an AWGN channel. The obtained results accomplish the requirements of the IEEE Standard. Spectrum of the transmitted channel at IF in 40 MHz is showed in figure 7 and is closer to expected one. 3. Implementation issues A hierarchical system-level design approach to design, simulation, and rapid prototyping have been used as method of handling this type of design complexity. Using block-diagram system simulation software helps rapidly evaluate design strategies and prototype real-time implementation alternatives in software radio designs. We designed the first version using only standard communication and DSP blocksets from Simulink, running in double precision from start to end. As a second step, we gradually replaced Simulink blocks with MegaCores IP blocks from Figure 7. Spectrum of transmitted signal

6 Figure 8. Simulink model for PHY layer of standard The received constellation for the O-QPSK modulation after the AWGN channel is presented in figure 9. robustness of DSSS-QPSK modulation chosen for the specified standard. The future intention is to implement some aspects of MAC layer and to add the analog RF stages to convert 2,4 GHz to IF signals and test the system in a true environment. References Figure 9. Received constellation after AWGN channel 5. Conclusions and future work A PHY layer of a compliant IEEE Standard has been presented. The simulation result has been positive and demonstrates the [1] Herbrig, H., Lundheim, L., Rossing, N. K., SORT SW-Radio - From Concept Towards Demonstration, Proceedings of the ACTS Mobile Communications Summit [2] Cummings, M. and Haruyama, S., FPGA in the Software Radio, IEEE Communications Magazine, pp , February [3] Buracchini, E., SORT & SWRADIO concept, Proceedings of the ACTS Mobile Communications Summit [4] Mitola III, J., The Software Radio Architecture, IEEE Communications Magazine, pp , May [5] IEEE, IEEE Standard , Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) [6] Kraemer, B., Chen, P., Damerow, D., Bacrania, K., Advances in Semiconductor Technology - Enabling Software Radio, Software Radio Workshop, Brussels, Belgium, 1997.

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

More information

Spectrum analyzer with USRP, GNU Radio and MATLAB

Spectrum analyzer with USRP, GNU Radio and MATLAB Spectrum analyzer with USRP, GNU Radio and MATLAB António José Costa, João Lima, Lúcia Antunes, Nuno Borges de Carvalho {antoniocosta, jflima, a30423, nbcarvalho}@ua.pt January 23, 2009 Abstract In this

More information

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to

More information

Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation.

Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation. Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation. Livia Ruiz Centre for Telecommunications Value-Chain Research Institute of Microelectronic and Wireless Systems, NUI

More information

'Possibilities and Limitations in Software Defined Radio Design.

'Possibilities and Limitations in Software Defined Radio Design. 'Possibilities and Limitations in Software Defined Radio Design. or Die Eierlegende Wollmilchsau Peter E. Chadwick Chairman, ETSI ERM_TG30, co-ordinated by ETSI ERM_RM Software Defined Radio or the answer

More information

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal. Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

More information

Wireless Personal Area Networks (WPANs)

Wireless Personal Area Networks (WPANs) Wireless Personal Area Networks (WPANs) Bluetooth, ZigBee Contents Introduction to the IEEE 802 specification family Concept of ISM frequency band Comparison between different wireless technologies ( and

More information

Vector Signal Analyzer FSQ-K70

Vector Signal Analyzer FSQ-K70 Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM

More information

QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications

QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications 0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier

More information

ZIGBEE 802.15.4. ECGR-6185 Advanced Embedded Systems. Charlotte. University of North Carolina-Charlotte. Chaitanya Misal Vamsee Krishna

ZIGBEE 802.15.4. ECGR-6185 Advanced Embedded Systems. Charlotte. University of North Carolina-Charlotte. Chaitanya Misal Vamsee Krishna ECGR-6185 Advanced Embedded Systems ZIGBEE 802.15.4 University of North Carolina-Charlotte Charlotte Chaitanya Misal Vamsee Krishna WPAN A personal area network (PAN) is a computer network used for communication

More information

CDMA TECHNOLOGY. Brief Working of CDMA

CDMA TECHNOLOGY. Brief Working of CDMA CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile

More information

Application Note Receiving HF Signals with a USRP Device Ettus Research

Application Note Receiving HF Signals with a USRP Device Ettus Research Application Note Receiving HF Signals with a USRP Device Ettus Research Introduction The electromagnetic (EM) spectrum between 3 and 30 MHz is commonly referred to as the HF band. Due to the propagation

More information

Software Defined Radio

Software Defined Radio Software Defined Radio GNU Radio and the USRP Overview What is Software Defined Radio? Advantages of Software Defined Radio Traditional versus SDR Receivers SDR and the USRP Using GNU Radio Introduction

More information

Lezione 6 Communications Blockset

Lezione 6 Communications Blockset Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive

More information

Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption

Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption Introduction By: Analog Devices, Inc. (ADI) Daniel E. Fague, Applications

More information

Protocolo IEEE 802.15.4. Sergio Scaglia SASE 2012 - Agosto 2012

Protocolo IEEE 802.15.4. Sergio Scaglia SASE 2012 - Agosto 2012 Protocolo IEEE 802.15.4 SASE 2012 - Agosto 2012 IEEE 802.15.4 standard Agenda Physical Layer for Wireless Overview MAC Layer for Wireless - Overview IEEE 802.15.4 Protocol Overview Hardware implementation

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

More information

Appendix D Digital Modulation and GMSK

Appendix D Digital Modulation and GMSK D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used

More information

FPGAs in Next Generation Wireless Networks

FPGAs in Next Generation Wireless Networks FPGAs in Next Generation Wireless Networks March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com 1 FPGAs in Next Generation

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

More information

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Complementary Code Keying with PIC Based Microcontrollers For The Wireless Radio Communications

Complementary Code Keying with PIC Based Microcontrollers For The Wireless Radio Communications Complementary Code Keying with PIC Based Microcontrollers For The Wireless Radio Communications Boris Ribov, Grisha Spasov Abstract: The IEEE 802.11b is a Direct Sequence Spread Spectrum (DSSS) system

More information

Lecture 1: Introduction

Lecture 1: Introduction Mobile Data Networks Lecturer: Victor O.K. Li EEE Department Room: CYC601D Tel.: 857 845 Email: vli@eee.hku.hk Course home page: http://www.eee.hku.hk/courses.msc/ 1 Lecture 1: Introduction Mobile data

More information

Chapter 7 Low-Speed Wireless Local Area Networks

Chapter 7 Low-Speed Wireless Local Area Networks Wireless# Guide to Wireless Communications 7-1 Chapter 7 Low-Speed Wireless Local Area Networks At a Glance Instructor s Manual Table of Contents Overview Objectives s Quick Quizzes Class Discussion Topics

More information

Propagation Channel Emulator ECP_V3

Propagation Channel Emulator ECP_V3 Navigation simulators Propagation Channel Emulator ECP_V3 1 Product Description The ECP (Propagation Channel Emulator V3) synthesizes the principal phenomena of propagation occurring on RF signal links

More information

Agilent Technologies. Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360

Agilent Technologies. Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360 Agilent Technologies Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360 Table of Contents Introduction...............................................................................3

More information

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0 LoRaWAN What is it? A technical overview of LoRa and LoRaWAN Technical Marketing Workgroup 1.0 November 2015 TABLE OF CONTENTS 1. INTRODUCTION... 3 What is LoRa?... 3 Long Range (LoRa )... 3 2. Where does

More information

THE IMPLEMENTATION OF A DTV RF ANALYSIS AND REGENERATION SYSTEM

THE IMPLEMENTATION OF A DTV RF ANALYSIS AND REGENERATION SYSTEM THE IMPLEMENTATION OF A DTV RF ANALYSIS AND REGENERATION SYSTEM Tae-Hoon Kwon, Ha-Kyun Mok, Young-Woo Suh, and Young-Min Kim KBS(Korean Broadcasting System), Seoul, Korea ABSTRACT In this paper, we developed

More information

Design and Implementation of IEEE 802.15.4 Mac Protocol on FPGA

Design and Implementation of IEEE 802.15.4 Mac Protocol on FPGA Design and Implementation of IEEE 802.15.4 Mac Protocol on FPGA Naagesh S. Bhat Student M.S.Ramaiah School of Advanced Studies ABSTRACT The IEEE 802.15.4 is a wireless standard introduced for low power,

More information

CIRCUITS AND SYSTEMS Circuits and Systems for Radiofrequency and Telecommunications Dente Del Corso

CIRCUITS AND SYSTEMS Circuits and Systems for Radiofrequency and Telecommunications Dente Del Corso CIRCUITS AND SYSTEMS FOR RADIOFREQUENCY AND TELECOMMUNICATIONS Dante Del Corso Politecnico di Torino, Torino, Italy. Keywords: Heterodyne, direct conversion, ZIF, image frequency, mixer, SDR, LNA, PA,

More information

Tri-Band RF Transceivers for Dynamic Spectrum Access. By Nishant Kumar and Yu-Dong Yao

Tri-Band RF Transceivers for Dynamic Spectrum Access. By Nishant Kumar and Yu-Dong Yao Tri-Band RF Transceivers for Dynamic Spectrum Access By Nishant Kumar and Yu-Dong Yao Presentation outline Introduction to WISELAB Active work at WISELAB Tri-band test bed Elements of the test bed Experimentation

More information

3 Software Defined Radio Technologies

3 Software Defined Radio Technologies 3 Software Defined Radio Technologies 3-1 Software Defined Radio for Next Generation Seamless Mobile Communication Systems In this paper, the configuration of the newly developed small-size software defined

More information

SDR Architecture. Introduction. Figure 1.1 SDR Forum High Level Functional Model. Contributed by Lee Pucker, Spectrum Signal Processing

SDR Architecture. Introduction. Figure 1.1 SDR Forum High Level Functional Model. Contributed by Lee Pucker, Spectrum Signal Processing SDR Architecture Contributed by Lee Pucker, Spectrum Signal Processing Introduction Software defined radio (SDR) is an enabling technology, applicable across a wide range of areas within the wireless industry,

More information

DESIGN OF MIXED SIGNAL CIRCUITS AND SYSTEMS FOR WIRELESS APPLICATIONS

DESIGN OF MIXED SIGNAL CIRCUITS AND SYSTEMS FOR WIRELESS APPLICATIONS DESIGN OF MIXED SIGNAL CIRCUITS AND SYSTEMS FOR WIRELESS APPLICATIONS Vladimir LANTSOV Computer Engineering Department, Vladimir State University, Gorky Street, 87, 600026, VLADIMIR, Russia, phone: +7

More information

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise Apéndice A. Lista de s ACI AM AMC AMPS ARQ AWGN BB BER BPSK BPF BW CCK CD CDMA CDPD COFDM CRL CSI CWTS Adjacent Channel Interference Amplitude Modulation Adaptive Modulation and Coding Advanced Mobile

More information

Design of a Wireless Medical Monitoring System * Chavabathina Lavanya 1 G.Manikumar 2

Design of a Wireless Medical Monitoring System * Chavabathina Lavanya 1 G.Manikumar 2 Design of a Wireless Medical Monitoring System * Chavabathina Lavanya 1 G.Manikumar 2 1 PG Student (M. Tech), Dept. of ECE, Chirala Engineering College, Chirala., A.P, India. 2 Assistant Professor, Dept.

More information

Using Pre-Emphasis and Equalization with Stratix GX

Using Pre-Emphasis and Equalization with Stratix GX Introduction White Paper Using Pre-Emphasis and Equalization with Stratix GX New high speed serial interfaces provide a major benefit to designers looking to provide greater data bandwidth across the backplanes

More information

Software Defined Radio. What is software defined radio? Brad Brannon, Analog Devices, Inc.

Software Defined Radio. What is software defined radio? Brad Brannon, Analog Devices, Inc. Software Defined Radio Brad Brannon, Analog Devices, Inc. What is software defined radio? Over the last decade as semiconductor technology has improved both in terms of performance capability and cost,

More information

SECTION 2 TECHNICAL DESCRIPTION OF BPL SYSTEMS

SECTION 2 TECHNICAL DESCRIPTION OF BPL SYSTEMS SECTION 2 TECHNICAL DESCRIPTION OF SYSTEMS 2.1 INTRODUCTION Access equipment consists of injectors (also known as concentrators), repeaters, and extractors. injectors are tied to the backbone via fiber

More information

Introduction to Zibgbee Technology

Introduction to Zibgbee Technology Introduction to Zibgbee Technology Ankur Tomar Global Technology Centre Volume 1, July 2011 1. Introduction ZigBee is the most popular industry wireless mesh networking standard for connecting sensors,

More information

WPAN. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1

WPAN. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1 Contents Bluetooth (IEEE 802.15.1) Network topology FHSS operation Link delivery services System architecture & protocols Usage models ZigBee (IEEE 802.15.4) Network topology Physical layer operation CSMA/CA

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

DEVELOPMENT OF DEVICES AND METHODS FOR PHASE AND AC LINEARITY MEASUREMENTS IN DIGITIZERS

DEVELOPMENT OF DEVICES AND METHODS FOR PHASE AND AC LINEARITY MEASUREMENTS IN DIGITIZERS DEVELOPMENT OF DEVICES AND METHODS FOR PHASE AND AC LINEARITY MEASUREMENTS IN DIGITIZERS U. Pogliano, B. Trinchera, G.C. Bosco and D. Serazio INRIM Istituto Nazionale di Ricerca Metrologica Torino (Italia)

More information

Professur Technische Informatik Prof. Dr. Wolfram Hardt. Network Standards. and Technologies for Wireless Sensor Networks. Karsten Knuth 16.07.

Professur Technische Informatik Prof. Dr. Wolfram Hardt. Network Standards. and Technologies for Wireless Sensor Networks. Karsten Knuth 16.07. Network Standards and Technologies for Wireless Sensor Networks Karsten Knuth 16.07.2008 Index 1. Motivation 2. Introduction 3. Bluetooth 4. ZigBee 5. nanonet 6. Roundup 16.07.2008 Network Standards 2

More information

A survey on Spectrum Management in Cognitive Radio Networks

A survey on Spectrum Management in Cognitive Radio Networks A survey on Spectrum Management in Cognitive Radio Networks Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty Georgia Institute of Technology Communications Magazine, vol 46, April 2008,

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

Clocking Solutions. Wired Communications / Networking Wireless Communications Industrial Automotive Consumer Computing. ti.

Clocking Solutions. Wired Communications / Networking Wireless Communications Industrial Automotive Consumer Computing. ti. ing Solutions Wired Communications / Networking Wireless Communications Industrial Automotive Consumer Computing ti.com/clocks 2014 Accelerate Time-to-Market with Easy-to-Use ing Solutions Texas Instruments

More information

Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers

Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers David A. Hall, Product Marketing Manager Andy Hinde, RF Systems Engineer Introduction With

More information

Revision of Lecture Eighteen

Revision of Lecture Eighteen Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses

More information

Wireless Medical Telemetry Laboratory

Wireless Medical Telemetry Laboratory Wireless Medical Telemetry Laboratory 0 Introduction The development of wireless medical telemetry has become an increasingly popular application in recent years. As the elderly population continues to

More information

LoRa FAQs. www.semtech.com 1 of 4 Semtech. Semtech Corporation LoRa FAQ

LoRa FAQs. www.semtech.com 1 of 4 Semtech. Semtech Corporation LoRa FAQ LoRa FAQs 1.) What is LoRa Modulation? LoRa (Long Range) is a modulation technique that provides significantly longer range than competing technologies. The modulation is based on spread-spectrum techniques

More information

7a. System-on-chip design and prototyping platforms

7a. System-on-chip design and prototyping platforms 7a. System-on-chip design and prototyping platforms Labros Bisdounis, Ph.D. Department of Computer and Communication Engineering 1 What is System-on-Chip (SoC)? System-on-chip is an integrated circuit

More information

Using a design-to-test capability for LTE MIMO (Part 2 of 2)

Using a design-to-test capability for LTE MIMO (Part 2 of 2) Using a design-to-test capability for LTE MIMO (Part 2 of 2) System-level simulation helps engineers gain valuable insight into the design sensitivities of Long Term Evolution (LTE) Multiple-Input Multiple-Output

More information

ELEMENTS OF CABLE TELEVISION

ELEMENTS OF CABLE TELEVISION 1 ELEMENTS OF CABLE TELEVISION Introduction Cable television, from its inception, developed in western countries into two separate systems called Master Antenna Television (MATV) and Community Cable Television

More information

FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.

FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D. FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing

More information

AN INTRODUCTION TO DIGITAL MODULATION

AN INTRODUCTION TO DIGITAL MODULATION AN INTRODUCTION TO DIGITAL MODULATION This article provides readers a simple overview of the various popular methods used in modulating a digital signal. The relative merits of each of these modulation

More information

WiSER: Dynamic Spectrum Access Platform and Infrastructure

WiSER: Dynamic Spectrum Access Platform and Infrastructure WiSER: Dynamic Spectrum Access Platform and Infrastructure I. Seskar, D. Grunwald, K. Le, P. Maddala, D. Sicker, D. Raychaudhuri Rutgers, The State University of New Jersey University of Colorado, Boulder

More information

Telephony Solution for Local Multi-Point Distribution Service

Telephony Solution for Local Multi-Point Distribution Service Telephony Solution for Local Multi-Point Distribution Service Derek Lam Computer Systems Laboratory Aly F. Elrefaie, Lynn Plouse, Yee-Hsiang Chang Video Communications Division HPL-97-165 December, 1997

More information

Radio Transmission Performance of EPCglobal Gen-2 RFID System

Radio Transmission Performance of EPCglobal Gen-2 RFID System Radio Transmission Performance of EPCglobal Gen-2 RFID System Manar Mohaisen, HeeSeok Yoon, and KyungHi Chang The Graduate School of Information Technology & Telecommunications INHA University Incheon,

More information

Image Transmission over IEEE 802.15.4 and ZigBee Networks

Image Transmission over IEEE 802.15.4 and ZigBee Networks MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Image Transmission over IEEE 802.15.4 and ZigBee Networks Georgiy Pekhteryev, Zafer Sahinoglu, Philip Orlik, and Ghulam Bhatti TR2005-030 May

More information

3-7 The On-Board Processor for a Voice Communication Switching

3-7 The On-Board Processor for a Voice Communication Switching 3-7 The On-Board Processor for a Voice Communication Switching HASHIMOTO Yukio We developed the on-board processor (OBP) used for voice communication switching of mobile satellite communication systems.

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA

More information

Figure 1.Block diagram of inventory management system using Proximity sensors.

Figure 1.Block diagram of inventory management system using Proximity sensors. Volume 1, Special Issue, March 2015 Impact Factor: 1036, Science Central Value: 2654 Inventory Management System Using Proximity ensors 1)Jyoti KMuluk 2)Pallavi H Shinde3) Shashank VShinde 4)Prof VRYadav

More information

SmartDiagnostics Application Note Wireless Interference

SmartDiagnostics Application Note Wireless Interference SmartDiagnostics Application Note Wireless Interference Publication Date: May 27, 2015 KCF Technologies, Inc. Background The SmartDiagnostics wireless network is an easy to install, end-to-end machine

More information

APPLICATION NOTE BUILDING A QAM MODULATOR USING A GC2011 DIGITAL FILTER CHIP

APPLICATION NOTE BUILDING A QAM MODULATOR USING A GC2011 DIGITAL FILTER CHIP SLWA022 APPLICATION NOTE BUILDING A QAM MODULATOR USING A GC2011 DIGITAL CHIP October 6, 1994 1.0 INTRODUCTION This report describes how one can use the GC2011 Digital Filter chip to build digital modulators

More information

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN)

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) FHSS vs. DSSS page 1 of 16 Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) by Sorin M. SCHWARTZ Scope In 1997

More information

IEEE 802.15.1 Simulation and BER Analysis under the Interference

IEEE 802.15.1 Simulation and BER Analysis under the Interference IEEE 802.15.1 Simulation and BER Analysis under the Interference Zahir Aalam, S Vhatkar, B. K. Mishra Thakur College of Engineering & Technology, Kandivali (E), Mumbai 101, M.S. India ABSTRACT There is

More information

Modification Details.

Modification Details. Front end receiver modification for DRM: AKD Target Communications receiver. Model HF3. Summary. The receiver was modified and capable of receiving DRM, but performance was limited by the phase noise from

More information

LLRF. Digital RF Stabilization System

LLRF. Digital RF Stabilization System LLRF Digital RF Stabilization System Many instruments. Many people. Working together. Stability means knowing your machine has innovative solutions. For users, stability means a machine achieving its full

More information

HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

More information

Zigbee System-on-Chip (SoC) Design. power radio solu-

Zigbee System-on-Chip (SoC) Design. power radio solu- From January 2006 High Frequency Electronics Copyright 2006 Summit Technical Media Zigbee System-on-Chip (SoC) Design By Khanh Tuan Le Chipcon Addressing the need This article describes the of low cost,

More information

A Software Defined Radio Testbed Implementation

A Software Defined Radio Testbed Implementation A Software Defined Radio Testbed Implementation S. Weiss 1, A. Shligersky 1, S. Abendroth 1, J. Reeve 1, L. Moreau 1, T.E. Dodgson 2 and D. Babb 2 1 School of Electronics & Computer Science, University

More information

Wireless Local Area Networking For Device Monitoring

Wireless Local Area Networking For Device Monitoring Wireless Local Area Networking For Device Monitoring by Colin Goldsmith Supervised By Professor Wendi Heinzelman A thesis submitted in partial fulfillment of the Requirements for the Degree of Masters

More information

POWER AND SPECTRUM EFFICIENT ACCESS SERVICES USING DYNAMIC LINKS

POWER AND SPECTRUM EFFICIENT ACCESS SERVICES USING DYNAMIC LINKS POWER AND SPECTRUM EFFICIENT ACCESS SERVICES USING DYNAMIC LINKS Dr. Richard Gedney, Dr. William Thesling, and Mark Vanderaar Efficient Channel Coding (ECC), Inc. 600 Safeguard Plaza, Suite 100 Brooklyn

More information

Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels

Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels Qi Lu, Qingchong Liu Electrical and Systems Engineering Department Oakland University Rochester, MI 48309 USA E-mail:

More information

Introduction to Silicon Labs. November 2015

Introduction to Silicon Labs. November 2015 Introduction to Silicon Labs November 2015 1 Company Background Global mixed-signal semiconductor company Founded in 1996; public since 2000 (NASDAQ: SLAB) >1,100 employees and 11 R&D locations worldwide

More information

High-Frequency Integrated Circuits

High-Frequency Integrated Circuits High-Frequency Integrated Circuits SORIN VOINIGESCU University of Toronto CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface, page xiii Introduction l 1.1 High-frequency circuits in wireless, fiber-optic, and

More information

Maximizing Receiver Dynamic Range for Spectrum Monitoring

Maximizing Receiver Dynamic Range for Spectrum Monitoring Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

868 MHz Traffic Detective: A Software-Based Tool for Radio Traffic Monitoring

868 MHz Traffic Detective: A Software-Based Tool for Radio Traffic Monitoring 868 MHz Traffic Detective: A Software-Based Tool for Radio Traffic Monitoring Jens Saalmüller, Matthias Kuba, Andreas Oeder Networked Systems and Applications Department, Fraunhofer Institute for Integrated

More information

Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications

Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications The Master Degree in Electrical Engineering/Wireless Communications, is awarded by the Faculty of Graduate Studies

More information

Propsim enabled Mobile Ad-hoc Network Testing

Propsim enabled Mobile Ad-hoc Network Testing www.anite.com Propsim enabled Mobile Ad-hoc Network Testing Anite is now part of Keysight Technologies Lab-based, end-to-end performance testing of systems using Propsim MANET channel emulation A Mobile

More information

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [An system for Mobile Multi-Gb/s at Hz, concept, application and implementation] Date Submitted: [17 September,

More information

802.11ac Power Measurement and Timing Analysis

802.11ac Power Measurement and Timing Analysis 802.11ac Power Measurement and Timing Analysis Using the 8990B Peak Power Analyzer Application Note Introduction There are a number of challenges to anticipate when testing WLAN 802.11ac [1] power amplifier

More information

RF Communication System. EE 172 Systems Group Presentation

RF Communication System. EE 172 Systems Group Presentation RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

Zigbee-Based Wireless Distance Measuring Sensor System

Zigbee-Based Wireless Distance Measuring Sensor System Zigbee-Based Wireless Distance Measuring Sensor System Ondrej Sajdl 1, Jaromir Zak 1, Radimir Vrba 1 1 Department of Microelectronics, Brno University of Technology, FEEC, Udolni 53, 602 00 Brno, Czech

More information

Modeling a GPS Receiver Using SystemC

Modeling a GPS Receiver Using SystemC Modeling a GPS Receiver using SystemC Modeling a GPS Receiver Using SystemC Bernhard Niemann Reiner Büttner Martin Speitel http://www.iis.fhg.de http://www.iis.fhg.de/kursbuch/kurse/systemc.html The e

More information

Application Note Noise Frequently Asked Questions

Application Note Noise Frequently Asked Questions : What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

Rapid Prototyping of a Frequency Hopping Ad Hoc Network System

Rapid Prototyping of a Frequency Hopping Ad Hoc Network System Rapid Prototyping of a Frequency Hopping Ad Hoc Network System Martin Braun, Nico Otterbach, Jens Elsner, and Friedrich K. Jondral Communications Engineering Lab, Karlsruhe Institute of Technology (KIT),

More information

APPROVAL SHEET. Customer: Customer P/N: 802.11N 150M and Bluetooth 2.1+EDR. Customer. Approval

APPROVAL SHEET. Customer: Customer P/N: 802.11N 150M and Bluetooth 2.1+EDR. Customer. Approval APPROVAL SHEET Customer: Customer P/N: Description: USB WIFI +Bluetooth dongle Part No.: 802.11N 150M and Bluetooth 2.1+EDR Customer Approval Checked By Issued By 1 A.WIFI PART 1.Introduction USB WIFI

More information

Lecture 17: 802.11 Wireless Networking"

Lecture 17: 802.11 Wireless Networking Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion

More information

RECOMMENDATION ITU-R M.1453-1 * Transport information and control systems Dedicated short range communications at 5.8 GHz

RECOMMENDATION ITU-R M.1453-1 * Transport information and control systems Dedicated short range communications at 5.8 GHz Rec. ITU-R M.1453-1 1 RECOMMENDATION ITU-R M.1453-1 * Transport and control systems Dedicated short range communications at 5.8 GHz (Question ITU-R 205/8) (2000-2002) The ITU Radiocommunication Assembly,

More information

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency

More information

Presentation Outline. The NavSAS group; Examples of Software-Radio Technology in GNSS;

Presentation Outline. The NavSAS group; Examples of Software-Radio Technology in GNSS; Telemobility 2008 Progetto Galileo ed altri GNSS Development of GPS-Galileo Galileo Software Radio Receivers Marco Pini - NavSAS group Presentation Outline The NavSAS group; Basic on Software-Radio Technology;

More information