Over time, 3D printing has become the

Size: px
Start display at page:

Download "Over time, 3D printing has become the"

Transcription

1 Basics of additive manufacturing Over time, 3D printing has become the most widely used term for a number of rapid prototyping and rapid manufacturing techniques. The techniques are called rapid because they create parts directly from digital models. They are also called additive because they make parts by depositing successive layers of material. Many of the techniques use inkjet-like printheads to deposit layers, and UV light or lasers to fuse the layers. Synonymous terms for additive techniques include additive fabrication, solid freeform fabrication, additive manufacturing, and direct digital manufacturing. Additive manufacturing is considered distinct from traditional subtractive processes such as cutting or drilling. The advantage of additive technologies is they can make objects that would otherwise be difficult if not impossible to fabricate otherwise, such as those with complex features, internal voids, and latticed structures. For the low-volume manufacturing of end-use parts, additive manufacturing can be less costly than traditional methods because it does not require tooling. The techniques are used in every industry for 3D printing everything from scale models of cars out of several materials, or building-up functional parts for motorcycles, to making life-like replicas of organs from MRI scan data so doctors can assess where to best make surgical cuts. Some metal-printing techniques even build implantable bone and hip implants. Many kinds of materials are available for 3D printing applications, each with different capabilities. Some work better to make part prototypes or surgical models, others work better to manufacture end parts or low-volume tooling. Selection depends on the requirements for form, fit, and function. Typically, each additive machine vendor supplies proprietary materials designed to function best with that machine. Some systems allow the use of material not specifically created for a machine, but these may not produce the exact features required. Additive techniques include: Stereolithography (SL/SLA) typically traces a laser beam on the surface of a vat of liquid photosensitive resin, hardening the layer. The platform on which the model sits then lowers slightly, about Multi-material 3D printers from Objet lets users combine what the company calls its Digital Materials at the same time throughout the volume of a single model. The realistic prototype of a car suspension was 3D printed in an ABSlike Digital Material in opaque shades and rubber-like tires. Presented by Sponsored by 1 OCTOBER 2012

2 metal-casting processes. Typical applications: Detailed parts and models for fit and form testing; trade show and marketing parts and models; rapid manufacturing of small detailed parts; fabrication of jigs and fixtures; and patterns for investment casting or urethane molding. Materials: acrylics; clear and rigid; ABS-like; polypropylene-like (PP); flexible or elastomeric and water-resistant. 3D Systems, Rock Hill, S.C., invented stereolithography and was the first commercial manufacturer of rapid prototyping systems. These dental copings and bridges were laser-sintered out of cobalt chrome. A 3D printed model of the ear was used to create a mold for this prosthetic ear to in., and sweeps a blade filled with resin across the part. The laser then traces out another layer. The resin s adhesive qualities cause layers to bond together. The process repeats until the prototype is complete. Supports for undercuts or overhangs are fabricated along with the object. Technicians lift the finished object from the vat and cut off the supports. SLA provides good accuracy and surface finishes and allows the printing of parts as large as complete automotive dashboards. Most SLA resins are epoxy-based and provide strong, durable, and accurate models. Prototypes made by SLA are strong enough to be machined and can be used as master patterns for injection molding, thermoforming, blow molding, and various Fused deposition modeling (FDM) is a form of thermoplastic extrusion. The technique involves plastic filament or metal wire that gets unwound from a coil to supply material to a heated extrusion nozzle, which can turn on and off the flow. The nozzle mounts to a mechanical stage that moves in both horizontal and vertical directions. The nozzle moves over the build table, depositing a thin bead of extruded plastic to form each layer. The platform is kept at a lower temperature, so the thermoplastic quickly hardens. After the platform lowers, the extrusion head deposits another layer. Supports are built along the way, fastened to the part either with a second, weaker material or a perforated junction. Materials are deposited in layers as fine as in. To prevent part warping, the build mechanism sits in a chamber that is held to a temperature just below the melting point of the plastic. The method is office-friendly and quiet. FDM is a good choice for models that must closely represent the final product in strength and durability. FDM materials include thermoplastics ABS, ABSi, polyphenylsulfone (PPSF), polycarbonate (PC), and Ultem 9085, and waxes, with different trade-offs between strength and heat-resistant properties. 2 OCTOBER 2012

3 Ultem 9085 is fire resistant, making it suitable for aerospace and aviation applications. A water-soluble material such as polyvinyl alcohol (PVA) is used to make temporary supports for overhangs or undercuts while manufacturing is in progress. The support material quickly dissolves with special mechanical agitation equipment using a heated sodium hydroxide solution. FDM is also used in prototyping scaffolds for medical tissue engineering applications. FDM machines range from fast concept modelers to slower, high-precision machines. Typical applications: detailed parts and models for fit and form testing using engineering plastics; lattice parts for higher-temperature applications; trade show and marketing parts and models; rapid manufacturing small detailed parts; fabrication of jigs and fixtures; patterns for investment casting or urethane molding. Other materials: ABS (standard and medical grade); polycarbonate (PC); polyphenylsulfone; elastomer, investment casting wax. Stratasys Inc., Eden Prairies, Minn., sells equipment based on its proprietary FDM technology; 3D Systems sells machines for consumers. Inkjet (3D printing) refers to different kind of machines that use printheads similar to those found on 2D desktop printers. One technology builds parts on a platform that sits in a bin full of powdered material. The inkjet printing head selectively deposits or prints a binder fluid to fuse the powder together in the correct areas. Unbound powder remains to support the part. The machine lowers the platform about in., adds and levels more powder, and the process repeats. When the part is complete, a technician removes it, and uses compressed air to blow off excessive powder. Finished parts can be infiltrated with wax, glue, or other sealants to improve durability and surface finish. This process is fast, and produces parts with a slightly grainy surface. Typical applications: concept models; parts for limited functional testing; color models to show FEA results; architectural and landscape models; color industrial design models, especially for consumer goods and packaging; molds for castings. Materials: starch, plaster powder. Additionally, some inkjet technologies feed melted liquid thermoplastic resin to individual jetting heads. The heads move side to side, squirting tiny droplets of the material to form a layer. The material hardens on impact. Typical applications: Models for fit and form testing; patterns for investment casting, especially for jewelry and medical devices; and patterns for urethane molding. Materials: polyester-based plastic; investment casting wax. Another 3D-printing technology uses a wide inkjet head to deposit both the photopolymer build and These small components were built using FDM. 3

4 The functional prototype of a saw handle was 3D printed to check form, fit, and function. gel-like support materials at the same time. A UV flood lamp mounted to the printhead successively cures each layer. Once the part is complete, the support material is washed away in a secondary operation. High-end machines using this technique can mix and jet more than one material at a time, letting uses build parts with many different material properties that vary through the part volume. The technique is accurate, printing layers only 16-microns thick. Typical applications: Highly detailed parts and models for fit and form testing; models for trade shows and marketing purposes; patterns for investment casting, especially jewelry and fine items; patterns for urethane and silicon rubber molding; lifelike medical models. Objet Inc., Billerica, Mass., produces what it calls its PolyJet process, based on depositing photopolymer with a wide inkjet head. The company is also the first to introduce machines that can deposit two materials simultaneously; 3D Systems produces photopolymer-based systems that use inkjet technologies. The functional front sub-frame and dashboard were printed as a single part out of glass-filled nylon using selective laser sintering (SLS). A service bureau s proprietary process was used to make the SLS part black. Laser sintering/selective laser sintering (LS/SLS) uses a laser beam which moves in the X-Y direction over the surface of a compacted thermoplastic, metal, ceramic, or glass powder to selectively fuse it. A sealed nitrogenfilled fabrication chamber is kept at a temperature just below the melting point of the plastic powder. When the layer is complete, the build tray moves up a small amount, a roller pushes more powder over everything, and the machine then prints the next layer. When the object is completed, workers remove the compacted block and brush the excess powder away. Large parts may take a several hours to cool down enough to remove from the machine. No supports are necessary because the solid powder bed surrounds any overhangs and undercuts. Because the parts are sintered, they are somewhat porous, so it may be necessary to infiltrate the object with another material to improve the part s mechanical attributes. 4

5 Compared with other additivemanufacturing methods, SLS can produce parts from a relatively wide range of commercially available powder materials. These include polymers such as nylon, (even glass-filled or with other fillers) or polystyrene, metals including steel, titanium, alloy mixtures, and composites. Depending on the material, parts can be up to 100% dense, with material properties comparable to those from conventional manufacturing methods. In many cases, for high productivity, large numbers of parts can be packed in the powder bed. SLS began as a way to build prototype parts early in the design cycle, but the method is increasingly being used in low-volume manufacturing to produce end parts. It has also become popular in the building of artistic objects and jewelry. Typical applications: slightly less detailed parts and models for fit and form testing compared to photopolymer-based methods; additive manufacturing of parts, including larger items such as air ducts; parts with snap-fits and living hinges; patterns for investment casting. Selective laser melting (SLM) is basically the same idea as SLS, but the method uses higher-powered lasers to make fully dense parts. And electron beam melting (EBM) replaces the laser with an electron beam to create fully dense parts in a variety of metals such as stainless steel. The techniques work well in medical applications such as implants. Materials: nylon, polystyrene (PS); elastomeric; steel and stainless steel alloys; bronze alloy; cobalt-chrome alloy; titanium. Arcam in Sweden, EBM machines; EOS in Novi, Mich., provides laser sintering machines; Renishaw Inc., Hoffman Estates, Ill., provides selective laser melting (SLM) systems. The process is similar to selective laser sintering, but fully melts metal or ceramic powders to directly form fully-dense parts. 5

Tutorial: Rapid Prototyping Technologies

Tutorial: Rapid Prototyping Technologies 1. Introduction Tutorial: Rapid Prototyping Technologies Rapid prototyping (RP) is a new manufacturing technique that allows for fast fabrication of computer models designed with three-dimension (3D) computer

More information

Additive Manufacturing: Processes and Standard Terminology

Additive Manufacturing: Processes and Standard Terminology Additive Manufacturing: Processes and Standard Terminology Gary Coykendall Copyright Edmonds Community College 2012; Permission granted for use and reproduction for educational purposes only. Abstract

More information

Rapid Prototyping. Training Objective

Rapid Prototyping. Training Objective Training Objective After watching the program and reviewing this printed material, the viewer will understand the principles and practical applications of Rapid Prototyping. Basic concepts are explained

More information

Brief Report on machines available in the 3D Printers market and their characteristics

Brief Report on machines available in the 3D Printers market and their characteristics Brief Report on machines available in the 3D Printers market and their characteristics by AJIU Asociaciòn de investigacion de la industria del juguete, conexas y afines, Contenido 1. 3D PRINTING... 3 2.

More information

Advanced Manufacturing Choices

Advanced Manufacturing Choices Advanced Manufacturing Choices MAE 195-MAE 156 Spring 2009, Dr. Marc Madou Class 8: Rapid Prototyping By Dr. Miodrag Micic, mmicic@mpbio.com Two Ways for Fabrication: Substractive manufacturing Additive

More information

Allison Rae Paramount Industries Rhode Island School of Design ID 87. Prototyping Overview

Allison Rae Paramount Industries Rhode Island School of Design ID 87. Prototyping Overview Allison Rae Paramount Industries Rhode Island School of Design ID 87 Prototyping Overview Prototyping for Mechanical Parts Paramount Industries Started as prototyping vendor, then added: Industrial Design

More information

How To Build A 3D Model From Scratch

How To Build A 3D Model From Scratch SERVICES AND CAPABILITIES 1. Rapid prototyping What is rapid prototyping? Rapid prototyping (RP) or more recently Free Form Fabrication refers to the fabrication of a physical, three-dimensional part of

More information

Ningbo Yinzhou Keao Prototyping & Mould Factory Services include : CNC machining prototypes,

Ningbo Yinzhou Keao Prototyping & Mould Factory Services include : CNC machining prototypes, Ningbo Yinzhou Keao Prototyping & Mould Factory Services include : CNC machining prototypes, STEREOLITHOGRAPHY (SLA) Selective Laser Sintering (SLS) RTV MOLDING AND CAST URETHANE PROTOTYPES Tel : +86 574

More information

The Prototyping Challenges with Micro Molding: A Comparative Study of Prototyping Methods for Micro Molding Applications

The Prototyping Challenges with Micro Molding: A Comparative Study of Prototyping Methods for Micro Molding Applications I. The Premise A lot has changed in the last 20+ years. Just two short decades ago our top speed personal computer processors were clocked at 386 MHz, hard drive space and RAM memory were still measured

More information

Rapid Prototyping Technologies. May, 2016

Rapid Prototyping Technologies. May, 2016 Rapid Prototyping Technologies May, 2016 WE HAVE ALL THE NECESSARY TOOLS TO ENSURE THE FINAL SUCCESS OF YOUR PROTOTYPE. Andaltec can help you in all the steps, from the design to fully finished prototype

More information

New Advances in Rapid Prototyping using Inkjet-based 3D Printing

New Advances in Rapid Prototyping using Inkjet-based 3D Printing New Advances in Rapid Prototyping using Inkjet-based 3D Printing April 2011 Objet Geometries Ltd. DISCLAIMER: Objet Geometries Ltd. ("Objet") does not guarantee the final release and availability of materials,

More information

COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 5: OTHER PROCESSES

COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 5: OTHER PROCESSES COURSE: ADVANCED MANUFACTURING PROCESSES Module No. 5: OTHER PROCESSES Lecture No-2 Rapid Prototyping Technology (RPT) Background: In this age of fast growth (rapid technology age), customer demands are

More information

RAPID PROTOTYPING. Learning Objectives: By the end of the lecture the student should be able to: Explain the fundamentals of Rapid Prototyping

RAPID PROTOTYPING. Learning Objectives: By the end of the lecture the student should be able to: Explain the fundamentals of Rapid Prototyping RAPID PROTOTYPING Learning Objectives: By the end of the lecture the student should be able to: Explain the fundamentals of Rapid Prototyping Outline and explain differences of Rapid Prototyping Technologies

More information

RAPID PRODUCT DEVELOPMENT

RAPID PRODUCT DEVELOPMENT Rapid Product Development and Rapid Prototyping service American Engineering Group (AEG) offer rapid product development service, a rapid and more costeffective solution for manufacturing. Bringing new

More information

3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present

3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present and Future Joseph J Beaman NSF Additive Manufacturing Workshop 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present The University of Texas Solid

More information

MANUFACTURING THE FUTURE

MANUFACTURING THE FUTURE Paul Miller 803-554-3590 paul.miller@3dsystems.com MANUFACTURING THE FUTURE PAUL MILLER DIRECTOR OF SALES WWW.3DSYSTEMS.COM NYSE:DDD 2013 3DSYSTEMS A 3D PRINTER FOR YOU RESULTING IN UNMATCHED 3D PRINTER

More information

Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS

Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS 5.1 3D SYSTEMS SELECTIVE LASER SINTERING (SLS) 5.1.1 Company 3D Systems Corporation was founded by Charles W. Hull and Raymond S. Freed in 1986. The founding

More information

How to Effectively Move from 3D Printing to Injection Molding. Tony Holtz Technical Specialist, Proto Labs

How to Effectively Move from 3D Printing to Injection Molding. Tony Holtz Technical Specialist, Proto Labs How to Effectively Move from 3D Printing to Injection Molding Tony Holtz Technical Specialist, Proto Labs Overview 3D Printing CNC Machining Injection Molding Design Considerations for Injection Molding

More information

BENEFITS OF 3D PRINTING VACUUM FORM MOLDS

BENEFITS OF 3D PRINTING VACUUM FORM MOLDS WHITE PAPER BENEFITS OF 3D PRINTING VACUUM FORM MOLDS AUTHORS COLE HARTMAN (MECHANICAL ENGINEER) & VERONICA DE LA ROSA (INDUSTRIAL DESIGNER) FATHOM is driven by advanced technologies. We leverage our expertise

More information

Prototyping Process Choosing the best process for your project

Prototyping Process Choosing the best process for your project Prototyping Process Choosing the best process for your project Proto Labs, Inc. 5540 Pioneer Creek Dr. Maple Plain, MN 55359 P: (763) 479 3680 F: (763) 479 2679 www.protolabs.com 2009 Proto Labs. All rights

More information

GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ

GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ GLOBAL MANUFACTURING ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ Workpiece Presentation Powder Metallurgy and Additive Manufacturing [#7] Powder Metallurgy PM parts can

More information

DESIGN OF MANUFACTURING SYSTEMS BY RAPID PROTOTYPING TECHNOLOGY APPLICATION

DESIGN OF MANUFACTURING SYSTEMS BY RAPID PROTOTYPING TECHNOLOGY APPLICATION Annals of the University of Petroşani, Mechanical Engineering, 14 (2012), 104-111 104 DESIGN OF MANUFACTURING SYSTEMS BY RAPID PROTOTYPING TECHNOLOGY APPLICATION JOZEF NOVAK-MARCINCIN 1 Abstract: Rapid

More information

Fused Deposition Modeling: A Technology Evaluation

Fused Deposition Modeling: A Technology Evaluation Fused Deposition Modeling: A Technology Evaluation Todd Grimm T. A. Grimm & Associates, Inc. Selecting the best rapid prototyping process can be challenging. Without hands-on experience, uncovering both

More information

Choosing the Right Rapid Prototyping Source for Your Product Development Program. Phillips Plastics Corporation November 2009

Choosing the Right Rapid Prototyping Source for Your Product Development Program. Phillips Plastics Corporation November 2009 Choosing the Right Rapid Prototyping Source for Your Product Development Program Phillips Plastics Corporation November 2009 Successful prototyping begins with mechanical design that will operate properly

More information

Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods

Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods Section Number 3563 Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods Nicole Hoekstra Engineering Technology Department Western Washington University Abstract Prior to rapid

More information

Choosing the Right Rapid Prototype Source for Your Product Development Program. Phillips Plastics Corporation November 2009

Choosing the Right Rapid Prototype Source for Your Product Development Program. Phillips Plastics Corporation November 2009 Choosing the Right Rapid Prototype Source for Your Product Development Program Phillips Plastics Corporation November 2009 Introduction Being able to create prototype injection molded components and assemblies

More information

NASA FACULTY FELLOWSHIP PROGRAM MARSHALL SPACE FLIGHT CENTER THE UNIVERSITY OF ALABAMA

NASA FACULTY FELLOWSHIP PROGRAM MARSHALL SPACE FLIGHT CENTER THE UNIVERSITY OF ALABAMA 2002 NASA FACULTY FELLOWSHIP PROGRAM MARSHALL SPACE FLIGHT CENTER THE UNIVERSITY OF ALABAMA Development of Processing Parameters for Organic Binders Using Selective Laser Sintering Prepared By: Academic

More information

The Aerial Map of the 3D Printing / Additive Manufacturing Eco-system

The Aerial Map of the 3D Printing / Additive Manufacturing Eco-system The Aerial Map of the 3D Printing / Additive Manufacturing Eco-system 2nd Additive Disruption Investment Business Models Strategic Impact Tuesday, March 31st Pre-Summit Executive Briefing Ivan J Madera

More information

3D CAD, CAM and Rapid Prototyping by Mitch Heynick and Ivo Stotz

3D CAD, CAM and Rapid Prototyping by Mitch Heynick and Ivo Stotz 3D CAD, CAM and Rapid Prototyping by Mitch Heynick and Ivo Stotz >> LAPA Digital Technology Seminar

More information

PROCESSING OF VARIOUS MATERIALS

PROCESSING OF VARIOUS MATERIALS 4 PROCESSING OF VARIOUS MATERIALS CHAPTER CONTENTS 4.1 Shaping Processes for Polymers Polymers Manufacturing Processes for Polymers 4.2 Rubber Processing Technology Processing of rubber into finished good

More information

ID@GT prepared by Gabe Landes for T. Purdy 2009

ID@GT prepared by Gabe Landes for T. Purdy 2009 Rapid prototyping is the automatic construction of physical objects using solid freeform fabrication. The first techniques for rapid prototyping became available in the late 1980s and were used to produce

More information

TUTOR NOTES. How to use this pack. Rapid prototyping in schools. Definition

TUTOR NOTES. How to use this pack. Rapid prototyping in schools. Definition TUTOR NOTES How to use this pack This pack is aimed at students studying for both Intermediate 2 and Higher Product Design. Students of other subjects might find it useful, and a Curriculum Map has been

More information

Welding of Plastics. Amit Mukund Joshi. (B.E Mechanical, A.M.I.Prod.E)

Welding of Plastics. Amit Mukund Joshi. (B.E Mechanical, A.M.I.Prod.E) Welding of Plastics Amit Mukund Joshi (B.E Mechanical, A.M.I.Prod.E) Introduction Mechanical fasteners, adhesives, and welding processes can all be employed to form joints between engineering plastics.

More information

Rapid prototyping. CAD / lecture. October 5, 2010. TO&I Vermelding onderdeel organisatie

Rapid prototyping. CAD / lecture. October 5, 2010. TO&I Vermelding onderdeel organisatie 1 Rapid prototyping is: Rapid prototyping is an additive (layered) digital fabrication technology Layers of material are added forming the final 3d physical model The digital data of the virtual 3d model

More information

RAPID PROTOTYPING. Principles and Applications. RAFIQ NOORANI, Ph.D. Professor of Mechanical Engineering Loyola Marymount University Los Angeles, CA

RAPID PROTOTYPING. Principles and Applications. RAFIQ NOORANI, Ph.D. Professor of Mechanical Engineering Loyola Marymount University Los Angeles, CA RAPID PROTOTYPING Principles and Applications RAFIQ NOORANI, Ph.D. Professor of Mechanical Engineering Loyola Marymount University Los Angeles, CA WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Acknowledgments

More information

3D Printer Overview 2013

3D Printer Overview 2013 1 PERSONAL 3D PRINTERS Cube Home 3D Printer Our first 3D printer designed to bring your creations to life in brilliant colors right in your home just plug in and print! Wi Fi Printing Print up to a 5.5

More information

INCORPORATING 3D PRINTING INTO YOUR BUSINESS MODEL. Dr Phil Reeves, Vice President of Strategic Consulting

INCORPORATING 3D PRINTING INTO YOUR BUSINESS MODEL. Dr Phil Reeves, Vice President of Strategic Consulting INCORPORATING 3D PRINTING INTO YOUR BUSINESS MODEL Dr Phil Reeves, Vice President of Strategic Consulting 1 WARNING I AM NOT A BIOTECHNOLOGIST I AM A MANUFACTURING ENGINEER WITH A DIFFERENCE 6 Who has

More information

www.studymafia.org Seminar report Rapid Prototyping Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical

www.studymafia.org Seminar report Rapid Prototyping Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical A Seminar report On Rapid Prototyping Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface

More information

N A V I G A T I N G T H E D I G I T A L T H R E A D

N A V I G A T I N G T H E D I G I T A L T H R E A D N A V I G A T I N G T H E D I G I T A L T H R E A D U n d e r s t a n d i n g A d d i t i v e M a n u f a c t u r i n g f o r I n d u s t r i a l A p p l i c a t i o n s Presented by: David K. Leigh Senior

More information

Whether plastic, rubber, wood, metal or ceramic,

Whether plastic, rubber, wood, metal or ceramic, Material Guide A practical overview on 3D printing materials Whether plastic, rubber, wood, metal or ceramic, 3D printers can process a wide range of materials. In the following is a brief overview of

More information

3 D Printing Threat or Opportunity? 13:45 p.m./29 April 2014

3 D Printing Threat or Opportunity? 13:45 p.m./29 April 2014 3 D Printing Threat or Opportunity? 13:45 p.m./29 April 2014 Additive Manufacturing Printing...Evolutionary Revolutionary Additive Sensors and Micro Flex Circuits 3 D Printing Prototypes and Production

More information

Whether invoked in the

Whether invoked in the Rapid Prototyping Additive Technologies That Will Reshape Design & Manufacturing CO M P U T I N G I N T H E A R T S By Philip Galanter galanter@nyu.edu Whether invoked in the creation of works of fine

More information

Sinterstation. Pro Direct Metal SLM System

Sinterstation. Pro Direct Metal SLM System Sinterstation Pro Direct Metal SLM System Jim Dier SLS and SLM Systems, Upper Midwest 3D Systems, Inc. 18 July 2008 Introduction Product overview Systems Sinterstation Pro DM100 SLM System Sinterstation

More information

3D Printing and Structural Analysis: Is There an Alternative to FE Analysis for Quick Design Info & for FEM Validation?

3D Printing and Structural Analysis: Is There an Alternative to FE Analysis for Quick Design Info & for FEM Validation? Orange County Chapter 3D Printing and Structural Analysis: Is There an Alternative to FE Analysis for Quick Design Info & for FEM Validation? FW Palmieri, Ph.D. 3/24/2014 Copyright 2014 Raytheon Company.

More information

PRELIMINARY COMPONENT INTEGRATION USING RAPID PROTOTYPING TECHNIQUES

PRELIMINARY COMPONENT INTEGRATION USING RAPID PROTOTYPING TECHNIQUES J! PRELIMINARY COMPONENT INTEGRATION USING RAPID PROTOTYPING TECHNIQUES by Ken Cooper National Aeronautics and Space Administration Building 4707, Marshall Space Flight Center George C. Marshall Space

More information

Glossary. 3D Animation Using computer software to create and animate a three-dimensional representation of image data.

Glossary. 3D Animation Using computer software to create and animate a three-dimensional representation of image data. Glossary # 2D Control Drawing A line drawing showing various views of a product with details such as material, surface finish, volume, tolerances and critical dimensions. 3D Animation Using computer software

More information

SeptemberMMU. Material ConneXion

SeptemberMMU. Material ConneXion SeptemberMMU As part of our promise to provide our clients with the newest and most innovative materials sourced from around the world, we are pleased to present our monthly Materials Update. Here you

More information

Challenge. Today s manufacturers and. product designers demand. fast turnaround of quality parts. to remain competitive and

Challenge. Today s manufacturers and. product designers demand. fast turnaround of quality parts. to remain competitive and Challenge Today s manufacturers and product designers demand fast turnaround of quality parts to remain competitive and effectively bring new products to market. But beyond speed and efficiency, effective

More information

PRECISION PROTOTYPING THE ROLE OF 3D PRINTED MOLDS IN THE INJECTION MOLDING INDUSTRY

PRECISION PROTOTYPING THE ROLE OF 3D PRINTED MOLDS IN THE INJECTION MOLDING INDUSTRY By Lior Zonder, Applications Team Leader Nadav Sella, Solutions Sales Manager, Global Field Operations Injection molding (IM) the process of injecting plastic material into a mold cavity where it cools

More information

As published in PIM International

As published in PIM International As published in PIM International www.pim-international.com 64 Powder Injection Moulding International September 2012 Rapid prototyping of highperformance ceramics opens new opportunities for the CIM industry

More information

Top Five Reasons to Integrate PolyJet Technology into your Product Development Lifecycle

Top Five Reasons to Integrate PolyJet Technology into your Product Development Lifecycle Product Development Lifecycle By Stratasys, Ltd. Rapid prototyping has become a game-changing innovation for designers, engineers and manufacturers since it was introduced two decades ago. Previously,

More information

3M Scotch-Weld EPX Two-component structural adhesives and applicator guns

3M Scotch-Weld EPX Two-component structural adhesives and applicator guns M Scotch-Weld EPX Two-component structural adhesives and applicator guns Innovation What is a structural adhesive? M s high-strength structural adhesives are fundamentally load-bearing formulations. Bond

More information

3D Printing & Medical Technology: New Risks & Potential for Liability Joe Coray, Vice President Corey LaFlamme, Assistant Vice President The Hartford

3D Printing & Medical Technology: New Risks & Potential for Liability Joe Coray, Vice President Corey LaFlamme, Assistant Vice President The Hartford 3D Printing & Medical Technology: New Risks & Potential for Liability Joe Coray, Vice President Corey LaFlamme, Assistant Vice President The Hartford http://www.thehartford.com/business-insurance/life-science-insurance

More information

MEM23131A Evaluate rapid prototyping applications

MEM23131A Evaluate rapid prototyping applications MEM23131A Evaluate rapid prototyping applications Release: 1 MEM23131A Evaluate rapid prototyping applications Modification History Release 1 (MEM05v9). Unit Descriptor This unit of competency covers the

More information

Redeye On Demand. Direct Digital Manufacturing

Redeye On Demand. Direct Digital Manufacturing Redeye On Demand Direct Digital Manufacturing Redeye on Demand Jeff Hanson Manager, Business Development Business Unit of Stratasys Inc Global Business with Digital Production facilities in North America,

More information

Rapid Prototyping and. Reverse Engineering

Rapid Prototyping and. Reverse Engineering Rapid Prototyping and Reverse Engineering A rapid prototyping primer Part 1: Stereolithography...4 Rapid Prototyping...4 Stereolithography...4 The process...4 Supports...5 Post-processing...6 Speed...6

More information

3D Printing: The Next Industrial Revolution? A look into the impacts on the aerospace industry

3D Printing: The Next Industrial Revolution? A look into the impacts on the aerospace industry 3D Printing: The Next Industrial Revolution? A look into the impacts on the aerospace industry By Alan Kendrick, J.D., Nerac Analyst Additive manufacturing (AM), also referred to as 3D Printing, is a term

More information

D-M-E MoldFusion 3D Metal Printing. Mold tooling technology for complex applications conformal cooling, rapid tooling and beyond

D-M-E MoldFusion 3D Metal Printing. Mold tooling technology for complex applications conformal cooling, rapid tooling and beyond D-M-E MoldFusion 3D Metal Printing Mold tooling technology for complex applications conformal cooling, rapid tooling and beyond PAGE 61 Build The Unmachineable You ve seen it before the part demands cooling

More information

INJECTION BLOW MOLDING WITH FDM

INJECTION BLOW MOLDING WITH FDM INJECTION BLOW MOLDING WITH FDM 3D PRODUCTION SYSTEMS Time Required Cost Skill Level By Susan Sciortino, Stratasys Inc. OVERVIEW Blow molding is a manufacturing process in which air pressure inflates heated

More information

3D-Tulostuksen mahdollisuudet nyt ja tulevaisuudessa

3D-Tulostuksen mahdollisuudet nyt ja tulevaisuudessa Teknologia- ja metalliteollisuuden seminaari Marraskuu 2015 3D-Tulostuksen mahdollisuudet nyt ja tulevaisuudessa Jouni Partanen, Aalto University Lääketieteen sovellutukset Kirurkinen suunnittelu Kirurkinen

More information

Rapid prototyping. Global competition, product customisation, accelerated product. Compression Tool. A time compression tool.

Rapid prototyping. Global competition, product customisation, accelerated product. Compression Tool. A time compression tool. DUC PHAM OBE FREng AND STEFAN DIMOV MANUFACTURING ENGINEERING CENTRE, CARDIFF UNIVERSITY TECHNOLOGY AND INNOVATION Images show the frozen stress distribution for a model of an aeroengine turbine rotor

More information

Innovation From Concept to Production

Innovation From Concept to Production Industrial Design Product Development Rapid Prototypes 3D Mold Design Short Run Production Legacy Data Translation Paradigm Engineering, Inc. is built on a foundation of innovation. Our unique expertise

More information

Handling Corrosive or Abrasive Liquids

Handling Corrosive or Abrasive Liquids Handling Corrosive or Abrasive Liquids Defining abrasion and corrosion An abrasive liquid is one that has particles in it. Some, like inks, have very fine particles, while others, like some paints, contain

More information

Selective Laser Sintering of Duraform TM Polyamide with Small-Scale Features

Selective Laser Sintering of Duraform TM Polyamide with Small-Scale Features Selective Laser Sintering of Duraform TM Polyamide with Small-Scale Features Vinay Sriram, Kristin Wood, David Bourell and Joseph J Beaman Department of Mechanical Engineering Laboratory of Freeform Fabrication

More information

Design for Manufacturability Rapid Prototyping Mold Making Production Injection Molding

Design for Manufacturability Rapid Prototyping Mold Making Production Injection Molding Design for Manufacturability Rapid Prototyping Mold Making Production Injection Molding Quality, Precision & Reliability TECH NH, Incorporated (TECH, Inc. ) is a highly technical manufacturing source for

More information

Prototyping Basics Vol. 2

Prototyping Basics Vol. 2 DISCLAIMER This information is provided "as is". The author, publishers and marketers of this information disclaim any loss or liability, either directly or indirectly as a consequence of applying the

More information

An Evaluation of Some Low-cost Rapid Prototyping Systems for Educational Use

An Evaluation of Some Low-cost Rapid Prototyping Systems for Educational Use An Evaluation of Some Low-cost Rapid Prototyping Systems for al Use Wayne Helmer, Damon Mobbs Arkansas Tech University, Arkansas Tech University, Abstract Rapid Prototyping (RP) technology and methods

More information

Additive manufacturing (aka 3D printing) of metallic materials Industrial applications and efficiency of technology

Additive manufacturing (aka 3D printing) of metallic materials Industrial applications and efficiency of technology Additive manufacturing (aka 3D printing) of metallic materials Industrial applications and efficiency of technology MANU Future digital manufacturing technologies and systems P6 Next Generation Manufacturing

More information

Andreas Gebhardt. Rapid Prototyping HANSER. Hanser Publishers, Munich Hanser Gardner Publications, Inc., Cincinnati

Andreas Gebhardt. Rapid Prototyping HANSER. Hanser Publishers, Munich Hanser Gardner Publications, Inc., Cincinnati Andreas Gebhardt Rapid Prototyping HANSER Hanser Publishers, Munich Hanser Gardner Publications, Inc., Cincinnati Contents 1 Product Development - Product Formation - Rapid Product Development 1 1.1 New

More information

Where it s easy to buy custom-designed parts that meet your needs

Where it s easy to buy custom-designed parts that meet your needs INNOVATEYOURFUTURE TRANSPORTATION HEALTHCARE INFRASTRUCTURE/ENERGY AEROSPACE CONSUMER Models and mock-ups, engineering prototypes, pre-production parts, and low- and high-volume manufacturing Services

More information

Choosing optimal rapid manufacturing process for thin-walled products using expert algorithm

Choosing optimal rapid manufacturing process for thin-walled products using expert algorithm Choosing optimal rapid manufacturing process for thin-walled products using expert algorithm Filip Górski, Wiesław Kuczko, Radosław Wichniarek, Adam Dudziak, Maciej Kowalski, Przemysław Zawadzki Poznan

More information

3D opportunity: Additive manufacturing paths to performance, innovation, and growth. Dr. Mark J. Cotteleer. October 1, 2014. Deloitte Services, LLP

3D opportunity: Additive manufacturing paths to performance, innovation, and growth. Dr. Mark J. Cotteleer. October 1, 2014. Deloitte Services, LLP 3D opportunity: Additive manufacturing paths to performance, innovation, and growth October 1, 2014 Dr. Mark J. Cotteleer Deloitte Services, LLP Closing thoughts to keep in mind as you evaluate the business

More information

ADVANCED MATERIALS FOR 3D PRINTING: TECHNOLOGIES AND GLOBAL MARKETS

ADVANCED MATERIALS FOR 3D PRINTING: TECHNOLOGIES AND GLOBAL MARKETS ADVANCED MATERIALS FOR 3D PRINTING: TECHNOLOGIES AND GLOBAL MARKETS AVM101A August 2014 Andrew McWilliams Project Analyst ISBN: 1-56965-905-2 BCC Research 49 Walnut Park, Building 2 Wellesley, MA 02481

More information

WWW.3DSYSTEMS.COM NYSE:DDD

WWW.3DSYSTEMS.COM NYSE:DDD WWW.3DSYSTEMS.COM NYSE:DDD FORWARD LOOKING STATEMENTS This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forwardlooking statements

More information

Additive Manufacturing at GE

Additive Manufacturing at GE Additive Manufacturing at GE Greg Morris Imagination at work. Who We Were Who We Are Page 3 7/27/2014 Pre-GE Acquisition MTI & RQM Founded 1994 Introduced DMLM to NA in 2003 135 employees Services included:

More information

The standard in 3D printer control and cloud encryption

The standard in 3D printer control and cloud encryption The standard in 3D printer control and cloud encryption The standard in 3D printer control and cloud encryption The standard in 3D printer control and cloud encryption Jet Engine Parts Current 3D Printing

More information

RAPID PROTOTYPING TECHNOLOGIES, APPLICATIONS AND PART DEPOSITION PLANNING

RAPID PROTOTYPING TECHNOLOGIES, APPLICATIONS AND PART DEPOSITION PLANNING RAPID PROTOTYPING TECHNOLOGIES, APPLICATIONS AND PART DEPOSITION PLANNING Pulak M. Pandey Department of Mechanical Engineering Indian Institute of Technology Delhi Email: pmpandey@mech.iitd.ac.in 1. INTRODUCTION

More information

Ceralink Capabilities and Opportunities

Ceralink Capabilities and Opportunities Ceralink Capabilities and Opportunities Dr. Holly Shulman President, Materials Scientist Ceralink Inc. Rensselaer Technology Park 105 Jordan Rd. Troy, New York 12180 holly@ceralink.com www.ceralink.com

More information

What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004

What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004 2.008 Design & Manufacturing II What is a mold? From Webster: a cavity in which a substance is shaped: as (1) : a matrix for casting metal (2) : a form in which food is given a decorative shape Spring

More information

Casting. Training Objective

Casting. Training Objective Training Objective After watching the program and reviewing this printed material, the viewer will learn the essentials of the various metal casting processes used in industry today. The basic principles

More information

de l imprimante 3D à la fabrication additive

de l imprimante 3D à la fabrication additive de l imprimante 3D à la fabrication additive Les ateliers de l information Mardi 15 Avril2014 Pierre-Marie Boitel ( GI-Nova / Génie Industriel) Prototyping Physical prototyping facilities Rapid Prototyping,

More information

Text References are to Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010

Text References are to Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 ENGI 3941 Production Technology Problem Set #3 Suggested s Text References are to Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 16: Sheet-Metal Forming Processes 1. Text

More information

Production of Wind Tunnel Testing Models with use of Rapid Prototyping Methods

Production of Wind Tunnel Testing Models with use of Rapid Prototyping Methods Production of Wind Tunnel Testing Models with use of Rapid Prototyping Methods R. ADELNIA 1, S. DANESHMAND 2, S. AGHANAJAFI 3 Mechanical Group, Majlesi Azad University Isfahan IRAN Abstract: In a time

More information

1. Injection Molding (Thermoplastics)

1. Injection Molding (Thermoplastics) 1. Injection Molding (Thermoplastics) l Molding: Injection (thermoplastics) INJECTION MOLDING of thermoplastics is the equivalent of pressure die casting of metals. Molten polymer is injected under high

More information

3D Printer Extruder. Application Note. Martez Steverson ECE 480. Design Team 8 3/28/14. Abstract

3D Printer Extruder. Application Note. Martez Steverson ECE 480. Design Team 8 3/28/14. Abstract 3D Printer Extruder Abstract Application Note By Martez Steverson ECE 480 Design Team 8 3/28/14 The purpose of this paper is to instruct the reader on how to construct an extruder for a 3D printer and

More information

DENTAL CAD/CAM 3D PRINTERS

DENTAL CAD/CAM 3D PRINTERS DENTAL CAD/CAM 3D PRINTERS Production of accurate, highly detailed dental prostheses, precision working models, drill guides and orthodontic thermoforming models Enter the Digital Dentistry Era ENHANCE

More information

DECISION SUPPORT SYSTEM IN RAPID PROTOTYPING TECHNOLOGY Arkadiusz Rzucidło, Grzegorz Budzik, Łukasz Przeszłowski

DECISION SUPPORT SYSTEM IN RAPID PROTOTYPING TECHNOLOGY Arkadiusz Rzucidło, Grzegorz Budzik, Łukasz Przeszłowski Transactions on Business and Engineering Intelligent Applications 111 DECISION SUPPORT SYSTEM IN RAPID PROTOTYPING TECHNOLOGY Arkadiusz Rzucidło, Grzegorz Budzik, Łukasz Przeszłowski Abstract: Article

More information

SCREEN PRINTING INSTRUCTIONS

SCREEN PRINTING INSTRUCTIONS SCREEN PRINTING INSTRUCTIONS For Photo-Imageable Solder Masks and Idents Type 5600 Two Part Solder Masks and Idents Mega Electronics Ltd., Mega House, Grip Industrial Estate, Linton, Cambridge, ENGLAND

More information

COMPANYB EVENT NAME is produced by SME

COMPANYB EVENT NAME is produced by SME CONFERENCE AND EXPOSITION rapid3devent.com may 16-19, 2016 exhibits may 17-19 orange county convention center west building orlando, fl produced by COMPANYB EVENT NAME is produced by SME rapid the leading

More information

Sample Pages. Andreas Gebhardt. Understanding Additive Manufacturing. Rapid Prototyping - Rapid Tooling - Rapid Manufacturing

Sample Pages. Andreas Gebhardt. Understanding Additive Manufacturing. Rapid Prototyping - Rapid Tooling - Rapid Manufacturing Sample Pages Andreas Gebhardt Understanding Additive Manufacturing Rapid Prototyping - Rapid Tooling - Rapid Manufacturing ISBN (Buch): 978-3-446-42552-1 ISBN (E-Book): 978-3-446-43162-1 For further information

More information

Efficient Rapid Prototyping Mechanism Using Vacuum Casting (VC) Process

Efficient Rapid Prototyping Mechanism Using Vacuum Casting (VC) Process Efficient Rapid Prototyping Mechanism Using Vacuum Casting (VC) Process Deepika Jijotiya 1, Dr. P. L. Verma 2, Prof. Sanjay jain 3, Dr. L.Bajpai 4, Prof. A.Manoria 5 Department of Mechanical, Samrat Ashok

More information

Francis Owusu-Dompreh. for the Degree of. Master of Science in Engineering. in the. Industrial and Systems Engineering. Program

Francis Owusu-Dompreh. for the Degree of. Master of Science in Engineering. in the. Industrial and Systems Engineering. Program Application of Rapid Manufacturing Technologies to Integrated Product Development in Clinics and Medical Manufacturing Industries. by Francis Owusu-Dompreh Submitted in Partial Fulfillment of the Requirements

More information

Rapid Prototyping of Robotic Systems

Rapid Prototyping of Robotic Systems Rapid Prototyping of Robotic Systems Jey Won 1, Kathryn DeLaurentis 2 and Constantinos Mavroidis 3 Robotics and Mechatronics Laboratory Department of Mechanical and Aerospace Engineering Rutgers University,

More information

ORNL Manufacturing Demonstration Facility Technical Collaboration Final Report

ORNL Manufacturing Demonstration Facility Technical Collaboration Final Report ORNL Manufacturing Demonstration Facility Technical Collaboration Final Report Using Direct Metal Deposition to Fabricate Mold Plates for an Injection Mold Machine Allowing for the Evaluation of Cost Effective

More information

Tech Transfer to Start-up and Manufacturing - Fabrication. Chris Moody

Tech Transfer to Start-up and Manufacturing - Fabrication. Chris Moody Tech Transfer to Start-up and Manufacturing - Fabrication Chris Moody Fabrication Incubators Business incubators can be just office space with business services and advice or they can provide early manufacturing

More information

Overview. Creation of 3D printed phantoms for clinical radiation therapy 7/7/2015. Eric Ehler, PhD Assistant Professor University of Minnesota

Overview. Creation of 3D printed phantoms for clinical radiation therapy 7/7/2015. Eric Ehler, PhD Assistant Professor University of Minnesota Creation of 3D printed phantoms for clinical radiation therapy Eric Ehler, PhD Assistant Professor University of Minnesota ehler 046@umn.edu Overview Background of 3D Printing Practical Information Current

More information

3D Printed Injection Molding Tool ("PIMT") Guide. Objet Ltd.

3D Printed Injection Molding Tool (PIMT) Guide. Objet Ltd. 3D Printed Injection Molding Tool ("PIMT") Guide Objet Ltd. 2 Injection molding is a high speed, automated and versatile process that can produce high precision complex three dimensional parts from a fraction

More information

Z Corporation 3D Printing Technology. Fast, Affordable and Uniquely Versatile

Z Corporation 3D Printing Technology. Fast, Affordable and Uniquely Versatile Z Corporation 3D Printing Technology Fast, Affordable and Uniquely Versatile Introduction Originally developed at the Massachusetts Institute of Technology (MIT) in 1993, Three- Dimensional Printing technology

More information