Network Reconfiguration for Service Restoration in Shipboard Power Distribution Systems

Size: px
Start display at page:

Download "Network Reconfiguration for Service Restoration in Shipboard Power Distribution Systems"

Transcription

1 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER Network Reconfiguration for Service Restoration in Shipboard Power Distribution Systems Karen L. Butler, Senior Member, IEEE, N. D. R. Sarma, Senior Member, IEEE, and V. Ragendra Prasad Abstract The electric power systems of U.S. Navy ships supply energy to sophisticated systems for weapons, communications, navigation and operation. Circuit breakers (CBs) and fuses are provided at different locations for isolation of faulted loads, generators or distribution system from unfaulted portions of the system. These faults could be due to widespread system fault resulting from battle damage or material casualties of individual loads or cables. After the faults and subsequent isolation of the faults, there will be unfaulted sections that are left without supply. Fast restoration of supply to these unfaulted sections of the SPS is necessary for system survivability. This paper presents a new method to reconfigure the network to restore service to unfaulted sections of the system. The problem is formulated as a variation of fixed charge network flow problem. The method is illustrated using various case studies on a small power system with similar topology to a shipboard power system. Index Terms Network flow method, optimization, reconfiguration, restoration, shipboard power systems. I. INTRODUCTION SHIPBOARD Power Systems (SPS) consist of generators that are connected in ring configuration through generator switchboard [1]. Bus tie circuit breakers interconnect the generator switchboards that allow for the transfer of power from one switchboard to another. Load centers and some loads are supplied from generator switchboards. Load centers in turn supply power to loads directly and supply power to power panels to which some loads are connected. Feeders supplying power to load centers, power panels, loads are radial in nature. Hence the system below the generator switchboards, referred to as the shipboard distribution system by the authors, is radial. Loads are categorized as either vital or nonvital. For vital loads, two sources of power (normal and alternate supply) are provided from separate sources via automatic bus transfers (ABTs) or manual bus transfers (MBTs). Circuit breakers (CBs) and fuses are provided at different locations for isolation of faulted loads, generators or distribution system from unfaulted portions of the system. These faults could be due to widespread system fault resulting from battle damage or material casualties of individual loads or cables. After the faults and subsequent isolation of the faults, there will be unfaulted sections that are left without supply. Fast restoration of Manuscript received April 7, 2000; revised June 7, This work was supported by the Office of Naval Research, USA under Grant N K. L. Butler and N. D. R. Sarma are with the Power System Automation Lab and the Department of Electrical Engineering, Texas A&M University, College Station, TX USA ( klbutler@ee.tamu.edu; ndrsarma@ieee.org). V. R. Prasad is with the Knowledge Based Systems, Inc., College Station, TX USA ( rajvelaga@earthlink.net). Publisher Item Identifier S (01)09424-X. supply to these unfaulted sections of the SPS is necessary for system survivability. Also it is important to maintain the radial nature of the system, for ease of fault location and isolation, and coordination of the protective devices. Additionally, the capacities of the generators and cables must not be violated and voltage magnitudes at each node should be within tolerable limits. The existing shipboard protection systems have several shortcomings in providing continuous supply under battle and certain major failure conditions. The control strategies that are implemented when these types of damage occur are not effective in isolating only the loads affected by the damage, and most significantly are highly dependent on human intervention to manually reconfigure the distribution system to restore power to healthy loads. With the U.S. Navy demands for reduced manning and increased system survivability, new techniques are needed which efficiently and automatically restore service under catastrophic situations. Their goals are to increase survivability, eliminate human mistakes, make intelligent reconfiguration decisions more quickly, reduce the manpower required to perform the functions, and provide optimal electric power service through the surviving system. Shipboard power systems are very similar to isolated utility systems in that the available generators are the only source of supply for the system loads. There are, however, several differences between utility and shipboard power systems, such as ships have large dynamic loads relative to generator size and a larger portion of nonlinear loads relative to power generation capacity, and transmission lines are not nearly as significant as for utilities because of their short lengths. In the literature there are several papers [2] [12] discussing the restoration problem for utility systems. Most of the methods are based on heuristic search techniques. Some of the methods are based on graph theory [9] [11]. Aoki et al. [2] and Lee and Grainger [12] attempt to use network flow approach to solve the problem of service restoration for utility systems. As pointed out by Lee and Grainger [12], the method of Aoki et al. [2] would handle multiple faults as a series of sub-problems and has some limitations. In the method suggested by Lee and Grainger [12], the optimal solution obtained by solving the maximal flow problem is disturbed to meet the radial condition and finally conclude that straightforward application of network flow approach is not suitable for solving the problem for utility systems. The authors for the first time have attempted to present an automatic service restoration method for SPS. This method uses as a basis the restoration techniques developed for utility systems while including in the formulation features that exploit the unique characteristics of SPS topologies. The proposed method comes under the category of network flow methods /01$ IEEE

2 654 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER 2001 Unlike the method of [12], this method does not modify the optimal solution to take care of the radial condition. The proposed formulation is such that it will directly give the optimal solution satisfying the radial constraint. In SPS, the generators are connected in ring configuration through generator switchboards, bus-tie breakers and cable connecting generator switchboards. All components below the generator switchboards are operated in radial configuration and faults on any of these components may interrupt power supply to some loads. If the fault is not on a component in the ring, the network is modified by merging the generator switchboards, bus-tie breakers, and cables connecting these switchboards. This reduced network is used to reconfigure the network to restore the service. On the other hand if the fault is one of the components connected in the ring, then that component is assumed to be isolated from the system and remaining network is used to reconfigure to restore the service. It may be noted that, when a component in a ring is removed, the total network becomes radial. In a previous article by the authors [13], the problem was formulated as a variation of fixed charge network flow problem [14], but did not include voltage constraints which make the formulation more complex. This paper discusses the final version of the method that directly incorporates voltage constraints in the problem formulation and solution. An innovative technique has been developed to formulate the problem as a mixed integer linear optimization problem for which an optimal solution can be easily obtained. The proposed method does not need load flow/power flow analysis to verify the current capacity and voltage constraints. It directly suggests the reconfigured network that restores maximum load satisfying the constraints and also ensuring the radial condition. In this paper, several lemmas and their proofs are given to validate the proposed problem formulation. Further the proposed method has been applied to a simple shipboard power system and various case studies are presented to illustrate the effectiveness of the proposed formulation. The paper is organized as follows. Section II presents the mathematical problem formulation. Lemmas and their proofs are given in Section III. Section IV presents the generalized procedure for reconfiguration for service restoration in shipboard power systems. This is illustrated using various case studies in Section V. Conclusions are given in Section VI. Fig. 1. Example system. II. MATHEMATICAL PROBLEM FORMULATION Consider a simplified shipboard power system (SPS) as shown in Fig. 1. This system consists of three generators connected in a ring configuration. Two generators supply power while the third generator is an emergency generator. Some loads are connected to the load center directly and some via ABT/MBT s. The loads connected via ABT/MBT have an alternate supply. Graphical representation of this system is shown in Fig. 2. Each ABT/MBT is represented with two switches as shown in Fig. 3. Since supply should be from only one source (in radial systems), only one of these switches is in closed position at any given time. The edges in thick lines indicate normal paths and the edges in dotted lines indicate Fig. 2. Fig. 3. Graphical representation of example system. Modeling of ABT/MBT. alternate paths. The switches in open and closed position are depicted as and, respectively.

3 BUTLER et al.: NETWORK RECONFIGURATION FOR SERVICE RESTORATION IN SHIPBOARD POWER DISTRIBUTION SYSTEMS 655 Whenever there is a fault on any of the edges and after it is isolated, there would be no supply to the loads on the paths that are beyond the faulted edge. Supply has to be restored to most of these affected loads, by closing some of the switches that are open. This has to be done while satisfying the capacity and voltage constraints and ensuring the radial condition. Also it is possible that battle damage could initiate several simultaneous faults which affect several loads. In such cases, supply has to be restored to maximum load satisfying the constraints. The mathematical formulation of this problem is described in the following section. A. Problem Formulation The problem is formulated as a variation of the fixed charge network flow problem [14]. Let represent the set of nodes and represent set of edges in the network. The set represents the network under consideration. Let represent the capacity of edge. represents available power with respect to a source or a flow capacity constraint in case of a component like cable or circuit breaker. Let represent the set of load nodes in the network. Let represent the set of edges that are in closed position. Therefore, the set represents the set of open edges in the network. After the fault occurs, there are some edges that are faulty and some that are not faulty. Let represent the set of edges that are faultless. Now the set of edges which are available for the restoration of power to all load points given in is given by and the network would be represented by the set. In this work, DC models of data and electrical behavior have been used. Even though the DC analysis yields approximate results, the optimization algorithm will still tend to determine the optimal configuration among various candidate configurations based on voltage drop and other costs [15]. At a node, let represent the set of edges, for which current flows into the node, and the set of edges for which current flows out of the node where represents the directed edge from node to. Similarly, where represents the directed edge from node to. Let be the flow in edge. Let be defined as follows: if edge is closed otherwise. To restore service through reconfiguration, some of the edges of have to be closed. The mathematical formulation of the problem is shown below with its objective function and constraints. (1) (2) Objective Function: Maximize (3) It may be noted that the above equation represents maximization of the total load supplied at load nodes where represents the load current at node. Constraints: a) At any source node, the sum of the flows going out of the source node should not exceed the total capacity of the respective source node b) At any node, (except source node) sum of flows into the node should be equal to sum of the flows coming out of the node. At a load node At any other intermediate node c) For any load, the load that can be restored is maximum up to its rating for variable type of loads. But for fixed type of loads, it can be restored either to its rating or cannot be restored at all. At a load node which is variable type At a load node which is fixed type where is a 0 1 variable. This will ensure that in the solution is either or 0. d) The flow in an edge must be zero if the edge is open and it must not exceed the capacity of the edge otherwise (4) (5) (6) (7) (8) for (9) e) The system should be radial. This implies that at any node there should be only one edge feeding that node f) Voltages at all nodes should be within tolerable limits: (10) for (11) The expressions for the voltage at any node can be written in terms of voltage of the node that feeds to the node through

4 656 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER 2001 where is a constant which is very large when compared to node voltages. It may be noted that in addition to these constraints, there is also the following constraint on as per (11): (17) Fig. 4. Triplet (i, i, m). an edge. If node is feeding node through an edge, then voltage at node can be written as follows: (12) where is the impedance of edge. Since the system is radial in nature, expressions for voltages can be written starting from the source node whose voltage is assumed to be known. All expressions for voltages in terms of flows and voltages are written as equality constraints in the problem formulation. Since some loads have a normal and an alternate supply path, a node may have more than one edge connected to it. However, only one of the edges is actually feeding the node. For example, consider a node connected to nodes and through edges and whose impedance are and respectively and flows in these edges are and, respectively. Let the set of nodes be referred to as triplet as shown in Fig. 4. Suppose that node is connected from node through edge whose impedance is. Let be the flow in the edge. Depending upon which edge is feeding the node, the voltage at node can be written as follows: when edge or when edge is feeding is feeding In other words, the expression for voltage at node written as (13) (14) can be (15) It may be noted that, due to the radial condition, one of the variables and is equal to one, while the other will be equal to zero. Therefore, the value of will be calculated correctly based on the values of s (status of edges). If the problem is formulated with (15) as one of the constraints, the problem will be nonlinear in nature. Any solution procedure for nonlinear optimization problems usually involves lots of computational effort. Moreover, there is no guarantee that the solution obtained is exactly optimal [16]. Therefore, it is preferable to formulate the problem as a mixed integer linear optimization problem, so that the solution is always optimal. Accordingly, the following expressions are written for the voltage at nodes of type (16.a) (16.b) These constraints will ensure that while optimizing the loads (which affect the flows in the edges), the voltage constraints are also satisfied. The constraints given in (16.a) and (16.b) can also be written as equality constraints as follows: (18.a) (18.b) where and are slack variables. If this problem [presented in (3) (12) and (18)] is solved, it will ensure that the restored network would restore supply power to as much load as possible and also all the capacity and voltage constraints are satisfied. Further, this would also ensure radial condition. It is important to prove that the model represented by (15), the nonlinear model, and the model represented by (18.a) and (18.b), the linear model, give the same optimal solution. This is discussed in the next section. III. PROOF FOR PROPOSED MODELING OF VOLTAGE CONSTRAINTS Let represent the model described by (3) (12) and (15). Similarly let represent the model described by (3) (12), and (18). It is required to prove that the models and give the same optimal objective function value. We shall argue that under the condition for all, any optimal solution (,, )of can be transformed into an optimal solution of. In order to prove this, it is sufficient to prove the following lemmas. Lemma 1: Any feasible solution of is a feasible solution of. Lemma 2: If an optimal solution of is feasible for, then it is also optimal for. Lemma 3: Under the condition for all,any optimal solution of can be transformed into an optimal solution of. The proof of these lemmas is given in the following paragraphs. Lemma 1: Any feasible solution of is a feasible solution of. Proof: Let (,, ) be an arbitrary feasible solution of. Then it satisfies the conditions (4) (12) and satisfies (15) for every triplet (,, ) as described in Fig. 4. Consider a triplet (,, ) of nodes as described in Fig. 4. Then (,, ) satisfies (15) for this triplet. It implies or and (19) and (20)

5 BUTLER et al.: NETWORK RECONFIGURATION FOR SERVICE RESTORATION IN SHIPBOARD POWER DISTRIBUTION SYSTEMS 657 Suppose (19) holds true. Then (16.a) holds as strict equality while (16.b) holds as strict inequality (as is an extremely large positive value). Similarly, when (20) holds true, (16.a) and (16.b) hold as strict inequality and strict equality constraints, respectively. Similarly (16.a) and (16.b) hold for each triplet where a node is connected to two other nodes. It means that the solution (,, ) satisfies (3) (12), (16.a) and (16.b). This implies that (,, ) is a feasible solution of. This Lemma also implies that the set of feasible solutions of is a subset of feasible solutions of. Lemma 2: If an optimal solution of is feasible for, then it is also optimal for. Proof: From Lemma 1, it follows that the set of feasible solutions of is a subset of feasible solutions of. Therefore, if an optimal solution (,, )of is feasible for, then it is also optimal for. Lemma 3: Under the condition for all,any optimal solution of can be transformed into an optimal solution of. Proof: Let (,, ) be an optimal solution of. Let the upper limits on voltages be the same for all nodes, that is, for all. Under these conditions, we shall prove that any optimal solution (, )of can be transformed into an optimal solution of by increasing the values, if necessary, of some of the s. Consider a triplet (,, ) of nodes as shown in Fig. 4. One of the following cases occurs: Case (a):,, Case (b):,, Case (c):,, Case (d):,,. Also, it may be noted that, as per constraint (11), we have and If case (a) occurs, increase and the voltages of nodes downstream of node (in the direction of the flow) by, where is given by (21) If case (b) occurs, increase and the voltages of nodes downstream of node (in the direction of the flow) by, where is given by (22) In either case, the new voltages do not exceed the upper bound as can be seen in Fig. 5. In Fig. 5, and indicate the modified voltages at nodes and for the triplet (,, ) for Case (a). For cases (c) and (d), no changes are made to the voltages because they satisfy (15). Let denote the vector of voltages of all nodes after making the necessary modifications. Then (,, ) satisfies the constraint (15) for the triplet (,, ). Repeating this procedure for every triplet of nodes, we finally get a feasible solution (,, )of that satisfies (15) for all triplets in the network and thus is feasible for. Note that this solution is also feasible and optimal for (as the Fig. 5. Modification of voltages as in proof of Lemma 3: Case (a). vectors and remain unchanged in the transformation). Therefore, (,, ) is optimal for by Lemma 2. It follows from the analysis that an optimal solution of can be obtained by solving the linear model and making an appropriate transformation on voltages as described in Lemma 3. This approach to solve is efficient because we can get an exact optimal solution of the linear system. Moreover, it is relatively easy to solve a linear system such as. As the main objective is to determine an optimal configuration that maximizes the total load satisfying all the constraints, the variables of interest are the optimal values of and for. Since the optimal solution of and the corresponding optimal solution of have the same and, it is sufficient to determine and in the optimal solution for.ifthe voltages in the optimal solution of are required, then the transformation on the optimal solution of is performed as described in Lemma 3. IV. GENERAL PROCEDURE FOR RECONFIGURATION The generalized procedure for reconfiguration for service restoration in shipboard distribution systems based on the theory and problem formulation discussed earlier can be summarized as given below. Step 1) Develop the graphical representation of the given shipboard power system and number the components and nodes in some order. Step 2) If there are any generators connected in ring configuration, then go to step 3. Else go to step 4. Step 3) If there is a fault on any of the component connected in the ring, go to step 3.1. Else go to step 3.2. Step 3.1: The faulted component in the ring is removed from the system. Merge all the nodes corresponding to the generator switchboards connected together in a ring. Establish a fictitious node and a fictitious edge connecting this fictitious node to the merged node. This fictitious node represents a source node whose capacity is equal to the total capacity of the generators connected together and supplying power. The capacity of the fictitious edge is equal to the total capacity of the generators connected together. Go to step 4.

6 658 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER 2001 Step 3.2: Merge all the nodes corresponding to the generator switchboards connected together in a ring. Establish a fictitious node and a fictitious edge connecting this fictitious node to the merged node. This fictitious node represents the source node whose capacity is equal to the total capacity of the generators connected in the ring and supplying power. The capacity of the fictitious edge is equal to the total capacity of the generators connected in the ring. Step 4) Assign variables and to each component (referred to an edge in the graph) in the network. Variable represents flow in an edge and represents status (0 open; 1 close) of the edge. Also assign a variable to each load. Also for each load which cannot be varied discretely assign a 0 1 integer variable. Step 5) Formulate the problem for nonfaulted case as stated in (3) (12), and (18). Simulate the fault conditions by adding/modifying the constraints to the basic problem. Step 6) Solve the optimization problem using a commercial optimization package such as CPLEX [17]. Step 7) The solution gives the reconfigured network. The optimal values of indicate the status of all components (edges) in the reconfigured network. The optimal values of indicate the flows in components. The optimal values of for each load. Step 8) End. indicate the load supplied Fig. 6. Graphical representation of example system 1 after merging components in ring configuration. V. ILLUSTRATION OF THE PROPOSED METHOD To illustrate the restoration method, let s consider an example using the system shown in Fig. 1. Suppose there is a fault on the cable (edge 15) connecting load (at node 17). After it is isolated, there would be no power to the load at node 17 (as can be seen in Fig. 1). In step 1, the graphical representation would be developed as shown in Fig. 2. As explained in step 3 of the procedure, if there are no faults on the components connected in ring, Fig. 2 will be modified as shown in Fig. 6 by merging the nodes corresponding to the generator switchboards connected in ring. In Fig. 6, node 29 represents the new node after merging the generator switchboards and bus-tie-breakers (nodes 2, 21, 22, 11, 26, 25, 24, 27, 28). Node 30 represents the new source node whose capacity is equal to the sum of the capacities of generators supplying power at nodes 1, 10 and 23. Accordingly, the capacity of edge 31 is equal to the capacity of source node 30. If there are faults on components 23 and 30 (bus tie breakers) that are on the ring configuration, Fig. 2 will be modified as shown in Fig. 7. In Fig. 7, node 29 represents the new node after merging two switchboards and bus-tie-breakers (nodes 21, 22, 11, 26, 25, 24, 27, 28). Node 30 represents a new source node whose capacity is the sum of the capacities of generators supplying power at nodes 10 and 23. Accordingly the capacity of the edge 31 is the capacity of the source node 30. In this case generator connected at node 1 will be isolated and will be the source node 1 as shown in Fig. 7. Fig. 7. Graphical representation of example system with faulted generator. It is assumed that the loads, and can be varied from zero amps to 40, 40 and 30 amps, respectively. Such loads represent lump loads consisting of several individual loads. Load is assumed to be a fixed load of 30 amps. To facilitate modeling of the loads as discussed above, a 0 1 integer variable is associated with loads that have fixed values. Accordingly, the loads are modeled as follows. This will ensure that optimal values of loads can be maximum value of 40 amps in case of and ; and maximum value of 30 amps in case of, whereas the optimal value of can be either 0 or 30 amps Also in this example, it is assumed that values of impedance of all edges are 0.01 ohms. The voltage limits are assumed to be

7 BUTLER et al.: NETWORK RECONFIGURATION FOR SERVICE RESTORATION IN SHIPBOARD POWER DISTRIBUTION SYSTEMS (min) and 118 (max) volts at all nodes. Also it is assumed that the capacity of each edge is 80 amps. It is also assumed that the current capacity of each of the generator is 60 amps. Various case studies are presented below to illustrate the effectiveness of the proposed method. For these case studies, the CPLEX program [17] is used to solve each resulting optimization problem. CPLEX is a tool for solving linear optimization problems. It implements optimizers based on the simplex algorithms (both primal and dual simplex) as well as primal dual logarithmic barrier algorithms. CPLEX also solves mixed integer and quadratic problems. Further CPLEX offers a network optimizer aimed at a special class of linear problems with network structures such as a network flow problem. A. Case 1 Case 1.1: Initially, the system without any faults is studied. Based on the explanation given earlier the system is modeled as follows. Objective function: Maximize Subject to: Source node constraint; Initial configuration details; Load details; Load node constraints; Intermediate node constraints; It may be noted that the variables (i.e., flows) should be positive and the variables and should be 0 1 integer variables. In most optimization packages, these need not be indicated explicitly as constraints. The solution obtained from the CPLEX package is as follows: Total load amps Edge capacity constraints; This solution gives the values of flows in the edges satisfying the capacity and voltage constraints and supplying a maximum amount of the loads. Case 1.2: To see the effectiveness of the model, let us put a severe voltage constraint at node 12 as: Radial constraints; Voltage constraints; If the optimization is solved with this modified constraint, the optimal values of loads are:,,,. This indicates that only 20 amps of could be fed under these constraints. Further, since can be either 30 or 0 amps, it was equal to zero amps to satisfy the strict voltage constraints. Case 1.3: Let the capacity of edge 11 which is feeding the load be modified (reduced) to 20 amps when compared to

8 660 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER 2001 Case 1.1. This is done by changing the respective capacity constraint as: The optimization solution to this problem with the above constraint would give the optimal values of the load as,,,. It can be seen that since the load is 30 amps and the capacity of edge 11 is less than or equal to 20 amps, this load cannot be fed. Accordingly the value of. In summary, this case illustrates that the proposed modeling/formulation will supply as much load as possible satisfying the constraints. B. Case 2 In this case, faults on components will be simulated and then the proposed optimization formulation is solved to restore maximum load satisfying the constraints. Simulation of fault: A fault on any component (edge) is simulated in the model by equating the respective flow variable and 0 1 variable (status variable ) to zero. This is done because when there is a fault in a component, this component is not available and there cannot be any flow in it. Because of the fault and after isolating the fault, there will be some loads that will be left without supply. Such loads, referred to as affected loads, need to have their power restored. Also the status of switches at the affected load(s) (which are constrained to be closed in the initial configuration) are now removed from the constraints. This will allow exploration of alternate paths for restoration. Case 2.1: Consider a fault on the circuit breaker (CB) (edge 14) feeding the load (at node 17). Because of this fault, the load will be affected and left without supply. This case is modeled as follows. Since the fault is on component 14, 14 and 14 are now made equal to zero (indicating that this component is not available). Also the affected load due to this fault is (at node 17). The status of the switch at this load,, is now removed from the constraints. It may be noted that initially (unfaulted case). The other constraints are the same as in Case 1.1. Formulating the problem as explained with these modifications, CPLEX generates the following results Total load amps The solution suggests that, indicating that switch 17 was closed to restore service to the affected load (at node 17) and all the loads can be fed satisfying the current and voltage constraints. Case 2.2: Consider a case wherein there is a fault on a component that would affect a load that has no alternate path, referred to as a nonvital load. In such a case, service cannot be restored to that affected load until the fault is repaired. This case is illustrated as follows. Assume that there is a fault on CB (edge 3) supplying load (at node 4) which has no alternate path and a fault on the cable (edge 6) connecting the load (at node 20) which has an alternate path. Faults on components were modeled as explained in the previous case. The optimal solution generated by CPLEX is as follows Total load amps The solution indicates that the optimal value of, meaning that switch 8 was closed to restore supply to load. Further, load cannot be restored since there is no alternate power supply path for it. Also since the capacity limit on edge 10 is 80 amps, only 20 amps of can be supplied. Case 2.3: Assume there is a fault on the components 23 and 30, which represent the bus tie breakers that tie together the generator switchboards in ring configuration. Fig. 2 is modified to Fig. 7 following the procedure explained in step 3. It can be seen that the generator connected at node 1 is isolated. The problem is formulated as explained in the procedure. The optimal solution generated by CPLEX is,, and. Now load is supplied through switch 8 to supply maximum load. The generator at node 1 will supply load. Various cases have been studied using the proposed restoration method by applying it to a small system, similar in topology to a shipboard power system. The cases demonstrate the ability of the restoration method to configure the system within the constraints when there is not a fault, and to reconfigure the system in the presence of a fault. The results obtained matched the expected results exactly. The authors have also tested the proposed method for a large SPS that was based on an actual surface combatant ship. All cases demonstrated that the proposed method provides the optimal solution for service restoration in shipboard distribution systems. VI. CONCLUSION A new and simple method of reconfiguration for service restoration in shipboard power systems was presented. The service restoration problem is formulated as a variation of the fixed charge network flow problem. Since it is in a mixed integer linear form, an optimal result is ensured. The proposed method restores a maximum amount of load while satisfying the capacity and voltage constraints directly. Further, it ensures that the resulting topology is radial. The accuracy of this method has been illustrated through several case studies on a simple shipboard power system. Faults

9 BUTLER et al.: NETWORK RECONFIGURATION FOR SERVICE RESTORATION IN SHIPBOARD POWER DISTRIBUTION SYSTEMS 661 in the network are easily modeled in the formulation. In the studies, the CPLEX optimization package was used to generate solutions for the resulting network. The proposed method does not require any load flow/power flow analysis to verify the current and voltage constraints. It directly suggests the reconfigured network that satisfies the current and voltage constraints. The results from the case studies were very good. Large shipboard power systems have also been studied with similar success. Future work entails adding a procedure for including load priorities in the solution methodology, probably using expert system technology. ACKNOWLEDGMENT The authors would like to thank the reviewers for their valuable comments that improved the quality of the paper. REFERENCES [1] K. L. Butler, N. D. R. Sarma, C. Whitcomb, H. Do Carmo, and H. Zhang, Shipboard systems deploy automated protection, IEEE Computer Applications in Power, vol. 11, no. 2, pp , [2] S. Curcic, C. S. Ozveren, L. Crowe, and P. K. L. Lo, Electric power distribution network restoration: A survey of papers and a review of the restoration problem, Electric Power Systems Research, vol. 35, pp , [3] K. Aoki, H. Kuwabara, T. Satoh, and M. Kanezashi, Outage state optimal load allocation by automatic sectionalising switches operation in distribution system, IEEE Trans. Power Delivery, vol. 2, no. 4, pp , Oct [4] C.-C. Liu, S. J. Lee, and S. S. Venkata, An expert system operation aid for restoration and loss reduction of distribution systems, IEEE Trans. Power Systems, vol. 3, no. 2, pp , May [5] T. Taylor and D. Lubkeman, Implementation of heuristic search strategies for distribution feeder reconfiguration, IEEE Trans. Power Delivery, vol. 5, no. 1, pp , Jan [6] S. Curcic, C. S. Ozveren, and K. L. Lo, Computer-based strategy for the restoration problem in electric power distribution systems, IEE Proc. on Generation, Transmission and Distribution, vol. 144, no. 5, pp , Sept [7] K. N. Miu, H.-D. Chiang, B. Yuan, and G. Darling, Fast service restoration for large-scale distribution systems with priority customers and constraints, in Proc. of the 20th International Conference on Power Industry Applications, 1997, 97CH36013, pp [8] Q. Zhou, D. Shirmohammadi, and W.-H. E. Liu, Distribution feeder reconfiguration for service restoration and load balancing, IEEE Trans. Power Systems, vol. 12, no. 2, pp , May [9] A. M. Stankovic and M. S. Calovic, Graph-oriented algorithm for the steady state security enhancement in distribution networks, IEEE Trans. Power Delivery, vol. 4, no. 1, pp , Jan [10] E. N. Dialynas and D. G. Michos, Interactive modeling of supply restoration procedures in distribution system operation, IEEE Trans. Power Delivery, vol. 4, no. 3, pp , July [11] N. D. R. Sarma, V. C. Prasad, K. S. P. Rao, and V. Sankar, A new network reconfiguration technique for service restoration in distribution networks, IEEE Trans. Power Delivery, vol. 9, no. 4, pp , Oct [12] S. S. H. Lee and J. J. Grainger, Evaluation of the applicability of the network flow approach to the emergency service restoration problem, in Proc. of the 1988 IEEE International Symposium on Circuits and Systems, 88CH2458-8, pp [13] K. L. Butler, N. D. R. Sarma, and V. R. Prasad, A new method of network reconfiguration for service restoration in shipboard power systems, in Proc IEEE Power Engineering Society Transmission and Distribution Conf., pp [14] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization: Wiley Interscience Publications, 1988, pp. 8, [15] H. L. Willis, Power Distribution Planning Reference Book. New York: Marcell Dekker, Inc., 1997, p [16] S. G. Nash, Nonlinear programming, ORMS Today, vol. 25, no. 3, pp , June [17] ILOG CPLEX, ILOG, Inc., Mountain View, CA, version 6.5, Karen L. Butler (M 90 SM 01) is an associate professor in the department of electrical engineering at Texas A&M University. She received the B.S. degree from Southern University-Baton Rouge in 1985, the M.S. degree from the University of Texas at Austin in 1987, and the Ph.D. degree from Howard University in 1994, all in electrical engineering. In , Dr. Butler was a Member of Technical Staff at Hughes Aircraft Co. in Culver City, CA. She received a 1995 NSF Faculty Career Award and 1999 Office of Naval Research Young Investigator Award. Her research focuses on the areas of computer and intelligent systems applications in power, power distribution automation, and modeling and simulation of vehicles and power systems. Dr. Butler is a Senior Member of IEEE, IEEE Power Engineering Society, and the Louisiana Engineering Society. She is a registered professional engineer in the State of Louisiana, Texas, and Mississippi. N. D. R. Sarma (M 86 SM 01) received the B.Tech (electrical) and M.Tech (power systems) degrees from Regional Engineering College, Warangal, India in 1983 and 1986, respectively, and the Ph.D. degree from Indian Institute of Technology, Delhi, India in From February 1992 to October 2000, he was with the R&D Division of CMC Limited, Hyderabad, India. From October 1997 to June 1999, (on sabbatical leave from CMC) and since November 2000, he is working at Texas A&M University, College Station, TX, USA, as a Post Doctoral Research Associate. His areas of interest include Load Dispatch and Distribution Automation Systems for power utilities. He is a Senior Member of IEEE and IEEE Power Engineering Society. V. Ragendra Prasad received the B.S. (mathematics) and M.S. (statistics) degrees from Andhra University, Waltair, India in 1974 and 1977, respectively, and the Ph.D. degree from Indian Statistical Institute (ISI), Calcutta, India in He served as tenured faculty of SQC and OR Division of ISI during He worked as visiting faculty at Washington State University, Pullman during January August 1996 and at Texas A&M University, College Station, during September 1996 to December Since January 1999, he has been working with Knowledge Based Systems, Inc., College Station. Dr. Prasad provides consulting services to manufacturing industries on mathematical modeling and simulations of problems in engineering, process control and system design. His research interest are system reliability optimization, quality control, stochastic models and mathematical programming. He is a co-author of a book entitled Optimal Reliability Design: Fundamentals and Applications, that was published by Cambridge University Press in January He is a member of INFORMS and life member of Operations Research Society of India and National Institute for Quality and Reliability (India).

Service restoration in naval shipboard power systems

Service restoration in naval shipboard power systems Service restoration in naval shipboard power systems K.L. Butler-Purry, N.D.R. Sarma and I.V. Hicks Abstract: Service restoration is an important problem in naval shipboard power systems. When faults occur

More information

Simulation of Ungrounded Shipboard Power Systems in PSpice

Simulation of Ungrounded Shipboard Power Systems in PSpice Simulation of Ungrounded Shipboard Power Systems in PSpice Haibo Zhang IEEE Student Member Karen L.Butler IEEE Member Power System Automation Lab Electrical Engineering Department Texas A&M University

More information

A Reactive Tabu Search for Service Restoration in Electric Power Distribution Systems

A Reactive Tabu Search for Service Restoration in Electric Power Distribution Systems IEEE International Conference on Evolutionary Computation May 4-11 1998, Anchorage, Alaska A Reactive Tabu Search for Service Restoration in Electric Power Distribution Systems Sakae Toune, Hiroyuki Fudo,

More information

A Direct Numerical Method for Observability Analysis

A Direct Numerical Method for Observability Analysis IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 625 A Direct Numerical Method for Observability Analysis Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper presents an algebraic method

More information

Optimal Branch Exchange for Feeder Reconfiguration in Distribution Networks

Optimal Branch Exchange for Feeder Reconfiguration in Distribution Networks Optimal Branch Exchange for Feeder Reconfiguration in Distribution Networks Qiuyu Peng and Steven H. Low Engr. & App. Sci., Caltech, CA Abstract The feeder reconfiguration problem chooses the on/off status

More information

Phase Balancing of Distribution Systems Using a Heuristic Search Approach

Phase Balancing of Distribution Systems Using a Heuristic Search Approach Phase Balancing of Distribution Systems Using a Heuristic Search Approach Lin, Chia-Hung*, Kang, Meei-Song**, Chuang, Hui-Jen**, and Ho, Chin-Ying** *National Kaohsiung University of Applied Sciences **Kao

More information

OPTIMAL DISTRIBUTION PLANNING INCREASING CAPACITY AND IMPROVING EFFICIENCY AND RELIABILITY WITH MINIMAL-COST ROBUST INVESTMENT

OPTIMAL DISTRIBUTION PLANNING INCREASING CAPACITY AND IMPROVING EFFICIENCY AND RELIABILITY WITH MINIMAL-COST ROBUST INVESTMENT OPTIMAL DISTRIBUTION PLANNING INCREASING CAPACITY AND IMPROVING EFFICIENCY AND RELIABILITY WITH MINIMAL-COST ROBUST INVESTMENT L.A.F.M. Ferreira, P.M.S. Carvalho IST S.N.C. Grave L.M.F. Barruncho L.A.

More information

Flexible Ship Electric Power System Design

Flexible Ship Electric Power System Design Dr. K. L. Butler and Dr. M. Ehsani Flexible Ship Electric Power System Design Abstract This paper discusses new techniques which will reduce manning requirements and increase the reliability of continuous

More information

Dynamic Load Management for NG IPS Ships

Dynamic Load Management for NG IPS Ships 1 Dynamic Load Management for NG IS Ships Xianyong Feng, Student Member, IEEE, Tais Zourntos, Senior Member, IEEE, Karen L. Butler- urry, Senior Member, IEEE, and Salman Mashayeh, Student Member, IEEE

More information

Analysis of Load Frequency Control Performance Assessment Criteria

Analysis of Load Frequency Control Performance Assessment Criteria 520 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 3, AUGUST 2001 Analysis of Load Frequency Control Performance Assessment Criteria George Gross, Fellow, IEEE and Jeong Woo Lee Abstract This paper presents

More information

Radial Distribution Network Reconfiguration for Loss Reduction and Load Balancing using Plant Growth Simulation Algorithm

Radial Distribution Network Reconfiguration for Loss Reduction and Load Balancing using Plant Growth Simulation Algorithm International Journal on Electrical Engineering and Informatics - olume 2, Number 4, 2010 Radial Distribution Network Reconfiguration for Loss Reduction and Load Balancing using Plant Growth imulation

More information

IMPROVED NETWORK PARAMETER ERROR IDENTIFICATION USING MULTIPLE MEASUREMENT SCANS

IMPROVED NETWORK PARAMETER ERROR IDENTIFICATION USING MULTIPLE MEASUREMENT SCANS IMPROVED NETWORK PARAMETER ERROR IDENTIFICATION USING MULTIPLE MEASUREMENT SCANS Liuxi Zhang and Ali Abur Department of Electrical and Computer Engineering Northeastern University Boston, MA, USA lzhang@ece.neu.edu

More information

Chapter 1. Network Structures

Chapter 1. Network Structures Chapter 1 Network Structures Definition Standard IEC 60038 defines voltage ratings as follows: Low voltage (): for a phase-to-phase voltage of between 100 V and 1,000 V, the standard ratings are: 400 V

More information

A Network Flow Approach in Cloud Computing

A Network Flow Approach in Cloud Computing 1 A Network Flow Approach in Cloud Computing Soheil Feizi, Amy Zhang, Muriel Médard RLE at MIT Abstract In this paper, by using network flow principles, we propose algorithms to address various challenges

More information

A Survey of Models and Algorithms for Emergency Response Logistics in Electric Distribution Systems - Part II: Contingency Planning Level

A Survey of Models and Algorithms for Emergency Response Logistics in Electric Distribution Systems - Part II: Contingency Planning Level A Survey of Models and Algorithms for Emergency Response Logistics in Electric Distribution Systems - Part II: Contingency Nathalie Perrier Bruno Agard Pierre Baptiste Jean-Marc Frayret André Langevin

More information

A Numerical Study on the Wiretap Network with a Simple Network Topology

A Numerical Study on the Wiretap Network with a Simple Network Topology A Numerical Study on the Wiretap Network with a Simple Network Topology Fan Cheng and Vincent Tan Department of Electrical and Computer Engineering National University of Singapore Mathematical Tools of

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

For a phase-to-phase voltage between 100 V and 1000 V. The standard ratings are: 400 V - 690 V - 1000 V (at 50 Hz)

For a phase-to-phase voltage between 100 V and 1000 V. The standard ratings are: 400 V - 690 V - 1000 V (at 50 Hz) 24 1. NETWORK CONFIGURATIONS definition Standard IEC 38 defines voltage ratings as follows: - Low voltage () For a phase-to-phase voltage between 100 V and 1000 V. The standard ratings are: 400 V - 690

More information

APPLICATION OF ADVANCED SEARCH- METHODS FOR AUTOMOTIVE DATA-BUS SYSTEM SIGNAL INTEGRITY OPTIMIZATION

APPLICATION OF ADVANCED SEARCH- METHODS FOR AUTOMOTIVE DATA-BUS SYSTEM SIGNAL INTEGRITY OPTIMIZATION APPLICATION OF ADVANCED SEARCH- METHODS FOR AUTOMOTIVE DATA-BUS SYSTEM SIGNAL INTEGRITY OPTIMIZATION Harald Günther 1, Stephan Frei 1, Thomas Wenzel, Wolfgang Mickisch 1 Technische Universität Dortmund,

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

Multi-layer Structure of Data Center Based on Steiner Triple System

Multi-layer Structure of Data Center Based on Steiner Triple System Journal of Computational Information Systems 9: 11 (2013) 4371 4378 Available at http://www.jofcis.com Multi-layer Structure of Data Center Based on Steiner Triple System Jianfei ZHANG 1, Zhiyi FANG 1,

More information

Student Project Allocation Using Integer Programming

Student Project Allocation Using Integer Programming IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 3, AUGUST 2003 359 Student Project Allocation Using Integer Programming A. A. Anwar and A. S. Bahaj, Member, IEEE Abstract The allocation of projects to students

More information

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE/ACM TRANSACTIONS ON NETWORKING 1 A Greedy Link Scheduler for Wireless Networks With Gaussian Multiple-Access and Broadcast Channels Arun Sridharan, Student Member, IEEE, C Emre Koksal, Member, IEEE,

More information

arxiv:1507.04820v1 [cs.cc] 17 Jul 2015

arxiv:1507.04820v1 [cs.cc] 17 Jul 2015 The Complexity of Switching and FACTS Maximum-Potential-Flow Problems Karsten Lehmann 2,1, Alban Grastien 2,1, and Pascal Van Hentenryck 1,2 arxiv:1507.04820v1 [cs.cc] 17 Jul 2015 1 Artificial Intelligence

More information

New Supervisory Control and Data Acquisition (SCADA) Based Fault Isolation System for Low Voltage Distribution Systems

New Supervisory Control and Data Acquisition (SCADA) Based Fault Isolation System for Low Voltage Distribution Systems International Conference on Computer and Communication Engineering (ICCCE 2010), 11-13 May 2010, Kuala Lumpur, Malaysia New Supervisory Control and Data Acquisition (SCADA) Based Fault Isolation System

More information

Effect of Remote Back-Up Protection System Failure on the Optimum Routine Test Time Interval of Power System Protection

Effect of Remote Back-Up Protection System Failure on the Optimum Routine Test Time Interval of Power System Protection Effect of Remote Back-Up Protection System Failure on the Optimum Routine Test Time Interval of Power System Protection Y. Damchi* and J. Sadeh* (C.A.) Abstract: Appropriate operation of protection system

More information

Effect of Remote Back-Up Protection System Failure on the Optimum Routine Test Time Interval of Power System Protection

Effect of Remote Back-Up Protection System Failure on the Optimum Routine Test Time Interval of Power System Protection Effect of Remote Back-Up Protection System Failure on the Optimum Routine Test Time Interval of Power System Protection Y. Damchi* and J. Sadeh* (C.A.) Abstract: Appropriate operation of protection system

More information

F.C. Chan General Manager, CLP Engineering Ltd., Hong Kong SAR, China

F.C. Chan General Manager, CLP Engineering Ltd., Hong Kong SAR, China ELECTRIC POWER DISTRIBUTION SYSTEMS F.C. Chan General Manager, CLP Engineering Ltd., Hong Kong SAR, China Keywords: Distribution system planning, Load characteristics, Subtransmission Lines, Distribution

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Performance of networks containing both MaxNet and SumNet links

Performance of networks containing both MaxNet and SumNet links Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial re and education use, including for instruction at the authors institution

More information

SYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis

SYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis SYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October 17, 2015 Outline

More information

Computing the Electricity Market Equilibrium: Uses of market equilibrium models

Computing the Electricity Market Equilibrium: Uses of market equilibrium models Computing the Electricity Market Equilibrium: Uses of market equilibrium models Ross Baldick Department of Electrical and Computer Engineering The University of Texas at Austin April 2007 Abstract We discuss

More information

Load Balancing and Switch Scheduling

Load Balancing and Switch Scheduling EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load

More information

Impact of Remote Control Failure on Power System Restoration Time

Impact of Remote Control Failure on Power System Restoration Time Impact of Remote Control Failure on Power System Restoration Time Fredrik Edström School of Electrical Engineering Royal Institute of Technology Stockholm, Sweden Email: fredrik.edstrom@ee.kth.se Lennart

More information

New Method for Optimum Design of Pyramidal Horn Antennas

New Method for Optimum Design of Pyramidal Horn Antennas 66 New Method for Optimum Design of Pyramidal Horn Antennas Leandro de Paula Santos Pereira, Marco Antonio Brasil Terada Antenna Group, Electrical Engineering Dept., University of Brasilia - DF terada@unb.br

More information

Security-Aware Beacon Based Network Monitoring

Security-Aware Beacon Based Network Monitoring Security-Aware Beacon Based Network Monitoring Masahiro Sasaki, Liang Zhao, Hiroshi Nagamochi Graduate School of Informatics, Kyoto University, Kyoto, Japan Email: {sasaki, liang, nag}@amp.i.kyoto-u.ac.jp

More information

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce

More information

Distributed and Scalable QoS Optimization for Dynamic Web Service Composition

Distributed and Scalable QoS Optimization for Dynamic Web Service Composition Distributed and Scalable QoS Optimization for Dynamic Web Service Composition Mohammad Alrifai L3S Research Center Leibniz University of Hannover, Germany alrifai@l3s.de Supervised by: Prof. Dr. tech.

More information

SOFTWARE PERFORMANCE EVALUATION ALGORITHM EXPERIMENT FOR IN-HOUSE SOFTWARE USING INTER-FAILURE DATA

SOFTWARE PERFORMANCE EVALUATION ALGORITHM EXPERIMENT FOR IN-HOUSE SOFTWARE USING INTER-FAILURE DATA I.J.E.M.S., VOL.3(2) 2012: 99-104 ISSN 2229-6425 SOFTWARE PERFORMANCE EVALUATION ALGORITHM EXPERIMENT FOR IN-HOUSE SOFTWARE USING INTER-FAILURE DATA *Jimoh, R. G. & Abikoye, O. C. Computer Science Department,

More information

Single-Link Failure Detection in All-Optical Networks Using Monitoring Cycles and Paths

Single-Link Failure Detection in All-Optical Networks Using Monitoring Cycles and Paths Single-Link Failure Detection in All-Optical Networks Using Monitoring Cycles and Paths Satyajeet S. Ahuja, Srinivasan Ramasubramanian, and Marwan Krunz Department of ECE, University of Arizona, Tucson,

More information

Impact of electric vehicles on the IEEE 34 node distribution infrastructure

Impact of electric vehicles on the IEEE 34 node distribution infrastructure International Journal of Smart Grid and Clean Energy Impact of electric vehicles on the IEEE 34 node distribution infrastructure Zeming Jiang *, Laith Shalalfeh, Mohammed J. Beshir a Department of Electrical

More information

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics

More information

Adaptive Linear Programming Decoding

Adaptive Linear Programming Decoding Adaptive Linear Programming Decoding Mohammad H. Taghavi and Paul H. Siegel ECE Department, University of California, San Diego Email: (mtaghavi, psiegel)@ucsd.edu ISIT 2006, Seattle, USA, July 9 14, 2006

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Integrating Benders decomposition within Constraint Programming

Integrating Benders decomposition within Constraint Programming Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP

More information

A Tool for Generating Partition Schedules of Multiprocessor Systems

A Tool for Generating Partition Schedules of Multiprocessor Systems A Tool for Generating Partition Schedules of Multiprocessor Systems Hans-Joachim Goltz and Norbert Pieth Fraunhofer FIRST, Berlin, Germany {hans-joachim.goltz,nobert.pieth}@first.fraunhofer.de Abstract.

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

ANN Based Fault Classifier and Fault Locator for Double Circuit Transmission Line

ANN Based Fault Classifier and Fault Locator for Double Circuit Transmission Line International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Special Issue-2, April 2016 E-ISSN: 2347-2693 ANN Based Fault Classifier and Fault Locator for Double Circuit

More information

Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

More information

Study on Differential Protection of Transmission Line Using Wireless Communication

Study on Differential Protection of Transmission Line Using Wireless Communication Study on Differential Protection of Transmission Line Using Wireless Communication George John.P 1, Agna Prince 2, Akhila.K.K 3, Guy Marcel 4, Harikrishnan.P 5 Professor, Dept. of EEE, MA Engineering College,

More information

at which branching takes place, a "middleman," if you will. See the transship model panel. ABSTRACT

at which branching takes place, a middleman, if you will. See the transship model panel. ABSTRACT Optimal Solution of Discrete Resource Allocation Problems with SAS/OR Software by LTC Doug McAllaster, US Army Logistics Management College, Fort Lee, VA ABSTRACT This paper is a tutorial on how to use

More information

SECRET sharing schemes were introduced by Blakley [5]

SECRET sharing schemes were introduced by Blakley [5] 206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006 Secret Sharing Schemes From Three Classes of Linear Codes Jin Yuan Cunsheng Ding, Senior Member, IEEE Abstract Secret sharing has

More information

Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network

Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Qian Wu, Yahui Wang, Long Zhang and Li Shen Abstract Building electrical system fault diagnosis is the

More information

International Journal of Software and Web Sciences (IJSWS) www.iasir.net

International Journal of Software and Web Sciences (IJSWS) www.iasir.net International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International

More information

Single machine parallel batch scheduling with unbounded capacity

Single machine parallel batch scheduling with unbounded capacity Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

White Paper. Convergence of Information and Operation Technologies (IT & OT) to Build a Successful Smart Grid

White Paper. Convergence of Information and Operation Technologies (IT & OT) to Build a Successful Smart Grid White Paper Convergence of Information and Operation Technologies (IT & OT) to Build a Successful Smart Grid Contents Executive Summary... 3 Integration of IT and OT... 4 Smarter Grid using Integrated

More information

6545(Print), ISSN 0976 6553(Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN 0976 6553(Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

Testing and Evaluating New Software Solutions for Automated Analysis of Protective Relay Operations

Testing and Evaluating New Software Solutions for Automated Analysis of Protective Relay Operations Testing and Evaluating New Software Solutions for Automated Analysis of Protective Relay Operations M. Kezunovic, X. Luo, N. Zhang, and H. Song Abstract This paper presents the test and evaluation environments

More information

WITH the growing economy, the increasing amount of disposed

WITH the growing economy, the increasing amount of disposed IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, VOL. 30, NO. 2, APRIL 2007 147 Fast Heuristics for Designing Integrated E-Waste Reverse Logistics Networks I-Lin Wang and Wen-Cheng Yang Abstract

More information

Email: mod_modaber@yahoo.com. 2Azerbaijan Shahid Madani University. This paper is extracted from the M.Sc. Thesis

Email: mod_modaber@yahoo.com. 2Azerbaijan Shahid Madani University. This paper is extracted from the M.Sc. Thesis Introduce an Optimal Pricing Strategy Using the Parameter of "Contingency Analysis" Neplan Software in the Power Market Case Study (Azerbaijan Electricity Network) ABSTRACT Jalil Modabe 1, Navid Taghizadegan

More information

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,

More information

Randomization Approaches for Network Revenue Management with Customer Choice Behavior

Randomization Approaches for Network Revenue Management with Customer Choice Behavior Randomization Approaches for Network Revenue Management with Customer Choice Behavior Sumit Kunnumkal Indian School of Business, Gachibowli, Hyderabad, 500032, India sumit kunnumkal@isb.edu March 9, 2011

More information

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

More information

A progressive method to solve large-scale AC Optimal Power Flow with discrete variables and control of the feasibility

A progressive method to solve large-scale AC Optimal Power Flow with discrete variables and control of the feasibility A progressive method to solve large-scale AC Optimal Power Flow with discrete variables and control of the feasibility Manuel Ruiz, Jean Maeght, Alexandre Marié, Patrick Panciatici and Arnaud Renaud manuel.ruiz@artelys.com

More information

Genetic Algorithm Based Interconnection Network Topology Optimization Analysis

Genetic Algorithm Based Interconnection Network Topology Optimization Analysis Genetic Algorithm Based Interconnection Network Topology Optimization Analysis 1 WANG Peng, 2 Wang XueFei, 3 Wu YaMing 1,3 College of Information Engineering, Suihua University, Suihua Heilongjiang, 152061

More information

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Thatipamula Venkatesh M.Tech, Power System Control and Automation, Department of Electrical & Electronics Engineering,

More information

Res. J. Appl. Sci. Eng. Technol., 8(24): 2439-2450, 2014

Res. J. Appl. Sci. Eng. Technol., 8(24): 2439-2450, 2014 Research Journal of Applied Sciences, Engineering and Technology 8(24): 2439-2450, 2014 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2014 Submitted: September 22, 2014 Accepted:

More information

CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma

CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma Please Note: The references at the end are given for extra reading if you are interested in exploring these ideas further. You are

More information

Competitive Analysis of On line Randomized Call Control in Cellular Networks

Competitive Analysis of On line Randomized Call Control in Cellular Networks Competitive Analysis of On line Randomized Call Control in Cellular Networks Ioannis Caragiannis Christos Kaklamanis Evi Papaioannou Abstract In this paper we address an important communication issue arising

More information

Support Vector Machines with Clustering for Training with Very Large Datasets

Support Vector Machines with Clustering for Training with Very Large Datasets Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano

More information

On the Road to. Duke takes the road less traveled and arrives at a new level of distribution automation.

On the Road to. Duke takes the road less traveled and arrives at a new level of distribution automation. On the Road to Intelligent CONTINUOUS REMOTE MONITORING INTEGRATED VOLT/VAR CONTROL Duke takes the road less traveled and arrives at a new level of distribution automation. LAYING A SOLID FOUNDATION In

More information

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically

More information

Scaling 10Gb/s Clustering at Wire-Speed

Scaling 10Gb/s Clustering at Wire-Speed Scaling 10Gb/s Clustering at Wire-Speed InfiniBand offers cost-effective wire-speed scaling with deterministic performance Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400

More information

Decentralized Utility-based Sensor Network Design

Decentralized Utility-based Sensor Network Design Decentralized Utility-based Sensor Network Design Narayanan Sadagopan and Bhaskar Krishnamachari University of Southern California, Los Angeles, CA 90089-0781, USA narayans@cs.usc.edu, bkrishna@usc.edu

More information

ONE OF THE anticipated main benefits of a distribution

ONE OF THE anticipated main benefits of a distribution Reconfiguration and Load Balancing in the LV and MV Distribution Networks for Optimal Performance Mukwanga W. Siti, Dan Valentin Nicolae, Adisa A. Jimoh, Member, IEEE, and Abhisek Ukil Abstract To get

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Power systems form the largest man made complex system. It basically consists of generating sources, transmission network and distribution centers. Secure and economic operation

More information

A New Approach For Estimating Software Effort Using RBFN Network

A New Approach For Estimating Software Effort Using RBFN Network IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 008 37 A New Approach For Estimating Software Using RBFN Network Ch. Satyananda Reddy, P. Sankara Rao, KVSVN Raju,

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

Routing in Line Planning for Public Transport

Routing in Line Planning for Public Transport Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARC E. PFETSCH RALF BORNDÖRFER Routing in Line Planning for Public Transport Supported by the DFG Research

More information

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Autonomous Fault Detection and Recovery System in Large-scale Networks

Autonomous Fault Detection and Recovery System in Large-scale Networks Autonomous Fault Detection and Recovery System in Large-scale Networks Raheel Ahmed Memon 1, Yeonseung Ryu, Abdul Qadir Rahimoo Abstract In networks like Combat ship data network, the Ethernet is required

More information

Technology, Kolkata, INDIA, pal.sanjaykumar@gmail.com. sssarma2001@yahoo.com

Technology, Kolkata, INDIA, pal.sanjaykumar@gmail.com. sssarma2001@yahoo.com Sanjay Kumar Pal 1 and Samar Sen Sarma 2 1 Department of Computer Science & Applications, NSHM College of Management & Technology, Kolkata, INDIA, pal.sanjaykumar@gmail.com 2 Department of Computer Science

More information

Increased power protection with parallel UPS configurations

Increased power protection with parallel UPS configurations Increased power protection with parallel UPS configurations Making the selection between Centralized Bypass and Distributed Bypass systems Janne Paananen Application Engineer, Large Systems Group Eaton

More information

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1001-1006

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1001-1006 A Design of Centralized Meeting Scheduler with Distance Metrics M. Sugumaran Department of Computer Science and Engineering,Pondicherry Engineering College, Puducherry, India. Abstract Meeting scheduling

More information

A Fast Path Recovery Mechanism for MPLS Networks

A Fast Path Recovery Mechanism for MPLS Networks A Fast Path Recovery Mechanism for MPLS Networks Jenhui Chen, Chung-Ching Chiou, and Shih-Lin Wu Department of Computer Science and Information Engineering Chang Gung University, Taoyuan, Taiwan, R.O.C.

More information

MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory

MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory Jun WuÝ, Sheng ChenÞand Jian ChuÝ ÝNational Laboratory of Industrial Control Technology Institute of Advanced Process Control Zhejiang University,

More information

Big Data: A Geometric Explanation of a Seemingly Counterintuitive Strategy

Big Data: A Geometric Explanation of a Seemingly Counterintuitive Strategy Big Data: A Geometric Explanation of a Seemingly Counterintuitive Strategy Olga Kosheleva and Vladik Kreinovich University of Texas at El Paso 500 W. University El Paso, TX 79968, USA olgak@utep.edu, vladik@utep.edu

More information

GENERALIZED INTEGER PROGRAMMING

GENERALIZED INTEGER PROGRAMMING Professor S. S. CHADHA, PhD University of Wisconsin, Eau Claire, USA E-mail: schadha@uwec.edu Professor Veena CHADHA University of Wisconsin, Eau Claire, USA E-mail: chadhav@uwec.edu GENERALIZED INTEGER

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks

A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks Mohammad Ali Sandidzadeh School of Railway Engineering, Iran University of Science & Technology, Tehran, Iran Tel: 98-21-7749-1030

More information

9700 South Cass Avenue, Lemont, IL 60439 URL: www.mcs.anl.gov/ fulin

9700 South Cass Avenue, Lemont, IL 60439 URL: www.mcs.anl.gov/ fulin Fu Lin Contact information Education Work experience Research interests Mathematics and Computer Science Division Phone: (630) 252-0973 Argonne National Laboratory E-mail: fulin@mcs.anl.gov 9700 South

More information

ENHANCED HYBRID FRAMEWORK OF RELIABILITY ANALYSIS FOR SAFETY CRITICAL NETWORK INFRASTRUCTURE

ENHANCED HYBRID FRAMEWORK OF RELIABILITY ANALYSIS FOR SAFETY CRITICAL NETWORK INFRASTRUCTURE ENHANCED HYBRID FRAMEWORK OF RELIABILITY ANALYSIS FOR SAFETY CRITICAL NETWORK INFRASTRUCTURE Chandana Priyanka G. H., Aarthi R. S., Chakaravarthi S., Selvamani K. 2 and Kannan A. 3 Department of Computer

More information

Offline sorting buffers on Line

Offline sorting buffers on Line Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: rkhandekar@gmail.com 2 IBM India Research Lab, New Delhi. email: pvinayak@in.ibm.com

More information

QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES

QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering

More information