DATA MINING DECISION TREE INDUCTION

Size: px
Start display at page:

Download "DATA MINING DECISION TREE INDUCTION"

Transcription

1 DATA MINING DECISION TREE INDUCTION 1

2 Classification Techniques Linear Models Support Vector Machines Decision Tree based Methods Rule-based Methods Memory based reasoning Neural Networks Naïve Bayes and Bayesian Belief Networks Support Vector Machines 2

3 10 Example of a Decision Tree Tid Refund Marital Status Taxable Income Cheat Splitting Attributes 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes Refund Yes No NO MarSt Single, Divorced TaxInc < 80K > 80K NO YES Married NO Training Data Model: Decision Tree 3

4 10 Another Decision Tree Example Tid Refund Marital Status Taxable Income 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Cheat 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes Married NO MarSt Yes NO Single, Divorced Refund NO No TaxInc < 80K > 80K YES More than one tree may perfectly fit the data 4

5 10 10 Decision Tree Classification Task Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes Induction Tree Induction algorithm 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No 10 No Small 90K Yes Training Set Tid Attrib1 Attrib2 Attrib3 Class 11 No Small 55K? Learn Model Apply Model Model Decision Tree 12 Yes Medium 80K? 13 Yes Large 110K? Deduction 14 No Small 95K? 15 No Large 67K? Test Set 5

6 10 Apply Model to Test Data Start from the root of tree. Test Data Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? NO Single, Divorced MarSt Married TaxInc < 80K > 80K NO NO YES 6

7 10 Apply Model to Test Data Test Data Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? NO Single, Divorced MarSt Married TaxInc < 80K > 80K NO NO YES 7

8 10 Apply Model to Test Data Test Data Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? NO Single, Divorced MarSt Married TaxInc < 80K > 80K NO NO YES 8

9 10 Apply Model to Test Data Test Data Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? NO Single, Divorced MarSt Married TaxInc < 80K > 80K NO NO YES 9

10 10 Apply Model to Test Data Test Data Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? NO Single, Divorced MarSt Married TaxInc < 80K > 80K NO NO YES 10

11 10 Apply Model to Test Data Test Data Refund Marital Status Taxable Income Cheat Refund No Married 80K? Yes No NO Single, Divorced MarSt Married Assign Cheat to No TaxInc NO < 80K > 80K NO YES 11

12 Decision Tree Terminology 12

13 Decision Tree Induction Many Algorithms: Hunt s Algorithm (one of the earliest) CART ID3, C4.5 SLIQ,SPRINT John Ross Quinlan is a computer science researcher in data mining and decision theory. He has contributed extensively to the development of decision tree algorithms, including inventing the canonical C4.5 and ID3 algorithms. 13

14 Antenna Length Decision Tree Classifier Abdomen Length Ross Quinlan Abdomen Length > 7.1? no yes Antenna Length > 6.0? Katydid no yes Grasshopper Katydid 14

15 Antennae shorter than body? Yes No 3 Tarsi? Grasshopper Yes No Foretiba has ears? Cricket Yes No Decision trees predate computers Katydids Camel Cricket 15

16 Definition Decision tree is a classifier in the form of a tree structure Decision node: specifies a test on a single attribute Leaf node: indicates the value of the target attribute Arc/edge: split of one attribute Path: a disjunction of test to make the final decision Decision trees classify instances or examples by starting at the root of the tree and moving through it until a leaf node. 16

17 Decision Tree Classification Decision tree generation consists of two phases Tree construction At start, all the training examples are at the root Partition examples recursively based on selected attributes This can also be called supervised segmentation This emphasizes that we are segmenting the instance space Tree pruning Identify and remove branches that reflect noise or outliers 17

18 Decision Tree Representation Each internal node tests an attribute Each branch corresponds to attribute value Each leaf node assigns a classification outlook sunny overcast rain humidity yes wind high normal strong weak no yes no yes 18

19 How do we Construct a Decision Tree? Basic algorithm (a greedy algorithm) Tree is constructed in a top-down recursive divideand-conquer manner At start, all the training examples are at the root Examples are partitioned recursively based on selected attributes. Test attributes are selected on the basis of a heuristic or statistical measure (e.g., info. gain) Why do we call this a greedy algorithm? Because it makes locally optimal decisions (at each node). 19

20 When Do we Stop Partitioning? All samples for a node belong to same class No remaining attributes majority voting used to assign class No samples left 20

21 How to Pick Locally Optimal Split Hunt s algorithm: recursively partition training records into successively purer subsets. How to measure purity/impurity? Entropy and associated information gain Gini Classification error rate Never used in practice but good for understanding and simple exercises 21

22 How to Determine Best Split Before Splitting: 10 records of class 0, 10 records of class 1 Own Car? Car Type? Student ID? Yes No Family Luxury c 1 c 10 c 20 Sports c 11 C0: 6 C1: 4 C0: 4 C1: 6 C0: 1 C1: 3 C0: 8 C1: 0 C0: 1 C1: 7 C0: 1 C1: 0... C0: 1 C1: 0 C0: 0 C1: 1... C0: 0 C1: 1 Which test condition is the best? Why is student id a bad feature to use? 22

23 How to Determine Best Split Greedy approach: Nodes with homogeneous class distribution are preferred Need a measure of node impurity: C0: 5 C1: 5 Non-homogeneous, High degree of impurity C0: 9 C1: 1 Homogeneous, Low degree of impurity 23

24 Information Theory Think of playing "20 questions": I am thinking of an integer between 1 and 1, what is it? What is the first question you would ask? What question will you ask? Why? Entropy measures how much more information you need before you can identify the integer. Initially, there are 1000 possible values, which we assume are equally likely. What is the maximum number of question you need to ask? 24

25 Entropy Entropy (disorder, impurity) of a set of examples, S, relative to a binary classification is: Entropy ( S) p1 log 2( p1) p0 log 2( p0) where p 1 is the fraction of positive examples in S and p 0 is fraction of negatives. If all examples are in one category, entropy is zero (we define 0 log(0)=0) If examples are equally mixed (p 1 =p 0 =0.5), entropy is a maximum of 1. For multi-class problems with c categories, entropy generalizes to: Entropy ( S) c i 1 p i log ( p i 2 ) 25

26 Entropy for Binary Classification The entropy is 0 if the outcome is certain. The entropy is maximum if we have no knowledge of the system (or any outcome is equally possible). Entropy of a 2-class problem with regard to the portion of one of the two groups 26

27 Information Gain in Decision Tree Induction Is the expected reduction in entropy caused by partitioning the examples according to this attribute. Assume that using attribute A, a current set will be partitioned into some number of child sets The encoding information that would be gained by branching on A Gain( A) E( Current set) E( all child sets ) The summation in the above formula is a bit misleading since when doing the summation we weight each entropy by the fraction of total examples in the particular child set. This applies to GINI and error rate also. 27

28 Examples for Computing Entropy Entropy t) p( j t)log p( j t) j ( 2 NOTE: p( j t) is computed as the relative frequency of class j at node t C1 0 C2 6 P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Entropy = 0 log log 2 1 = 0 0 = 0 C1 1 C2 5 P(C1) = 1/6 P(C2) = 5/6 Entropy = (1/6) log 2 (1/6) (5/6) log 2 (5/6) = 0.65 C1 2 C2 4 P(C1) = 2/6 P(C2) = 4/6 Entropy = (2/6) log 2 (2/6) (4/6) log 2 (4/6) = 0.92 C1 3 C2 3 P(C1) = 3/6=1/2 P(C2) = 3/6 = 1/2 Entropy = (1/2) log 2 (1/2) (1/2) log 2 (1/2) = -(1/2)(-1) (1/2)(-1) = ½ + ½ = 1 28

29 How to Calculate log 2 x Many calculators only have a button for log 10 x and log e x ( log typically means log 10 ) You can calculate the log for any base b as follows: log b (x) = log k (x) / log k (b) Thus log 2 (x) = log 10 (x) / log 10 (2) Since log 10 (2) =.301, just calculate the log base 10 and divide by.301 to get log base 2. You can use this for HW if needed 29

30 Splitting Based on INFO... Information Gain: k ni GAIN Entropy( p) Entropy( i) split i 1 n Parent Node, p is split into k partitions; n i is number of records in partition i Uses a weighted average of the child nodes, where weight is based on number of examples Used in ID3 and C4.5 decision tree learners WEKA s J48 is a Java version of C4.5 Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

31 How Split on Continuous Attributes? For continuous attributes Partition the continuous value of attribute A into a discrete set of intervals Create a new boolean attribute A c, looking for a threshold c One method is to try all possible splits A c true if Ac c false otherwise How to choose c? 31

32 Person Hair Length Weight Age Class Homer M Marge F Bart M Lisa F Maggie F Abe M Selma F Otto M Krusty M Comic ? 32

33 p p n Entropy( S) log 2 log2 p n p n p n n p n yes Hair Length <= 5? no Entropy(4F,5M) = -(4/9)log 2 (4/9) - (5/9)log 2 (5/9) = Let us try splitting on Hair length Gain( A) E( Current set) E( all child sets ) Gain(Hair Length <= 5) = (4/9 * /9 * ) =

34 p p n Entropy ( S) log 2 log 2 p n p n p n n p n yes Weight <= 160? no Entropy(4F,5M) = -(4/9)log 2 (4/9) - (5/9)log 2 (5/9) = Let us try splitting on Weight Gain( A) E( Current set) E( all child sets ) Gain(Weight <= 160) = (5/9 * /9 * 0 ) =

35 p p n Entropy ( S) log 2 log 2 p n p n p n n p n yes age <= 40? no Entropy(4F,5M) = -(4/9)log 2 (4/9) - (5/9)log 2 (5/9) = Let us try splitting on Age Gain( A) E( Current set) E( all child sets ) Gain(Age <= 40) = (6/9 * 1 + 3/9 * ) =

36 Of the 3 features we had, Weight was best. But while people who weigh over 160 are perfectly classified (as males), the under 160 people are not perfectly classified So we simply recurse! yes Weight <= 160? no This time we find that we can split on Hair length, and we are done! yes Hair Length <= 2? no 36

37 We don t need to keep the data around, just the test conditions. Weight <= 160? yes no How would these people be classified? Hair Length <= 2? Male yes no Male Female 37

38 It is trivial to convert Decision Trees to rules Weight <= 160? yes no Hair Length <= 2? yes no Male Male Female Rules to Classify Males/Females If Weight greater than 160, classify as Male Elseif Hair Length less than or equal to 2, classify as Male Else classify as Female Note: could avoid use of elseif by specifying all test conditions from root to corresponding leaf. 38

39 Once we have learned the decision tree, we don t even need a computer! This decision tree is attached to a medical machine, and is designed to help nurses make decisions about what type of doctor to call. Decision tree for a typical shared-care setting applying the system for the diagnosis of prostatic obstructions. 39

40 The worked examples we have seen were performed on small datasets. However with small datasets there is a great danger of overfitting the data When you have few datapoints, there are many possible splitting rules that perfectly classify the data, but will not generalize to future datasets. Yes Wears green? No Female Male For example, the rule Wears green? perfectly classifies the data, so does Mothers name is Jacqueline?, so does Has blue shoes 40

41 GINI is Another Measure of Impurity Gini for a given node t with classes j GINI( t) 1 j [ p( j t)] 2 NOTE: p( j t) is again computed as relative frequency of class j at node t Compute best split by computing the partition that yields the lowest GINI where we again take the weighted average of the children s GINI Best GINI = 0.0 Worst GINI = 0.5 C1 0 C2 6 Gini=0.000 C1 1 C2 5 Gini=0.278 C1 2 C2 4 Gini=0.444 C1 3 C2 3 Gini=

42 Splitting Criteria based on Classification Error Classification error at a node t : Error( t) 1 max P( i t) i Measures misclassification error made by a node. Maximum (1-1/n c ) when records are equally distributed among all classes, implying least interesting information. This is ½ for 2-class problems Minimum (0.0) when all records belong to one class, implying most interesting information 42

43 Examples for Computing Error Error( t) 1 max P( i t) i C1 0 C2 6 C1 1 C2 5 P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Error = 1 max (0, 1) = 1 1 = 0 P(C1) = 1/6 P(C2) = 5/6 Error = 1 max (1/6, 5/6) = 1 5/6 = 1/6 Equivalently, predict majority class and determine fraction of errors C1 2 C2 4 P(C1) = 2/6 P(C2) = 4/6 Error = 1 max (2/6, 4/6) = 1 4/6 = 1/3 43

44 Complete Example using Error Rate C1 0 C2 6 C1 1 C2 5 C1 2 C2 4 Initial sample has 3 C1 and 15 C2 Based on one 3-way split you get the 3 child nodes to the left What is the decrease in error rate? What is the error rate initially? What is it afterwards? As usual you need to take the weighted average (but there is a shortcut) 44

45 Error Rate Example Continued C1 0 C2 6 C1 1 C2 5 C1 2 C2 4 Error rate before: 3/18 Error rate after: Shortcut: Number of errors = Out of 18 examples Error rate = 3/18 Weighted average method: 6/18 x 0 + 6/18 x 1/6 + 6/18 x 2/6 Simplifies to 1/18 + 2/18 = 3/18 45

46 Comparison among Splitting Criteria For a 2-class problem: 46

47 Discussion Error rate is often the metric used to evaluate a classifier (but not always) So it seems reasonable to use error rate to determine the best split That is, why not just use a splitting metric that matches the ultimate evaluation metric? But this is wrong! The reason is related to the fact that decision trees use a greedy strategy, so we need to use a splitting metric that leads to globally better results The other metrics will empirically outperform error rate, although there is no proof for this. 47

48 How to Specify Test Condition? Depends on attribute types Nominal Ordinal Continuous Depends on number of ways to split 2-way split Multi-way split 48

49 Splitting Based on Nominal Attributes Multi-way split: Use as many partitions as distinct values. Family CarType Sports Luxury Binary split: Divides values into two subsets. Need to find optimal partitioning. {Sports, Luxury} CarType {Family} OR {Family, Luxury} CarType {Sports} 49

50 Splitting Based on Ordinal Attributes Multi-way split: Use as many partitions as distinct values. Small Size Medium Large Binary split: Divides values into two subsets. Need to find optimal partitioning. {Small, Medium} Size {Large} OR {Medium, Large} Size {Small} What about this split? {Small, Large} Size {Medium} 50

51 Splitting Based on Continuous Attributes Different ways of handling Discretization to form an ordinal categorical attribute Static discretize once at the beginning Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering. Binary Decision: (A < v) or (A v) consider all possible splits and finds the best cut can be more compute intensive 51

52 Splitting Based on Continuous Attributes Taxable Income > 80K? Taxable Income? < 10K > 80K Yes No [10K,25K) [25K,50K) [50K,80K) (i) Binary split (ii) Multi-way split 52

53 Data Fragmentation Number of instances gets smaller as you traverse down the tree Number of instances at the leaf nodes could be too small to make statistically significant decision Decision trees can suffer from data fragmentation Especially true if there are many features and not too many examples True or False: All classification methods may suffer data fragmentation. False: not logistic regression or instance-based learning. Only applies to divide-and-conquer methods 53

54 Expressiveness Expressiveness relates to flexibility of the classifier in forming decision boundaries Linear models are not that expressive since they can only form linear boundaries Decision tree models can form rectangular regions Which is more expressive and why? Decision trees because they can form many regions, but DTs do have the limitation of only forming axis-parallel boundaries. Decision tree do not generalize well to certain types of functions (like parity which depends on all features) For accurate modeling, must have a complete trees Not expressive enough for modeling continuous variables especially when more than one variable at a time is involved 54

55 Decision Boundary x < 0.43? 0.7 Yes No 0.6 y 0.5 y < 0.47? y < 0.33? Yes No Yes No : 4 : 0 : 0 : 4 : 0 : 3 : 4 : x Border line between two neighboring regions of different classes is known as decision boundary Decision boundary is parallel to axes because test condition involves a single attribute at-a-time 55

56 Oblique Decision Trees x + y < 1 Class = + Class = This special type of decision tree avoids some weaknesses and increases the expressiveness of decision trees This is not what we mean when we refer to decision trees (e.g., on an exam) 56

57 Tree Replication P Q R S 0 Q S This can be viewed as a weakness of decision trees, but this is really a minor issue 57

58 Pros and Cons of Decision Trees Advantages: Easy to understand Can get a global view of what is going on and also explain individual decisions Can generate rules from them Fast to build and apply Can handle redundant and irrelevant features and missing values Disadvantages: Limited expressive power May suffer from overfitting and validation set may be necessary to avoid overfitting 58

59 More to Come on Decision Trees We have covered most of the essential aspects of decision trees except pruning We will cover pruning next and, more generally, overfitting avoidance We will also cover evaluation, which applies to decision trees but also to all predictive models 59

Data Mining Classification: Decision Trees

Data Mining Classification: Decision Trees Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous

More information

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

More information

COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction

COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction COMP3420: Advanced Databases and Data Mining Classification and prediction: Introduction and Decision Tree Induction Lecture outline Classification versus prediction Classification A two step process Supervised

More information

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

More information

Data Mining for Knowledge Management. Classification

Data Mining for Knowledge Management. Classification 1 Data Mining for Knowledge Management Classification Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management 1 Thanks for slides to: Jiawei Han Eamonn Keogh

More information

Classification and Prediction

Classification and Prediction Classification and Prediction Slides for Data Mining: Concepts and Techniques Chapter 7 Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser

More information

Data mining techniques: decision trees

Data mining techniques: decision trees Data mining techniques: decision trees 1/39 Agenda Rule systems Building rule systems vs rule systems Quick reference 2/39 1 Agenda Rule systems Building rule systems vs rule systems Quick reference 3/39

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Decision Trees. Andrew W. Moore Professor School of Computer Science Carnegie Mellon University. www.cs.cmu.edu/~awm awm@cs.cmu.

Decision Trees. Andrew W. Moore Professor School of Computer Science Carnegie Mellon University. www.cs.cmu.edu/~awm awm@cs.cmu. Decision Trees Andrew W. Moore Professor School of Computer Science Carnegie Mellon University www.cs.cmu.edu/~awm awm@cs.cmu.edu 42-268-7599 Copyright Andrew W. Moore Slide Decision Trees Decision trees

More information

Professor Anita Wasilewska. Classification Lecture Notes

Professor Anita Wasilewska. Classification Lecture Notes Professor Anita Wasilewska Classification Lecture Notes Classification (Data Mining Book Chapters 5 and 7) PART ONE: Supervised learning and Classification Data format: training and test data Concept,

More information

Decision-Tree Learning

Decision-Tree Learning Decision-Tree Learning Introduction ID3 Attribute selection Entropy, Information, Information Gain Gain Ratio C4.5 Decision Trees TDIDT: Top-Down Induction of Decision Trees Numeric Values Missing Values

More information

Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

More information

Introduction to Learning & Decision Trees

Introduction to Learning & Decision Trees Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

More information

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

More information

Data Mining with R. Decision Trees and Random Forests. Hugh Murrell

Data Mining with R. Decision Trees and Random Forests. Hugh Murrell Data Mining with R Decision Trees and Random Forests Hugh Murrell reference books These slides are based on a book by Graham Williams: Data Mining with Rattle and R, The Art of Excavating Data for Knowledge

More information

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015 An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

More information

Lecture 10: Regression Trees

Lecture 10: Regression Trees Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

More information

Data Mining Techniques Chapter 6: Decision Trees

Data Mining Techniques Chapter 6: Decision Trees Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................

More information

Microsoft Azure Machine learning Algorithms

Microsoft Azure Machine learning Algorithms Microsoft Azure Machine learning Algorithms Tomaž KAŠTRUN @tomaz_tsql Tomaz.kastrun@gmail.com http://tomaztsql.wordpress.com Our Sponsors Speaker info https://tomaztsql.wordpress.com Agenda Focus on explanation

More information

Foundations of Artificial Intelligence. Introduction to Data Mining

Foundations of Artificial Intelligence. Introduction to Data Mining Foundations of Artificial Intelligence Introduction to Data Mining Objectives Data Mining Introduce a range of data mining techniques used in AI systems including : Neural networks Decision trees Present

More information

Classification: Basic Concepts, Decision Trees, and Model Evaluation

Classification: Basic Concepts, Decision Trees, and Model Evaluation 4 Classification: Basic Concepts, Decision Trees, and Model Evaluation Classification, which is the task of assigning objects to one of several predefined categories, is a pervasive problem that encompasses

More information

Reference Books. Data Mining. Supervised vs. Unsupervised Learning. Classification: Definition. Classification k-nearest neighbors

Reference Books. Data Mining. Supervised vs. Unsupervised Learning. Classification: Definition. Classification k-nearest neighbors Classification k-nearest neighbors Data Mining Dr. Engin YILDIZTEPE Reference Books Han, J., Kamber, M., Pei, J., (2011). Data Mining: Concepts and Techniques. Third edition. San Francisco: Morgan Kaufmann

More information

Chapter 12 Discovering New Knowledge Data Mining

Chapter 12 Discovering New Knowledge Data Mining Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to

More information

Data Mining: Foundation, Techniques and Applications

Data Mining: Foundation, Techniques and Applications Data Mining: Foundation, Techniques and Applications Lesson 1b :A Quick Overview of Data Mining Li Cuiping( 李 翠 平 ) School of Information Renmin University of China Anthony Tung( 鄧 锦 浩 ) School of Computing

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

Gerry Hobbs, Department of Statistics, West Virginia University

Gerry Hobbs, Department of Statistics, West Virginia University Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit

More information

EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.

EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models

More information

DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES

DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES Vijayalakshmi Mahanra Rao 1, Yashwant Prasad Singh 2 Multimedia University, Cyberjaya, MALAYSIA 1 lakshmi.mahanra@gmail.com

More information

Decision Trees. JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology. Doctoral School, Catania-Troina, April, 2008

Decision Trees. JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology. Doctoral School, Catania-Troina, April, 2008 Decision Trees JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology Doctoral School, Catania-Troina, April, 2008 Aims of this module The decision tree representation. The basic

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Evaluating the Accuracy of a Classifier Holdout, random subsampling, crossvalidation, and the bootstrap are common techniques for

More information

How To Make A Credit Risk Model For A Bank Account

How To Make A Credit Risk Model For A Bank Account TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP Csaba Főző csaba.fozo@lloydsbanking.com 15 October 2015 CONTENTS Introduction 04 Random Forest Methodology 06 Transactional Data Mining Project 17 Conclusions

More information

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr WEKA Gallirallus Zeland) australis : Endemic bird (New Characteristics Waikato university Weka is a collection

More information

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4. Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics

More information

TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM

TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM Thanh-Nghi Do College of Information Technology, Cantho University 1 Ly Tu Trong Street, Ninh Kieu District Cantho City, Vietnam

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification

More information

Data Mining Methods: Applications for Institutional Research

Data Mining Methods: Applications for Institutional Research Data Mining Methods: Applications for Institutional Research Nora Galambos, PhD Office of Institutional Research, Planning & Effectiveness Stony Brook University NEAIR Annual Conference Philadelphia 2014

More information

Chapter 20: Data Analysis

Chapter 20: Data Analysis Chapter 20: Data Analysis Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 20: Data Analysis Decision Support Systems Data Warehousing Data Mining Classification

More information

Medical Information Management & Mining. You Chen Jan,15, 2013 You.chen@vanderbilt.edu

Medical Information Management & Mining. You Chen Jan,15, 2013 You.chen@vanderbilt.edu Medical Information Management & Mining You Chen Jan,15, 2013 You.chen@vanderbilt.edu 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?

More information

Extend Table Lens for High-Dimensional Data Visualization and Classification Mining

Extend Table Lens for High-Dimensional Data Visualization and Classification Mining Extend Table Lens for High-Dimensional Data Visualization and Classification Mining CPSC 533c, Information Visualization Course Project, Term 2 2003 Fengdong Du fdu@cs.ubc.ca University of British Columbia

More information

A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model

A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model ABSTRACT Mrs. Arpana Bharani* Mrs. Mohini Rao** Consumer credit is one of the necessary processes but lending bears

More information

ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS

ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS DATABASE MARKETING Fall 2015, max 24 credits Dead line 15.10. ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS PART A Gains chart with excel Prepare a gains chart from the data in \\work\courses\e\27\e20100\ass4b.xls.

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

Data Mining. Nonlinear Classification

Data Mining. Nonlinear Classification Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

More information

Data Mining: Data Preprocessing. I211: Information infrastructure II

Data Mining: Data Preprocessing. I211: Information infrastructure II Data Mining: Data Preprocessing I211: Information infrastructure II 10 What is Data? Collection of data objects and their attributes Attributes An attribute is a property or characteristic of an object

More information

Data Preprocessing. Week 2

Data Preprocessing. Week 2 Data Preprocessing Week 2 Topics Data Types Data Repositories Data Preprocessing Present homework assignment #1 Team Homework Assignment #2 Read pp. 227 240, pp. 250 250, and pp. 259 263 the text book.

More information

8. Machine Learning Applied Artificial Intelligence

8. Machine Learning Applied Artificial Intelligence 8. Machine Learning Applied Artificial Intelligence Prof. Dr. Bernhard Humm Faculty of Computer Science Hochschule Darmstadt University of Applied Sciences 1 Retrospective Natural Language Processing Name

More information

Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

More information

Performance Analysis of Decision Trees

Performance Analysis of Decision Trees Performance Analysis of Decision Trees Manpreet Singh Department of Information Technology, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India Sonam Sharma CBS Group of Institutions, New Delhi,India

More information

EFFICIENCY OF DECISION TREES IN PREDICTING STUDENT S ACADEMIC PERFORMANCE

EFFICIENCY OF DECISION TREES IN PREDICTING STUDENT S ACADEMIC PERFORMANCE EFFICIENCY OF DECISION TREES IN PREDICTING STUDENT S ACADEMIC PERFORMANCE S. Anupama Kumar 1 and Dr. Vijayalakshmi M.N 2 1 Research Scholar, PRIST University, 1 Assistant Professor, Dept of M.C.A. 2 Associate

More information

Classification On The Clouds Using MapReduce

Classification On The Clouds Using MapReduce Classification On The Clouds Using MapReduce Simão Martins Instituto Superior Técnico Lisbon, Portugal simao.martins@tecnico.ulisboa.pt Cláudia Antunes Instituto Superior Técnico Lisbon, Portugal claudia.antunes@tecnico.ulisboa.pt

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Improving performance of Memory Based Reasoning model using Weight of Evidence coded categorical variables

Improving performance of Memory Based Reasoning model using Weight of Evidence coded categorical variables Paper 10961-2016 Improving performance of Memory Based Reasoning model using Weight of Evidence coded categorical variables Vinoth Kumar Raja, Vignesh Dhanabal and Dr. Goutam Chakraborty, Oklahoma State

More information

Data Mining on Streams

Data Mining on Streams Data Mining on Streams Using Decision Trees CS 536: Machine Learning Instructor: Michael Littman TA: Yihua Wu Outline Introduction to data streams Overview of traditional DT learning ALG DT learning ALGs

More information

DATA MINING METHODS WITH TREES

DATA MINING METHODS WITH TREES DATA MINING METHODS WITH TREES Marta Žambochová 1. Introduction The contemporary world is characterized by the explosion of an enormous volume of data deposited into databases. Sharp competition contributes

More information

ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA

ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA D.Lavanya 1 and Dr.K.Usha Rani 2 1 Research Scholar, Department of Computer Science, Sree Padmavathi Mahila Visvavidyalayam, Tirupati, Andhra Pradesh,

More information

Optimization of C4.5 Decision Tree Algorithm for Data Mining Application

Optimization of C4.5 Decision Tree Algorithm for Data Mining Application Optimization of C4.5 Decision Tree Algorithm for Data Mining Application Gaurav L. Agrawal 1, Prof. Hitesh Gupta 2 1 PG Student, Department of CSE, PCST, Bhopal, India 2 Head of Department CSE, PCST, Bhopal,

More information

Predicting the Risk of Heart Attacks using Neural Network and Decision Tree

Predicting the Risk of Heart Attacks using Neural Network and Decision Tree Predicting the Risk of Heart Attacks using Neural Network and Decision Tree S.Florence 1, N.G.Bhuvaneswari Amma 2, G.Annapoorani 3, K.Malathi 4 PG Scholar, Indian Institute of Information Technology, Srirangam,

More information

Email Spam Detection A Machine Learning Approach

Email Spam Detection A Machine Learning Approach Email Spam Detection A Machine Learning Approach Ge Song, Lauren Steimle ABSTRACT Machine learning is a branch of artificial intelligence concerned with the creation and study of systems that can learn

More information

Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies

Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com Spam

More information

LCs for Binary Classification

LCs for Binary Classification Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it

More information

A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE

A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE Kasra Madadipouya 1 1 Department of Computing and Science, Asia Pacific University of Technology & Innovation ABSTRACT Today, enormous amount of data

More information

Binary Logistic Regression

Binary Logistic Regression Binary Logistic Regression Main Effects Model Logistic regression will accept quantitative, binary or categorical predictors and will code the latter two in various ways. Here s a simple model including

More information

ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS

ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS Abstract D.Lavanya * Department of Computer Science, Sri Padmavathi Mahila University Tirupati, Andhra Pradesh, 517501, India lav_dlr@yahoo.com

More information

Practical Introduction to Machine Learning and Optimization. Alessio Signorini <alessio.signorini@oneriot.com>

Practical Introduction to Machine Learning and Optimization. Alessio Signorini <alessio.signorini@oneriot.com> Practical Introduction to Machine Learning and Optimization Alessio Signorini Everyday's Optimizations Although you may not know, everybody uses daily some sort of optimization

More information

Business Problems and Data Science Solutions

Business Problems and Data Science Solutions CSCI E-84 A Practical Approach to Data Science Ramon A. Mata-Toledo, Ph.D. Professor of Computer Science Harvard Extension School Unit 1 - Lecture 2 February, Wednesday 3, 2016 Business Problems and Data

More information

Classification Problems

Classification Problems Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems

More information

Data Mining Essentials

Data Mining Essentials This chapter is from Social Media Mining: An Introduction. By Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Cambridge University Press, 2014. Draft version: April 20, 2014. Complete Draft and Slides

More information

A Data Mining Tutorial

A Data Mining Tutorial A Data Mining Tutorial Presented at the Second IASTED International Conference on Parallel and Distributed Computing and Networks (PDCN 98) 14 December 1998 Graham Williams, Markus Hegland and Stephen

More information

ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Regression Model I. Regression Node

ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Regression Model I. Regression Node Enterprise Miner - Regression 1 ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Regression Model I. Regression Node 1. Some background: Linear attempts to predict the value of a continuous

More information

Random forest algorithm in big data environment

Random forest algorithm in big data environment Random forest algorithm in big data environment Yingchun Liu * School of Economics and Management, Beihang University, Beijing 100191, China Received 1 September 2014, www.cmnt.lv Abstract Random forest

More information

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang Classifying Large Data Sets Using SVMs with Hierarchical Clusters Presented by :Limou Wang Overview SVM Overview Motivation Hierarchical micro-clustering algorithm Clustering-Based SVM (CB-SVM) Experimental

More information

Employer Health Insurance Premium Prediction Elliott Lui

Employer Health Insurance Premium Prediction Elliott Lui Employer Health Insurance Premium Prediction Elliott Lui 1 Introduction The US spends 15.2% of its GDP on health care, more than any other country, and the cost of health insurance is rising faster than

More information

Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

More information

Machine Learning Final Project Spam Email Filtering

Machine Learning Final Project Spam Email Filtering Machine Learning Final Project Spam Email Filtering March 2013 Shahar Yifrah Guy Lev Table of Content 1. OVERVIEW... 3 2. DATASET... 3 2.1 SOURCE... 3 2.2 CREATION OF TRAINING AND TEST SETS... 4 2.3 FEATURE

More information

SURVEY OF TEXT CLASSIFICATION ALGORITHMS FOR SPAM FILTERING

SURVEY OF TEXT CLASSIFICATION ALGORITHMS FOR SPAM FILTERING I J I T E ISSN: 2229-7367 3(1-2), 2012, pp. 233-237 SURVEY OF TEXT CLASSIFICATION ALGORITHMS FOR SPAM FILTERING K. SARULADHA 1 AND L. SASIREKA 2 1 Assistant Professor, Department of Computer Science and

More information

Machine Learning. Term 2012/2013 LSI - FIB. Javier Béjar cbea (LSI - FIB) Machine Learning Term 2012/2013 1 / 34

Machine Learning. Term 2012/2013 LSI - FIB. Javier Béjar cbea (LSI - FIB) Machine Learning Term 2012/2013 1 / 34 Machine Learning Javier Béjar cbea LSI - FIB Term 2012/2013 Javier Béjar cbea (LSI - FIB) Machine Learning Term 2012/2013 1 / 34 Outline 1 Introduction to Inductive learning 2 Search and inductive learning

More information

Data Mining with Weka

Data Mining with Weka Data Mining with Weka Class 1 Lesson 1 Introduction Ian H. Witten Department of Computer Science University of Waikato New Zealand weka.waikato.ac.nz Data Mining with Weka a practical course on how to

More information

In this presentation, you will be introduced to data mining and the relationship with meaningful use.

In this presentation, you will be introduced to data mining and the relationship with meaningful use. In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine

More information

An Overview and Evaluation of Decision Tree Methodology

An Overview and Evaluation of Decision Tree Methodology An Overview and Evaluation of Decision Tree Methodology ASA Quality and Productivity Conference Terri Moore Motorola Austin, TX terri.moore@motorola.com Carole Jesse Cargill, Inc. Wayzata, MN carole_jesse@cargill.com

More information

Classification Algorithms in Intrusion Detection System: A Survey

Classification Algorithms in Intrusion Detection System: A Survey Classification Algorithms in Intrusion Detection System: A Survey V. Jaiganesh 1 Dr. P. Sumathi 2 A.Vinitha 3 1 Doctoral Research Scholar, Department of Computer Science, Manonmaniam Sundaranar University,

More information

Machine Learning using MapReduce

Machine Learning using MapReduce Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

More information

Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification

Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Tina R. Patil, Mrs. S. S. Sherekar Sant Gadgebaba Amravati University, Amravati tnpatil2@gmail.com, ss_sherekar@rediffmail.com

More information

Chapter 6. The stacking ensemble approach

Chapter 6. The stacking ensemble approach 82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described

More information

How To Cluster

How To Cluster Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main

More information

Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets

Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets http://info.salford-systems.com/jsm-2015-ctw August 2015 Salford Systems Course Outline Demonstration of two classification

More information

Predicting earning potential on Adult Dataset

Predicting earning potential on Adult Dataset MSc in Computing, Business Intelligence and Data Mining stream. Business Intelligence and Data Mining Applications Project Report. Predicting earning potential on Adult Dataset Submitted by: xxxxxxx Supervisor:

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015 RESEARCH ARTICLE OPEN ACCESS Data Mining Technology for Efficient Network Security Management Ankit Naik [1], S.W. Ahmad [2] Student [1], Assistant Professor [2] Department of Computer Science and Engineering

More information

A SURVEY OF TEXT CLASSIFICATION ALGORITHMS

A SURVEY OF TEXT CLASSIFICATION ALGORITHMS Chapter 6 A SURVEY OF TEXT CLASSIFICATION ALGORITHMS Charu C. Aggarwal IBM T. J. Watson Research Center Yorktown Heights, NY charu@us.ibm.com ChengXiang Zhai University of Illinois at Urbana-Champaign

More information

Knowledge Discovery and Data Mining. Structured vs. Non-Structured Data

Knowledge Discovery and Data Mining. Structured vs. Non-Structured Data Knowledge Discovery and Data Mining Unit # 2 1 Structured vs. Non-Structured Data Most business databases contain structured data consisting of well-defined fields with numeric or alphanumeric values.

More information

Supervised Feature Selection & Unsupervised Dimensionality Reduction

Supervised Feature Selection & Unsupervised Dimensionality Reduction Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or

More information

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1 Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints

More information

Classification and Prediction

Classification and Prediction Classification and Prediction 1. Objectives...2 2. Classification vs. Prediction...3 2.1. Definitions...3 2.2. Supervised vs. Unsupervised Learning...3 2.3. Classification and Prediction Related Issues...4

More information

Big Data: The Science of Patterns. Dr. Lutz Hamel Dept. of Computer Science and Statistics hamel@cs.uri.edu

Big Data: The Science of Patterns. Dr. Lutz Hamel Dept. of Computer Science and Statistics hamel@cs.uri.edu Big Data: The Science of Patterns Dr. Lutz Hamel Dept. of Computer Science and Statistics hamel@cs.uri.edu The Blessing and the Curse: Lots of Data Outlook Temp Humidity Wind Play Sunny Hot High Weak No

More information

Question 2 Naïve Bayes (16 points)

Question 2 Naïve Bayes (16 points) Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the

More information

Final Project Report

Final Project Report CPSC545 by Introduction to Data Mining Prof. Martin Schultz & Prof. Mark Gerstein Student Name: Yu Kor Hugo Lam Student ID : 904907866 Due Date : May 7, 2007 Introduction Final Project Report Pseudogenes

More information

Statistical Data Mining. Practical Assignment 3 Discriminant Analysis and Decision Trees

Statistical Data Mining. Practical Assignment 3 Discriminant Analysis and Decision Trees Statistical Data Mining Practical Assignment 3 Discriminant Analysis and Decision Trees In this practical we discuss linear and quadratic discriminant analysis and tree-based classification techniques.

More information

BIRCH: An Efficient Data Clustering Method For Very Large Databases

BIRCH: An Efficient Data Clustering Method For Very Large Databases BIRCH: An Efficient Data Clustering Method For Very Large Databases Tian Zhang, Raghu Ramakrishnan, Miron Livny CPSC 504 Presenter: Discussion Leader: Sophia (Xueyao) Liang HelenJr, Birches. Online Image.

More information

Decision Trees What Are They?

Decision Trees What Are They? Decision Trees What Are They? Introduction...1 Using Decision Trees with Other Modeling Approaches...5 Why Are Decision Trees So Useful?...8 Level of Measurement... 11 Introduction Decision trees are a

More information

An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century

An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century Nora Galambos, PhD Senior Data Scientist Office of Institutional Research, Planning & Effectiveness Stony Brook University AIRPO

More information

Less naive Bayes spam detection

Less naive Bayes spam detection Less naive Bayes spam detection Hongming Yang Eindhoven University of Technology Dept. EE, Rm PT 3.27, P.O.Box 53, 5600MB Eindhoven The Netherlands. E-mail:h.m.yang@tue.nl also CoSiNe Connectivity Systems

More information