# Data Mining Part 5. Prediction

Size: px
Start display at page:

Transcription

1 Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini

2 Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References

3 Classification vs. Numeric Prediction

4 Classification vs. Numeric Prediction Prediction problems predict future data trends Major types: Classification Numeric prediction

5 Classification vs. Numeric Prediction Classification a model or classifier to predict categorical labels (discrete or nominal) The ordering among categories has no meaning e.g. such as safe or risky for the loan application data guess whether a customer with a given profile will buy a new computer.

6 Classification vs. Numeric Prediction Numeric Prediction a model or predictor to predict a continuous-valued function or ordered value e.g. predicting how much a given customer will spend during a sale at AllElectronics Regression analysis is a statistical methodology that is most often used for numeric prediction

7 Typical applications Credit approval Target marketing Medical diagnosis Fraud detection Performance prediction Manufacturing Applications

8 Classification Techniques for data classification: Decision tree classifiers Bayesian classifiers Bayesian belief networks Rule-based classifiers Backpropagation (a neural network technique) Support vector machines K-nearest-neighbor classifiers Case-based reasoning Genetic algorithms

9 Prediction Process

10 Prediction Process Prediction is a two-step process: Learning step or model construction Model usage

11 Model Construction Learning step (model construction) A classification algorithm builds the classifier by analyzing or learning from a training set Each instance is assumed to belong to a predefined class, as determined by the class label attribute The set of instances used for model construction is training set The model is represented as classification rules, decision trees, or mathematical formula Data instances can be referred to as samples, examples, instances, data points, objects, or data tuples

12 Model Construction Example: identify loan applications as being either safe or risky

13 Model Usage Model usage: for classifying future or unknown objects

14 Estimate Accuracy Estimate accuracy of the model The known label of test sample is compared with the classified result from the model Accuracy rate is the percentage of test set samples that are correctly classified by the model The test instances are randomly selected from the general data set Test set is independent of training set, otherwise over-fitting will occur If the accuracy is acceptable, use the model to classify new data instances whose class labels are not known

15 Numeric Prediction Numeric prediction is a two step process, similar to that of classification The attribute for which values are being predicted is continuous-valued (ordered) rather than categorical (discrete-valued and unordered). This attribute can be referred to simply as the predicted attribute. Example: We want to predict the amount (in dollars) that would be safe for the bank to loan an applicant. We use the continuous-valued loan_amount as the predicted attribute, and build a predictor for our task.

16 Supervised vs. Unsupervised Learning Supervised learning The class label of each training instance is known Learning step is also known as supervised learning i.e., the learning of the classifier is supervised in that it is told to which class each training instance belongs Unsupervised learning (clustering) The class label of each training instance is not known The number or set of classes to be learned may not be known in advance the aim of establishing the existence of classes or clusters in the data

17 Data Preparation

18 Data Preparation The preprocessing may be applied to the data to help improve the accuracy, efficiency, and scalability of the classification process. The preprocessing steps: Data cleaning Relevance analysis Data transformation

19 Data cleaning Data Cleaning to remove or reduce noisy values the treatment of missing values Although most classification algorithms have some mechanisms for handling noisy or missing data, this step can help reduce confusion during learning.

20 Relevance Analysis (feature selection) Relevance analysis: Correlation analysis to detect redundant attributes Correlation analysis can be used to identify whether any two given attributes are statistically related. For example, a strong correlation between attributes A1 and A2 would suggest that one of the two could be removed from further analysis. Attribute subset selection to remove irrelevant attributes to find a reduced set of attributes such that the resulting probability distribution of the data classes is as close as possible to the original distribution obtained using all attributes.

21 Data transformation Normalization Discretization Generalization Data Transformation

22 Normalization Data Transformation The normalization is used particularly when methods involving distance measurements are used in the learning step. The values a given attribute fall within a small specified range, such as -1.0 to 1.0, or 0.0 to 1.0. Normalization would prevent attributes with initially large ranges (like income) from outweighing attributes with initially smaller ranges (such as binary attributes).

23 Discretization Data Transformation For example, numeric values for the attribute income can be generalized to discrete ranges, such as low, medium, and high. Similarly, categorical attributes Generalization The data can also be transformed to higher-level concepts. Example: like street, can be generalized to higherlevel concepts, like city. Because generalization compresses the original training data, fewer input/output operations may be involved during learning.

24 Comparing Prediction Methods

25 Comparing Prediction Methods Classification and prediction methods can be compared and evaluated according to the following criteria: Accuracy the ability of a given classifier to correctly predict the class label of new data Speed time to construct the model (training time) time to use the model (classification/prediction time) Robustness the ability of the classifier to make correct predictions given noisy data or data with missing values.

26 Comparing Prediction Methods Scalability The ability to construct the classifier or predictor efficiently given large amounts of data. Interpretability the level of understanding and insight that is provided by the classifier.

27 References

28 References J. Han, M. Kamber, Data Mining: Concepts and Techniques, Elsevier Inc. (2006). (Chapter 6)

29 The end

### Reference Books. Data Mining. Supervised vs. Unsupervised Learning. Classification: Definition. Classification k-nearest neighbors

Classification k-nearest neighbors Data Mining Dr. Engin YILDIZTEPE Reference Books Han, J., Kamber, M., Pei, J., (2011). Data Mining: Concepts and Techniques. Third edition. San Francisco: Morgan Kaufmann

### Data Mining for Knowledge Management. Classification

1 Data Mining for Knowledge Management Classification Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management 1 Thanks for slides to: Jiawei Han Eamonn Keogh

### Data Mining Part 5. Prediction

Data Mining Part 5. Prediction 5.7 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Linear Regression Other Regression Models References Introduction Introduction Numerical prediction is

### COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction

COMP3420: Advanced Databases and Data Mining Classification and prediction: Introduction and Decision Tree Induction Lecture outline Classification versus prediction Classification A two step process Supervised

### Customer Classification And Prediction Based On Data Mining Technique

Customer Classification And Prediction Based On Data Mining Technique Ms. Neethu Baby 1, Mrs. Priyanka L.T 2 1 M.E CSE, Sri Shakthi Institute of Engineering and Technology, Coimbatore 2 Assistant Professor

### Classification and Prediction

Classification and Prediction Slides for Data Mining: Concepts and Techniques Chapter 7 Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser

### Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin

Data Mining for Customer Service Support Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Traditional Hotline Services Problem Traditional Customer Service Support (manufacturing)

### International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014

RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer

### DATA MINING TECHNIQUES AND APPLICATIONS

DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,

### (b) How data mining is different from knowledge discovery in databases (KDD)? Explain.

Q2. (a) List and describe the five primitives for specifying a data mining task. Data Mining Task Primitives (b) How data mining is different from knowledge discovery in databases (KDD)? Explain. IETE

### Introduction to Data Mining

Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association

### Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

### Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

### Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition

### Learning is a very general term denoting the way in which agents:

What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

### Welcome. Data Mining: Updates in Technologies. Xindong Wu. Colorado School of Mines Golden, Colorado 80401, USA

Welcome Xindong Wu Data Mining: Updates in Technologies Dept of Math and Computer Science Colorado School of Mines Golden, Colorado 80401, USA Email: xwu@ mines.edu Home Page: http://kais.mines.edu/~xwu/

### Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier

Data Mining: Concepts and Techniques Jiawei Han Micheline Kamber Simon Fräser University К MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF Elsevier Contents Foreword Preface xix vii Chapter I Introduction I I.

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 11 Sajjad Haider Fall 2013 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

### Machine Learning: Overview

Machine Learning: Overview Why Learning? Learning is a core of property of being intelligent. Hence Machine learning is a core subarea of Artificial Intelligence. There is a need for programs to behave

### not possible or was possible at a high cost for collecting the data.

Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day

### Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

### Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Evaluating the Accuracy of a Classifier Holdout, random subsampling, crossvalidation, and the bootstrap are common techniques for

### Information Management course

Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli (alberto.ceselli@unimi.it)

### Data Mining: Overview. What is Data Mining?

Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,

### Social Media Mining. Data Mining Essentials

Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

### Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD

Predictive Analytics Techniques: What to Use For Your Big Data March 26, 2014 Fern Halper, PhD Presenter Proven Performance Since 1995 TDWI helps business and IT professionals gain insight about data warehousing,

### Predicting the Risk of Heart Attacks using Neural Network and Decision Tree

Predicting the Risk of Heart Attacks using Neural Network and Decision Tree S.Florence 1, N.G.Bhuvaneswari Amma 2, G.Annapoorani 3, K.Malathi 4 PG Scholar, Indian Institute of Information Technology, Srirangam,

### ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS

ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS Abstract D.Lavanya * Department of Computer Science, Sri Padmavathi Mahila University Tirupati, Andhra Pradesh, 517501, India lav_dlr@yahoo.com

### Data Mining. Nonlinear Classification

Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

### COURSE RECOMMENDER SYSTEM IN E-LEARNING

International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 159-164 COURSE RECOMMENDER SYSTEM IN E-LEARNING Sunita B Aher 1, Lobo L.M.R.J. 2 1 M.E. (CSE)-II, Walchand

### Data, Measurements, Features

Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

### An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

### Azure Machine Learning, SQL Data Mining and R

Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 10 Sajjad Haider Fall 2012 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

### Using Data Mining for Mobile Communication Clustering and Characterization

Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer

### Data Mining Classification: Decision Trees

Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous

### Data Mining. SPSS Clementine 12.0. 1. Clementine Overview. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine

Data Mining SPSS 12.0 1. Overview Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Types of Models Interface Projects References Outline Introduction Introduction Three of the common data mining

### Practical Data Science with Azure Machine Learning, SQL Data Mining, and R

Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be

### Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland

Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data

### FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS

FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,

### Data Mining Analytics for Business Intelligence and Decision Support

Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing

### Predictive Data modeling for health care: Comparative performance study of different prediction models

Predictive Data modeling for health care: Comparative performance study of different prediction models Shivanand Hiremath hiremat.nitie@gmail.com National Institute of Industrial Engineering (NITIE) Vihar

### Data Mining. Knowledge Discovery, Data Warehousing and Machine Learning Final remarks. Lecturer: JERZY STEFANOWSKI

Data Mining Knowledge Discovery, Data Warehousing and Machine Learning Final remarks Lecturer: JERZY STEFANOWSKI Email: Jerzy.Stefanowski@cs.put.poznan.pl Data Mining a step in A KDD Process Data mining:

### ON INTEGRATING UNSUPERVISED AND SUPERVISED CLASSIFICATION FOR CREDIT RISK EVALUATION

ISSN 9 X INFORMATION TECHNOLOGY AND CONTROL, 00, Vol., No.A ON INTEGRATING UNSUPERVISED AND SUPERVISED CLASSIFICATION FOR CREDIT RISK EVALUATION Danuta Zakrzewska Institute of Computer Science, Technical

### from Larson Text By Susan Miertschin

Decision Tree Data Mining Example from Larson Text By Susan Miertschin 1 Problem The Maximum Miniatures Marketing Department wants to do a targeted mailing gpromoting the Mythic World line of figurines.

### BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL

The Fifth International Conference on e-learning (elearning-2014), 22-23 September 2014, Belgrade, Serbia BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL SNJEŽANA MILINKOVIĆ University

### Data Mining Applications in Higher Education

Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2

### Data Mining for Business Analytics

Data Mining for Business Analytics Lecture 2: Introduction to Predictive Modeling Stern School of Business New York University Spring 2014 MegaTelCo: Predicting Customer Churn You just landed a great analytical

### Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer

Machine Learning Chapter 18, 21 Some material adopted from notes by Chuck Dyer What is learning? Learning denotes changes in a system that... enable a system to do the same task more efficiently the next

### Index Contents Page No. Introduction . Data Mining & Knowledge Discovery

Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.

### CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore.

CI6227: Data Mining Lesson 11b: Ensemble Learning Sinno Jialin PAN Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore Acknowledgements: slides are adapted from the lecture notes

### Introduction to Data Mining

Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:

### DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES

DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES Vijayalakshmi Mahanra Rao 1, Yashwant Prasad Singh 2 Multimedia University, Cyberjaya, MALAYSIA 1 lakshmi.mahanra@gmail.com

### Professor Anita Wasilewska. Classification Lecture Notes

Professor Anita Wasilewska Classification Lecture Notes Classification (Data Mining Book Chapters 5 and 7) PART ONE: Supervised learning and Classification Data format: training and test data Concept,

### How To Solve The Kd Cup 2010 Challenge

A Lightweight Solution to the Educational Data Mining Challenge Kun Liu Yan Xing Faculty of Automation Guangdong University of Technology Guangzhou, 510090, China catch0327@yahoo.com yanxing@gdut.edu.cn

### Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction

Data Mining and Exploration Data Mining and Exploration: Introduction Amos Storkey, School of Informatics January 10, 2006 http://www.inf.ed.ac.uk/teaching/courses/dme/ Course Introduction Welcome Administration

### Data Preprocessing. Week 2

Data Preprocessing Week 2 Topics Data Types Data Repositories Data Preprocessing Present homework assignment #1 Team Homework Assignment #2 Read pp. 227 240, pp. 250 250, and pp. 259 263 the text book.

### Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

### An Introduction to Data Mining

An Introduction to Intel Beijing wei.heng@intel.com January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail

### CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

### Chapter 12 Discovering New Knowledge Data Mining

Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to

### A Survey of Classification Techniques in the Area of Big Data.

A Survey of Classification Techniques in the Area of Big Data. 1PrafulKoturwar, 2 SheetalGirase, 3 Debajyoti Mukhopadhyay 1Reseach Scholar, Department of Information Technology 2Assistance Professor,Department

### How To Use Neural Networks In Data Mining

International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and

### Intrusion Detection. Jeffrey J.P. Tsai. Imperial College Press. A Machine Learning Approach. Zhenwei Yu. University of Illinois, Chicago, USA

SERIES IN ELECTRICAL AND COMPUTER ENGINEERING Intrusion Detection A Machine Learning Approach Zhenwei Yu University of Illinois, Chicago, USA Jeffrey J.P. Tsai Asia University, University of Illinois,

### Data Mining and Machine Learning in Bioinformatics

Data Mining and Machine Learning in Bioinformatics PRINCIPAL METHODS AND SUCCESSFUL APPLICATIONS Ruben Armañanzas http://mason.gmu.edu/~rarmanan Adapted from Iñaki Inza slides http://www.sc.ehu.es/isg

### Introduction to Pattern Recognition

Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

### Classification and Prediction

Classification and Prediction 1. Objectives...2 2. Classification vs. Prediction...3 2.1. Definitions...3 2.2. Supervised vs. Unsupervised Learning...3 2.3. Classification and Prediction Related Issues...4

### PREDICTING STUDENTS PERFORMANCE USING ID3 AND C4.5 CLASSIFICATION ALGORITHMS

PREDICTING STUDENTS PERFORMANCE USING ID3 AND C4.5 CLASSIFICATION ALGORITHMS Kalpesh Adhatrao, Aditya Gaykar, Amiraj Dhawan, Rohit Jha and Vipul Honrao ABSTRACT Department of Computer Engineering, Fr.

### Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Introduction Logistics Prerequisites: basics concepts needed in probability and statistics

### LVQ Plug-In Algorithm for SQL Server

LVQ Plug-In Algorithm for SQL Server Licínia Pedro Monteiro Instituto Superior Técnico licinia.monteiro@tagus.ist.utl.pt I. Executive Summary In this Resume we describe a new functionality implemented

### Data Mining as a tool to Predict the Churn Behaviour among Indian bank customers

Data Mining as a tool to Predict the Churn Behaviour among Indian bank customers Manjit Kaur Department of Computer Science Punjabi University Patiala, India manjit8718@gmail.com Dr. Kawaljeet Singh University

### Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. ~ Spring~r

Bing Liu Web Data Mining Exploring Hyperlinks, Contents, and Usage Data With 177 Figures ~ Spring~r Table of Contents 1. Introduction.. 1 1.1. What is the World Wide Web? 1 1.2. ABrief History of the Web

### SVM Ensemble Model for Investment Prediction

19 SVM Ensemble Model for Investment Prediction Chandra J, Assistant Professor, Department of Computer Science, Christ University, Bangalore Siji T. Mathew, Research Scholar, Christ University, Dept of

### Data Mining 5. Cluster Analysis

Data Mining 5. Cluster Analysis 5.2 Fall 2009 Instructor: Dr. Masoud Yaghini Outline Data Structures Interval-Valued (Numeric) Variables Binary Variables Categorical Variables Ordinal Variables Variables

### Use of Data Mining in Banking

Use of Data Mining in Banking Kazi Imran Moin*, Dr. Qazi Baseer Ahmed** *(Department of Computer Science, College of Computer Science & Information Technology, Latur, (M.S), India ** (Department of Commerce

### Predicting required bandwidth for educational institutes using prediction techniques in data mining (Case Study: Qom Payame Noor University)

260 IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011 Predicting required bandwidth for educational institutes using prediction techniques in data mining (Case

### Data Mining Solutions for the Business Environment

Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania ruxandra_stefania.petre@yahoo.com Over

### Data Mining Framework for Direct Marketing: A Case Study of Bank Marketing

www.ijcsi.org 198 Data Mining Framework for Direct Marketing: A Case Study of Bank Marketing Lilian Sing oei 1 and Jiayang Wang 2 1 School of Information Science and Engineering, Central South University

### Specific Usage of Visual Data Analysis Techniques

Specific Usage of Visual Data Analysis Techniques Snezana Savoska 1 and Suzana Loskovska 2 1 Faculty of Administration and Management of Information systems, Partizanska bb, 7000, Bitola, Republic of Macedonia

### Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016

Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00

### Feature Selection using Integer and Binary coded Genetic Algorithm to improve the performance of SVM Classifier

Feature Selection using Integer and Binary coded Genetic Algorithm to improve the performance of SVM Classifier D.Nithya a, *, V.Suganya b,1, R.Saranya Irudaya Mary c,1 Abstract - This paper presents,

### EFFICIENT DATA PRE-PROCESSING FOR DATA MINING

EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College

### NEURAL NETWORKS IN DATA MINING

NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,

### ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA

ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA D.Lavanya 1 and Dr.K.Usha Rani 2 1 Research Scholar, Department of Computer Science, Sree Padmavathi Mahila Visvavidyalayam, Tirupati, Andhra Pradesh,

### Data Mining: An Introduction

Data Mining: An Introduction Michael J. A. Berry and Gordon A. Linoff. Data Mining Techniques for Marketing, Sales and Customer Support, 2nd Edition, 2004 Data mining What promotions should be targeted

### Data Mining Individual Assignment report

Björn Þór Jónsson bjrr@itu.dk Data Mining Individual Assignment report This report outlines the implementation and results gained from the Data Mining methods of preprocessing, supervised learning, frequent

### Machine Learning Capacity and Performance Analysis and R

Machine Learning and R May 3, 11 30 25 15 10 5 25 15 10 5 30 25 15 10 5 0 2 4 6 8 101214161822 0 2 4 6 8 101214161822 0 2 4 6 8 101214161822 100 80 60 40 100 80 60 40 100 80 60 40 30 25 15 10 5 25 15 10

### Principles of Data Mining by Hand&Mannila&Smyth

Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences

### AnalysisofData MiningClassificationwithDecisiontreeTechnique

Global Journal of omputer Science and Technology Software & Data Engineering Volume 13 Issue 13 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

### Discretization and grouping: preprocessing steps for Data Mining

Discretization and grouping: preprocessing steps for Data Mining PetrBerka 1 andivanbruha 2 1 LaboratoryofIntelligentSystems Prague University of Economic W. Churchill Sq. 4, Prague CZ 13067, Czech Republic

### Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr WEKA Gallirallus Zeland) australis : Endemic bird (New Characteristics Waikato university Weka is a collection

### Rule based Classification of BSE Stock Data with Data Mining

International Journal of Information Sciences and Application. ISSN 0974-2255 Volume 4, Number 1 (2012), pp. 1-9 International Research Publication House http://www.irphouse.com Rule based Classification

### Machine Learning using MapReduce

Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

### Improving spam mail filtering using classification algorithms with discretization Filter

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

### BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 123 CHAPTER 7 BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 7.1 Introduction Even though using SVM presents

### Supervised Feature Selection & Unsupervised Dimensionality Reduction

Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or

### CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen

CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major