# Data mining techniques: decision trees

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Data mining techniques: decision trees 1/39 Agenda Rule systems Building rule systems vs rule systems Quick reference 2/39 1

2 Agenda Rule systems Building rule systems vs rule systems Quick reference 3/39 Set of conditions organized hierarchically in such a way that the final decision can be determined following the conditions that are fulfilled from the root of the tree to one of its leaves. They are easily understandable. They build a model (made up by rules) easy to understand for the user. They only work over a single table, and over a single attribute at a time. They are one of the most used data mining techniques. 4/39 2

3 The weather problem: 5/39 Decision tree that solves the problem: 6/39 3

4 The decision trees are based on the strategy "divide and conquer". There are two possible types of divisions or partitions: Nominal partitions: a nominal attribute may lead to a split with as many branches as values there are for the attribute. Numerical partitions: typically, they allow partitions like "X>" and "X <a". Partitions relating two different attributes are not permitted. What distinguishes the different algorithms from each others are the partitions they allow, and what criteria they use to select the partitions. 7/39 Expressive power: they can only make partitions parallel to the axis: 2D example 8/39 4

5 Agenda Rule systems Building rule systems vs rule systems Quick reference 9/39 The most common approach is to try to minimize the function like n is the number of partitions p j is the probability of falling into the node j p c j is the proportion of elements of the class c falling into the node j. f is a function of impurity, thus the formula calculates the average "impurity" of the nodes. 10/39 5

6 Some functions: Error GINI (CART) Entropy (C4.5) DKM The more entropy there is, the more information is needed to solve the problem. Note: log are taken in base 2. 11/39 The wheather problem: Which is the best decision? Outlook: 12/39 6

7 But how much increase in "purity" (information) would that choice produce? What was the "purity" at the root of the tree? Thus, we are gaining: 13/39 Thus, the info gain for every possible branch is: 14/39 7

8 Once the first decision attribute has been chosen, we repeat the operation with the other nodes: 15/39 Final result: With real examples, a certain level of "impurity" in each leaf node is usually tolerated. Trying to learn the training data perfectly, will likely lead to overfitting. 16/39 8

9 But 17/39 This attribute gives us a perfect (and useless) classification!!! Its info gain is bits, i.e., all the information needed to solve the problem : 18/39 9

10 The solution to this problem is to somehow penalize the attributes that lead to a very high number of branches. One option is to take into account the number and size of the children nodes, regardless of what classes they contain. For our ID attribute: This is bits. We shall call this value information value of the attribute. 19/39 Instead of using "gain" to determine which attribute to use for the next branch, we shall use "gain ratio" which we shall define as the division between gain and the information value of the attribute. For our ID attribute: gain ratio (ID)= 0.940/3.807= For the initial branch: 20/39 10

11 The calculation method presented here is the one used in WEKA for the algorithm C4.5. It is one of the best algorithms, both from a theoretical point of view and in practice. A commercial variant (C5) implemented in Clementine has a slightly better performance. 21/39 Often, too much adjusting to the training data is counterproductive (overtraining). One solution is to remove some branches of the tree ( "pruning"). Two pruning strategies: Pre-pruning: the process is done during the construction of the tree. There is some criteria to stop expanding the nodes (allowing a certain level of "impurity" in each node). Post-pruning: the process is done after the construction of the tree. Branches are removed from the bottom up to a certain limit. It uses similar criteria to pre-pruning. 22/39 11

12 The key to knowing when and how much to prune is to check the behavior of the tree with the test data. With the training data the behavior of the tree will only improve. Pruning is the key to dealing with noisy data. 23/39 Agenda Rule systems Building rule systems vs rule systems Quick reference 24/39 12

13 Rule systems In rule systems the rules are not organized hierarchically, nor must they provide a classification for all the examples. There may be instances that are not covered by the rule set. Instead of building the rules by "divide and conquer" they use an approach based on coverage. They try to create rules that "cover" all instances of the training data set. 25/39 Rule systems Example: 26/39 13

14 Rule systems Example: 27/39 Agenda Rule systems Building rule systems vs rule systems Quick reference 28/39 14

15 Building rule systems Another example: we have to determine the recommended type of contact lens. Some of the data: 29/39 Building rule systems All the data: Column 2, age of the patient: (1) young, (2) pre-presbyopic, (3) presbyopic. Column 3, spectacle prescription: (1) myope, (2) hypermetrope. Column 4, astigmatic: (1) no, (2) yes Column 5, tear production rate: (1) reduced, (2) normal. Column 6, contact lenses: (1) hard, (2) soft, (3) no contact lenses. 30/39 15

16 Building rule systems We start by looking for conditions that will enable us to determine whether the lenses should be hard: To do this, we calculate the number of instances for which, given the value of an attribute, we can adequately predict that the contact lenses should be hard. We then select the attribute that covers a higher percentage of instances that meet the desired criteria (hard contact lenses recommended). 31/39 Building rule systems Selection process: 32/39 16

17 Building rule systems We now try to properly classify the other 8 instances covered by the rule: 33/39 Building rule systems And we try to properly classify the other 2 instances covered by the rule: We now have a rule that classifies perfectly the three instances it covers. Now we start the process again, and so on until we have rules that cover all (or most) instances. 34/39 17

18 Agenda Rule systems Building rule systems vs rule systems Quick reference 35/39 vs rule systems The decision trees are often more efficient because each partition generates two rules. Pruning of trees is often simpler than the pruning of rules systems (although the same criteria are used in both cases). Rule systems permit non-exhaustive coverage, which is interesting if an attribute has many values, but not all are relevant. Rule systems are less voracious, so they tend to fall less in local minima. 36/39 18

19 Agenda Rule systems Building rule systems vs rule systems Quick reference 37/39 Quick reference They are used mainly for classification (supervised learning), although it is possible to use them for regression, clustering and estimation of probabilities. They are relatively efficient and capable of working with large volumes of data. They work with numeric and nominal attributes. They only work over a single table and a single attribute at a time. They do not allow relations between two attributes (for efficiency). They are tolerant to noise, not significant attributes and missing values. They build a model (rules) that is easy to understand and interpret by the end user. 38/39 19

20 Quick reference Visual comparison of their expressive power: Rule systems 39/39 20

### Decision Trees. JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology. Doctoral School, Catania-Troina, April, 2008

Decision Trees JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology Doctoral School, Catania-Troina, April, 2008 Aims of this module The decision tree representation. The basic

### Data Mining Classification: Decision Trees

Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous

### COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction

COMP3420: Advanced Databases and Data Mining Classification and prediction: Introduction and Decision Tree Induction Lecture outline Classification versus prediction Classification A two step process Supervised

### SEEM Introduction to Knowledge Systems and Machine Learning

SEEM 5470 Introduction to Knowledge Systems and Machine Learning Data vs. Knowledge Society produces huge amounts of data sources: business, science, medicine, economics, geography, environment, sports,

### Decision-Tree Learning

Decision-Tree Learning Introduction ID3 Attribute selection Entropy, Information, Information Gain Gain Ratio C4.5 Decision Trees TDIDT: Top-Down Induction of Decision Trees Numeric Values Missing Values

### Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

### Data Mining Techniques Chapter 6: Decision Trees

Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................

### Data Mining for Knowledge Management. Classification

1 Data Mining for Knowledge Management Classification Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management 1 Thanks for slides to: Jiawei Han Eamonn Keogh

### Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

### Classification and Prediction

Classification and Prediction Slides for Data Mining: Concepts and Techniques Chapter 7 Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser

### Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

### Lecture 10: Regression Trees

Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

### Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART I What s it all about 10/25/2000 2 Data vs. information Society produces huge amounts of data

### Learning from Data: Decision Trees

Learning from Data: Decision Trees Amos Storkey, School of Informatics University of Edinburgh Semester 1, 2004 LfD 2004 Decision Tree Learning - Overview Decision tree representation ID3 learning algorithm

### Data Mining with R. Decision Trees and Random Forests. Hugh Murrell

Data Mining with R Decision Trees and Random Forests Hugh Murrell reference books These slides are based on a book by Graham Williams: Data Mining with Rattle and R, The Art of Excavating Data for Knowledge

### Content-Based Recommendation

Content-Based Recommendation Content-based? Item descriptions to identify items that are of particular interest to the user Example Example Comparing with Noncontent based Items User-based CF Searches

### Decision Trees (Sections )

Decision Trees (Sections 8.1-8.4) Non-metric methods CART (Classification & regression Trees) Number of splits Query selection & node impurity Multiway splits When to stop splitting? Pruning Assignment

### Classification and Regression Trees

Classification and Regression Trees Bob Stine Dept of Statistics, School University of Pennsylvania Trees Familiar metaphor Biology Decision tree Medical diagnosis Org chart Properties Recursive, partitioning

### Performance Analysis of Decision Trees

Performance Analysis of Decision Trees Manpreet Singh Department of Information Technology, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India Sonam Sharma CBS Group of Institutions, New Delhi,India

### Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 2. Tid Refund Marital Status

Data Mining Classification: Basic Concepts, Decision Trees, and Evaluation Lecture tes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Classification: Definition Given a collection of

### Decision tree algorithm short Weka tutorial

Decision tree algorithm short Weka tutorial Croce Danilo, Roberto Basili Machine leanring for Web Mining a.a. 2009-2010 Machine Learning: brief summary Example You need to write a program that: given a

### Decision Trees. Andrew W. Moore Professor School of Computer Science Carnegie Mellon University. www.cs.cmu.edu/~awm awm@cs.cmu.

Decision Trees Andrew W. Moore Professor School of Computer Science Carnegie Mellon University www.cs.cmu.edu/~awm awm@cs.cmu.edu 42-268-7599 Copyright Andrew W. Moore Slide Decision Trees Decision trees

### Data Mining Practical Machine Learning Tools and Techniques

Data ining Practical achine Learning Tools and Techniques Slides for Chapter 2 of Data ining by I. H. Witten and E. rank Outline Terminology What s a concept Classification, association, clustering, numeric

### IT Applications in Business Analytics SS2016 / Lecture 07 Use Case 1 (Two Class Classification) Thomas Zeutschler

Hochschule Düsseldorf University of Applied Scienses Fachbereich Wirtschaftswissenschaften W Business Analytics (M.Sc.) IT in Business Analytics IT Applications in Business Analytics SS2016 / Lecture 07

### Classification: Basic Concepts, Decision Trees, and Model Evaluation. General Approach for Building Classification Model

10 10 Classification: Basic Concepts, Decision Trees, and Model Evaluation Dr. Hui Xiong Rutgers University Introduction to Data Mining 1//009 1 General Approach for Building Classification Model Tid Attrib1

### Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1

Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints

### Action Reducts. Computer Science Department, University of Pittsburgh at Johnstown, Johnstown, PA 15904, USA 2

Action Reducts Seunghyun Im 1, Zbigniew Ras 2,3, Li-Shiang Tsay 4 1 Computer Science Department, University of Pittsburgh at Johnstown, Johnstown, PA 15904, USA sim@pitt.edu 2 Computer Science Department,

### Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

### Enterprise Miner - Decision tree 1

Enterprise Miner - Decision tree 1 ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Decision Tree I. Tree Node Setting Tree Node Defaults - define default options that you commonly use

### Gerry Hobbs, Department of Statistics, West Virginia University

Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit

### Data Mining with Weka

Data Mining with Weka Class 1 Lesson 1 Introduction Ian H. Witten Department of Computer Science University of Waikato New Zealand weka.waikato.ac.nz Data Mining with Weka a practical course on how to

### Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Ensembles 2 Learning Ensembles Learn multiple alternative definitions of a concept using different training

### Chapter 12 Discovering New Knowledge Data Mining

Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to

### Data Mining: Foundation, Techniques and Applications

Data Mining: Foundation, Techniques and Applications Lesson 1b :A Quick Overview of Data Mining Li Cuiping( 李 翠 平 ) School of Information Renmin University of China Anthony Tung( 鄧 锦 浩 ) School of Computing

### !"!!"#\$\$%&'()*+\$(,%!"#\$%\$&'()*""%(+,'-*&./#-\$&'(-&(0*".\$#-\$1"(2&."3\$'45"

!"!!"#\$\$%&'()*+\$(,%!"#\$%\$&'()*""%(+,'-*&./#-\$&'(-&(0*".\$#-\$1"(2&."3\$'45"!"#"\$%&#'()*+',\$\$-.&#',/"-0%.12'32./4'5,5'6/%&)\$).2&'7./&)8'5,5'9/2%.%3%&8':")08';:

### Statistical Data Mining. Practical Assignment 3 Discriminant Analysis and Decision Trees

Statistical Data Mining Practical Assignment 3 Discriminant Analysis and Decision Trees In this practical we discuss linear and quadratic discriminant analysis and tree-based classification techniques.

### Model-Based Recursive Partitioning for Detecting Interaction Effects in Subgroups

Model-Based Recursive Partitioning for Detecting Interaction Effects in Subgroups Achim Zeileis, Torsten Hothorn, Kurt Hornik http://eeecon.uibk.ac.at/~zeileis/ Overview Motivation: Trees, leaves, and

### TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM

TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM Thanh-Nghi Do College of Information Technology, Cantho University 1 Ly Tu Trong Street, Ninh Kieu District Cantho City, Vietnam

### Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

### Data Mining. Practical Machine Learning Tools and Techniques. Classification, association, clustering, numeric prediction

Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 2 of Data Mining by I. H. Witten and E. Frank Input: Concepts, instances, attributes Terminology What s a concept? Classification,

### A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model

A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model ABSTRACT Mrs. Arpana Bharani* Mrs. Mohini Rao** Consumer credit is one of the necessary processes but lending bears

### Classification with Decision Trees

Classification with Decision Trees Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong 1 / 24 Y Tao Classification with Decision Trees In this lecture, we will discuss

### COC131 Data Mining - Clustering

COC131 Data Mining - Clustering Martin D. Sykora m.d.sykora@lboro.ac.uk Tutorial 05, Friday 20th March 2009 1. Fire up Weka (Waikako Environment for Knowledge Analysis) software, launch the explorer window

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Evaluating the Accuracy of a Classifier Holdout, random subsampling, crossvalidation, and the bootstrap are common techniques for

### Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms

Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms Yin Zhao School of Mathematical Sciences Universiti Sains Malaysia (USM) Penang, Malaysia Yahya

### What is Classification? Data Mining Classification. Certainty. Usual Examples. Predictive / Definitive. Techniques

What is Classification? Data Mining Classification Kevin Swingler Assigning an object to a certain class based on its similarity to previous examples of other objects Can be done with reference to original

### Fuzzy decision trees

Fuzzy decision trees Catalin Pol Abstract Decision trees are arguably one of the most popular choices for learning and reasoning systems, especially when it comes to learning from discrete valued (feature

### Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr WEKA Gallirallus Zeland) australis : Endemic bird (New Characteristics Waikato university Weka is a collection

### EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.

EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models

### Decision Trees and other predictive models. Mathias Lanner SAS Institute

Decision Trees and other predictive models Mathias Lanner SAS Institute Agenda Introduction to Predictive Models Decision Trees Pruning Regression Neural Network Model Assessment 2 Predictive Modeling

### Implementation in Enterprise Miner: Decision Tree with Binary Response

Implementation in Enterprise Miner: Decision Tree with Binary Response Outline 8.1 Example 8.2 The Options in Tree Node 8.3 Tree Results 8.4 Example Continued Appendix A: Tree and Missing Values - 1 -

### A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE

A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE Kasra Madadipouya 1 1 Department of Computing and Science, Asia Pacific University of Technology & Innovation ABSTRACT Today, enormous amount of data

### TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP

TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP Csaba Főző csaba.fozo@lloydsbanking.com 15 October 2015 CONTENTS Introduction 04 Random Forest Methodology 06 Transactional Data Mining Project 17 Conclusions

### Smart Grid Data Analytics for Decision Support

1 Smart Grid Data Analytics for Decision Support Prakash Ranganathan, Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, USA Prakash.Ranganathan@engr.und.edu, 701-777-4431

### Data Mining Part 5. Prediction

Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification

### EFFICIENT CLASSIFICATION OF BIG DATA USING VFDT (VERY FAST DECISION TREE)

EFFICIENT CLASSIFICATION OF BIG DATA USING VFDT (VERY FAST DECISION TREE) Sourav Roy 1, Brina Patel 2, Samruddhi Purandare 3, Minal Kucheria 4 1 Student, Computer Department, MIT College of Engineering,

### Entropy and Information Gain

Entropy and Information Gain The entropy (very common in Information Theory) characterizes the (im)purity of an arbitrary collection of examples Information Gain is the expected reduction in entropy caused

### Social Media Mining. Data Mining Essentials

Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

### Titanic Machine Learning from Disaster

Titanic Machine Learning from Disaster M.A.D.-Python team: Dylan Kenny, Matthew Kiggans, Aleksandr Smirnov Louisiana State University, MATH 4020, Professor Peter Wolenski 1 The sinking of the RMS Titanic

### Data Mining Practical Machine Learning Tools and Techniques

Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

### Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics

### ON INTEGRATING UNSUPERVISED AND SUPERVISED CLASSIFICATION FOR CREDIT RISK EVALUATION

ISSN 9 X INFORMATION TECHNOLOGY AND CONTROL, 00, Vol., No.A ON INTEGRATING UNSUPERVISED AND SUPERVISED CLASSIFICATION FOR CREDIT RISK EVALUATION Danuta Zakrzewska Institute of Computer Science, Technical

### Introduction to Learning & Decision Trees

Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

### Extension of Decision Tree Algorithm for Stream Data Mining Using Real Data

Fifth International Workshop on Computational Intelligence & Applications IEEE SMC Hiroshima Chapter, Hiroshima University, Japan, November 10, 11 & 12, 2009 Extension of Decision Tree Algorithm for Stream

### NUMB3RS Activity: Are You Sure?

NUMB3RS ctivity Teacher Page 1 NUMB3RS ctivity: re You Sure? Topic: Mathematical Prediction Grade Level: 9-12 Objective: Introduce Decision Trees Time: 20-30 minutes Introduction In Soft Target, Charlie

### DATA MINING METHODS WITH TREES

DATA MINING METHODS WITH TREES Marta Žambochová 1. Introduction The contemporary world is characterized by the explosion of an enormous volume of data deposited into databases. Sharp competition contributes

### Data quality in Accounting Information Systems

Data quality in Accounting Information Systems Comparing Several Data Mining Techniques Erjon Zoto Department of Statistics and Applied Informatics Faculty of Economy, University of Tirana Tirana, Albania

### ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

### Professor Anita Wasilewska. Classification Lecture Notes

Professor Anita Wasilewska Classification Lecture Notes Classification (Data Mining Book Chapters 5 and 7) PART ONE: Supervised learning and Classification Data format: training and test data Concept,

### Information Based Learning

Information Based Learning John Kelleher and Brian Mac Namee 1 Introduction Guess Who? 2 Information Theory Basic Measure of Information Entropy 3 Learning Decision Trees The Decision Tree Representation

### Weather forecast prediction: a Data Mining application

Weather forecast prediction: a Data Mining application Ms. Ashwini Mandale, Mrs. Jadhawar B.A. Assistant professor, Dr.Daulatrao Aher College of engg,karad,ashwini.mandale@gmail.com,8407974457 Abstract

### ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA

ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA D.Lavanya 1 and Dr.K.Usha Rani 2 1 Research Scholar, Department of Computer Science, Sree Padmavathi Mahila Visvavidyalayam, Tirupati, Andhra Pradesh,

### Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 7 of Data Mining by I. H. Witten and E. Frank

Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 7 of Data Mining by I. H. Witten and E. Frank Engineering the input and output Attribute selection Scheme independent, scheme

### Data Mining Practical Machine Learning Tools and Techniques

Some Core Learning Representations Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter of Data Mining by I. H. Witten and E. Frank Decision trees Learning Rules Association rules

### Data Mining Methods: Applications for Institutional Research

Data Mining Methods: Applications for Institutional Research Nora Galambos, PhD Office of Institutional Research, Planning & Effectiveness Stony Brook University NEAIR Annual Conference Philadelphia 2014

### Implementation of Data Mining Techniques for Weather Report Guidance for Ships Using Global Positioning System

International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 3 Implementation of Data Mining Techniques for Weather Report Guidance for Ships Using Global Positioning System

### A Data Mining Tutorial

A Data Mining Tutorial Presented at the Second IASTED International Conference on Parallel and Distributed Computing and Networks (PDCN 98) 14 December 1998 Graham Williams, Markus Hegland and Stephen

### Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

### Data mining usage in health care management: literature survey and decision tree application

ORIGINAL ARTICLE Data mining usage in health care management: literature survey and decision tree application Mirjana Pejić Bach 1, Dijana Ćosić 2 1 Ekonomski fakultet, Sveučilište u Zagrebu; 2 Valicon

### from Larson Text By Susan Miertschin

Decision Tree Data Mining Example from Larson Text By Susan Miertschin 1 Problem The Maximum Miniatures Marketing Department wants to do a targeted mailing gpromoting the Mythic World line of figurines.

### An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

### Classification On The Clouds Using MapReduce

Classification On The Clouds Using MapReduce Simão Martins Instituto Superior Técnico Lisbon, Portugal simao.martins@tecnico.ulisboa.pt Cláudia Antunes Instituto Superior Técnico Lisbon, Portugal claudia.antunes@tecnico.ulisboa.pt

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 11 Sajjad Haider Fall 2013 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

### In this tutorial, we try to build a roc curve from a logistic regression.

Subject In this tutorial, we try to build a roc curve from a logistic regression. Regardless the software we used, even for commercial software, we have to prepare the following steps when we want build

### Chapter 20: Data Analysis

Chapter 20: Data Analysis Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 20: Data Analysis Decision Support Systems Data Warehousing Data Mining Classification

### CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore.

CI6227: Data Mining Lesson 11b: Ensemble Learning Sinno Jialin PAN Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore Acknowledgements: slides are adapted from the lecture notes

### THE LAST THING A FISH NOTICES IS THE WATER IN WHICH IT SWIMS COMPETITIVE MARKET ANALYSIS: AN EXAMPLE FOR MOTOR INSURANCE PRICING RISK

THE LAST THING A FISH NOTICES IS THE WATER IN WHICH IT SWIMS COMPETITIVE MARKET ANALYSIS: AN EXAMPLE FOR MOTOR INSURANCE Topic: PRICING RISK Authors: Santoni, Alessandro Towers Perrin Via Boezio, 6 00193

### Kass Adjustments in Decision Trees on Binary/Interval Target Variable

Kass Adjustments in Decision Trees on Binary/Interval Target Variable ABSTRACT Manoj Kumar Immadi Oklahoma State University, Stillwater, OK Kass adjustment maximizes the independence between the two branches

### Predicting the Risk of Heart Attacks using Neural Network and Decision Tree

Predicting the Risk of Heart Attacks using Neural Network and Decision Tree S.Florence 1, N.G.Bhuvaneswari Amma 2, G.Annapoorani 3, K.Malathi 4 PG Scholar, Indian Institute of Information Technology, Srirangam,

### Data Mining Tools. Jean- Gabriel Ganascia LIP6 University Pierre et Marie Curie 4, place Jussieu, 75252 Paris, Cedex 05 Jean- Gabriel.Ganascia@lip6.

Data Mining Tools Jean- Gabriel Ganascia LIP6 University Pierre et Marie Curie 4, place Jussieu, 75252 Paris, Cedex 05 Jean- Gabriel.Ganascia@lip6.fr DATA BASES Data mining Extraction Data mining Interpretation/

### CLASSIFICATION AND CLUSTERING. Anveshi Charuvaka

CLASSIFICATION AND CLUSTERING Anveshi Charuvaka Learning from Data Classification Regression Clustering Anomaly Detection Contrast Set Mining Classification: Definition Given a collection of records (training

### Data Mining on Streams

Data Mining on Streams Using Decision Trees CS 536: Machine Learning Instructor: Michael Littman TA: Yihua Wu Outline Introduction to data streams Overview of traditional DT learning ALG DT learning ALGs

### Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies

Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com Spam

### Subject. Dataset. Induction of a decision tree using SIPINA. Data importation

Subject Interactive induction of decision trees with SIPINA. Various functionalities of SIPINA are not documented. In this tutorial, we show how to explore nodes of a decision tree, in order to obtain

### Using Trace Clustering for Configurable Process Discovery Explained by Event Log Data

Master of Business Information Systems, Department of Mathematics and Computer Science Using Trace Clustering for Configurable Process Discovery Explained by Event Log Data Master Thesis Author: ing. Y.P.J.M.

### Clustering UE 141 Spring 2013

Clustering UE 141 Spring 013 Jing Gao SUNY Buffalo 1 Definition of Clustering Finding groups of obects such that the obects in a group will be similar (or related) to one another and different from (or

### Experiments in Web Page Classification for Semantic Web

Experiments in Web Page Classification for Semantic Web Asad Satti, Nick Cercone, Vlado Kešelj Faculty of Computer Science, Dalhousie University E-mail: {rashid,nick,vlado}@cs.dal.ca Abstract We address

### Big Data: The Science of Patterns. Dr. Lutz Hamel Dept. of Computer Science and Statistics hamel@cs.uri.edu

Big Data: The Science of Patterns Dr. Lutz Hamel Dept. of Computer Science and Statistics hamel@cs.uri.edu The Blessing and the Curse: Lots of Data Outlook Temp Humidity Wind Play Sunny Hot High Weak No