# ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Regression Model I. Regression Node

Save this PDF as:

Size: px
Start display at page:

Download "ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Regression Model I. Regression Node"

## Transcription

1 Enterprise Miner - Regression 1 ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Regression Model I. Regression Node 1. Some background: Linear attempts to predict the value of a continuous target as a linear function of one or Regression: more independent inputs Logistic attempts to predict the probability that a binary or ordinal target will acquire the Regression: event of interest as a function of one or more independent inputs N.B. : Regression cannot handle nominal target. Let there are three variables: A, B and C Effect: Main input / effect: Multiplication effect / Interaction terms: Polynomial effect: Selection Method: Selection Criteria: Optimization Method: Linking Function: Variable used to model the value / probability A, B and C AB, ABC, A**2, B**3, Method to select effects (e.g. starting from all, starting from zero) Criteria used to evaluate the effects of a model on the target Method used to optimize the selection function among a set of candidate effects Function used to link response to the linear predictor e.g. From logistic to linear Example Data: SAMPSIO.DMAGECR Variable: GOOD_BAD (Model: use) GOOD_BAD edit target profile Assessment information Add matrix Accept Good (i.e. true positive): -1, Accept Bad(i.e. false positive): 5, Others: 0 Edit Decision: Minimize Loss Data Partition: 70% Training 30% Validation With stratification, keep Good and Bad in proportion. Model Options Tab - lists details about the target variable and the regression process and enables you to specify options for both Target Definition Subtab - lists the name, measurement level, and event level of the target variable Regression Subtab 1

2 Enterprise Miner - Regression 2 Type Binary or ordinal targets Interval targets logistic (default) linear (default) Link Function For logistic regression: logit (default) cloglog (complementary log-log) probit Input Coding - convert categorical inputs to discrete integer values Deviation use middle level as reference level GLM use highest / lowest (descending / ascending) level as reference Selection Method Tab Method Backward Forward Stepwise Begins with all candidate effects, remove effect Begins with no candidate effects, add effect Begins with no candidate, add and remove effect All candidate effects are included Criteria AIC Akaike's Information Criterion (smallest) SBC Schwarz's Bayesian Criterion (smallest) Validation Error smallest error rate for the validation data set Validation smallest misclassification rate for the validation data set Misclassification Cross-Validation Error smallest cross validation error rate for the training data set Cross Validation smallest cross validation misclassification rate for the training Misclassification data set Profit/Loss maximizes the profit or minimizes the loss for the cases in the validation data set Cross Validation maximizes the cross validation profit or minimizes the cross Profit/Loss validation loss last model produced by the effects selection method 2

3 Enterprise Miner - Regression 3 Selection Method Number of Variables: Start - number of effects to use in the first model - list of candidate effects can be seen in the Tools Model Ordering window - first n effects will be selected in the first model Stop - Forward method: maximum number of effects to appear in the final model - Backward method: minimum number of effects to appear in the final model - effect selection method may terminate for other reasons before the Stop criterion is applied. Force - force specific effects into the final models - set force no. and arrange effects in the Tools Model Ordering window Initialization Tab You can set one of the following options in the Initialization tab: (default) Do not use initial parameter estimates Current estimates Use the current parameter estimates from an initial run of the Regression node as starting values Selected data set Specify a data set that contains starting values for the parameter estimates Advanced Tab - set the optimization method, iteration controls, and convergence criteria in the Advanced tab. 3

4 Enterprise Miner - Regression 4 Optimization Method Max Iterations Max Function Calls No. of variables (n) Conjugate Gradient n > 400 Double Dogleg < n < 400 Newton-Raphson with Line Search n < 40 Newton-Raphson with Ridging n < 40 Quasi-Newton < n < 400 Trust-Region n < 40 Note: To learn about these optimization methods, see SAS/OR Technical Report: The NLP Procedure. Running the Regression Node Regression Results Browser The Regression node results help you interpret the regression analysis of your data. It provides a graphic display of parameter estimates, statistics of fit, and a full listing of the regression output, log, and code. Estimates Tab - T-scores: the larger the value, the higher the strength of the effect on the target Plot Tab The taller the bar, the higher the agreement between the predicted (the into variable) and the actual (the from variable) target values the more useful the model 4

5 Enterprise Miner - Regression 5 Statistics Tab - fit statistics, in alphabetical order, for the training data, validation data, and test data analyzed with the regression model - the fit statistics show how good the trained model using different assessment methods To learn about these statistics, read either the LOGISTIC procedure or the REG procedure documentation in the SAS/STAT User's Guide, Version 6, Volume 2. 5

### STATISTICA Formula Guide: Logistic Regression. Table of Contents

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

More information

### A Comparison of Decision Tree and Logistic Regression Model Xianzhe Chen, North Dakota State University, Fargo, ND

Paper D02-2009 A Comparison of Decision Tree and Logistic Regression Model Xianzhe Chen, North Dakota State University, Fargo, ND ABSTRACT This paper applies a decision tree model and logistic regression

More information

### A fast, powerful data mining workbench designed for small to midsize organizations

FACT SHEET SAS Desktop Data Mining for Midsize Business A fast, powerful data mining workbench designed for small to midsize organizations What does SAS Desktop Data Mining for Midsize Business do? Business

More information

### SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

More information

### Section 6: Model Selection, Logistic Regression and more...

Section 6: Model Selection, Logistic Regression and more... Carlos M. Carvalho The University of Texas McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Model Building

More information

### Data Mining Using SAS Enterprise Miner : A Case Study Approach, Second Edition

Data Mining Using SAS Enterprise Miner : A Case Study Approach, Second Edition The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2003. Data Mining Using SAS Enterprise

More information

### 5. Multiple regression

5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful

More information

### Internet Gambling Behavioral Markers: Using the Power of SAS Enterprise Miner 12.1 to Predict High-Risk Internet Gamblers

Paper 1863-2014 Internet Gambling Behavioral Markers: Using the Power of SAS Enterprise Miner 12.1 to Predict High-Risk Internet Gamblers Sai Vijay Kishore Movva, Vandana Reddy and Dr. Goutam Chakraborty;

More information

### ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS

DATABASE MARKETING Fall 2015, max 24 credits Dead line 15.10. ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS PART A Gains chart with excel Prepare a gains chart from the data in \\work\courses\e\27\e20100\ass4b.xls.

More information

### CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS

Examples: Regression And Path Analysis CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Regression analysis with univariate or multivariate dependent variables is a standard procedure for modeling relationships

More information

### Logistic Regression. http://faculty.chass.ncsu.edu/garson/pa765/logistic.htm#sigtests

Logistic Regression http://faculty.chass.ncsu.edu/garson/pa765/logistic.htm#sigtests Overview Binary (or binomial) logistic regression is a form of regression which is used when the dependent is a dichotomy

More information

### Logistic Regression (1/24/13)

STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

More information

### APPLICATION PROGRAMMING: DATA MINING AND DATA WAREHOUSING

Wrocław University of Technology Internet Engineering Henryk Maciejewski APPLICATION PROGRAMMING: DATA MINING AND DATA WAREHOUSING PRACTICAL GUIDE Wrocław (2011) 1 Copyright by Wrocław University of Technology

More information

### UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee

UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee 1. Introduction There are two main approaches for companies to promote their products / services: through mass

More information

### Chapter 39 The LOGISTIC Procedure. Chapter Table of Contents

Chapter 39 The LOGISTIC Procedure Chapter Table of Contents OVERVIEW...1903 GETTING STARTED...1906 SYNTAX...1910 PROCLOGISTICStatement...1910 BYStatement...1912 CLASSStatement...1913 CONTRAST Statement.....1916

More information

### Gerry Hobbs, Department of Statistics, West Virginia University

Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit

More information

### Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP

Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP ABSTRACT In data mining modelling, data preparation

More information

### Yiming Peng, Department of Statistics. February 12, 2013

Regression Analysis Using JMP Yiming Peng, Department of Statistics February 12, 2013 2 Presentation and Data http://www.lisa.stat.vt.edu Short Courses Regression Analysis Using JMP Download Data to Desktop

More information

### 7 Generalized Estimating Equations

Chapter 7 The procedure extends the generalized linear model to allow for analysis of repeated measurements or other correlated observations, such as clustered data. Example. Public health of cials can

More information

### Data Mining Lab 5: Introduction to Neural Networks

Data Mining Lab 5: Introduction to Neural Networks 1 Introduction In this lab we are going to have a look at some very basic neural networks on a new data set which relates various covariates about cheese

More information

### Agenda. Mathias Lanner Sas Institute. Predictive Modeling Applications. Predictive Modeling Training Data. Beslutsträd och andra prediktiva modeller

Agenda Introduktion till Prediktiva modeller Beslutsträd Beslutsträd och andra prediktiva modeller Mathias Lanner Sas Institute Pruning Regressioner Neurala Nätverk Utvärdering av modeller 2 Predictive

More information

### Statistics in Retail Finance. Chapter 2: Statistical models of default

Statistics in Retail Finance 1 Overview > We consider how to build statistical models of default, or delinquency, and how such models are traditionally used for credit application scoring and decision

More information

### Didacticiel Études de cas

1 Theme Data Mining with R The rattle package. R (http://www.r project.org/) is one of the most exciting free data mining software projects of these last years. Its popularity is completely justified (see

More information

### WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat

Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise

More information

### SAS ENTERPRISE MINER 5.3

FACT SHEET SAS ENTERPRISE MINER 5.3 Unearthing valuable insight profitable data mining results with less time and effort What does SAS Enterprise Miner do? SAS Enterprise Miner streamlines the data mining

More information

### IBM SPSS Direct Marketing 23

IBM SPSS Direct Marketing 23 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 23, release

More information

### A Property & Casualty Insurance Predictive Modeling Process in SAS

Paper AA-02-2015 A Property & Casualty Insurance Predictive Modeling Process in SAS 1.0 ABSTRACT Mei Najim, Sedgwick Claim Management Services, Chicago, Illinois Predictive analytics has been developing

More information

### IBM SPSS Direct Marketing 22

IBM SPSS Direct Marketing 22 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 22, release

More information

### Some Essential Statistics The Lure of Statistics

Some Essential Statistics The Lure of Statistics Data Mining Techniques, by M.J.A. Berry and G.S Linoff, 2004 Statistics vs. Data Mining..lie, damn lie, and statistics mining data to support preconceived

More information

### An Overview and Evaluation of Decision Tree Methodology

An Overview and Evaluation of Decision Tree Methodology ASA Quality and Productivity Conference Terri Moore Motorola Austin, TX terri.moore@motorola.com Carole Jesse Cargill, Inc. Wayzata, MN carole_jesse@cargill.com

More information

### Improved Interaction Interpretation: Application of the EFFECTPLOT statement and other useful features in PROC LOGISTIC

Paper AA08-2013 Improved Interaction Interpretation: Application of the EFFECTPLOT statement and other useful features in PROC LOGISTIC Robert G. Downer, Grand Valley State University, Allendale, MI ABSTRACT

More information

### New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction

Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.

More information

### Developing Credit Scorecards Using Credit Scoring for SAS Enterprise Miner TM 12.1

Developing Credit Scorecards Using Credit Scoring for SAS Enterprise Miner TM 12.1 SAS Documentation The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2012. Developing

More information

### USING LOGISTIC REGRESSION TO PREDICT CUSTOMER RETENTION. Andrew H. Karp Sierra Information Services, Inc. San Francisco, California USA

USING LOGISTIC REGRESSION TO PREDICT CUSTOMER RETENTION Andrew H. Karp Sierra Information Services, Inc. San Francisco, California USA Logistic regression is an increasingly popular statistical technique

More information

### SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria

Paper SA01_05 SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria Dennis J. Beal, Science Applications International Corporation, Oak Ridge, TN

More information

### Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@

Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@ Yanchun Xu, Andrius Kubilius Joint Commission on Accreditation of Healthcare Organizations,

More information

### Data Mining Using SAS Enterprise Miner Randall Matignon, Piedmont, CA

Data Mining Using SAS Enterprise Miner Randall Matignon, Piedmont, CA An Overview of SAS Enterprise Miner The following article is in regards to Enterprise Miner v.4.3 that is available in SAS v9.1.3.

More information

### Generalized Linear Models. Today: definition of GLM, maximum likelihood estimation. Involves choice of a link function (systematic component)

Generalized Linear Models Last time: definition of exponential family, derivation of mean and variance (memorize) Today: definition of GLM, maximum likelihood estimation Include predictors x i through

More information

### PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

### A Tutorial on Logistic Regression

A Tutorial on Logistic Regression Ying So, SAS Institute Inc., Cary, NC ABSTRACT Many procedures in SAS/STAT can be used to perform logistic regression analysis: CATMOD, GENMOD,LOGISTIC, and PROBIT. Each

More information

### What is Data Mining? MS4424 Data Mining & Modelling. MS4424 Data Mining & Modelling. MS4424 Data Mining & Modelling. MS4424 Data Mining & Modelling

MS4424 Data Mining & Modelling MS4424 Data Mining & Modelling Lecturer : Dr Iris Yeung Room No : P7509 Tel No : 2788 8566 Email : msiris@cityu.edu.hk 1 Aims To introduce the basic concepts of data mining

More information

### Reevaluating Policy and Claims Analytics: a Case of Non-Fleet Customers In Automobile Insurance Industry

Paper 1808-2014 Reevaluating Policy and Claims Analytics: a Case of Non-Fleet Customers In Automobile Insurance Industry Kittipong Trongsawad and Jongsawas Chongwatpol NIDA Business School, National Institute

More information

### 2015 Workshops for Professors

SAS Education Grow with us Offered by the SAS Global Academic Program Supporting teaching, learning and research in higher education 2015 Workshops for Professors 1 Workshops for Professors As the market

More information

### !"!!"#\$\$%&'()*+\$(,%!"#\$%\$&'()*""%(+,'-*&./#-\$&'(-&(0*".\$#-\$1"(2&."3\$'45"

!"!!"#\$\$%&'()*+\$(,%!"#\$%\$&'()*""%(+,'-*&./#-\$&'(-&(0*".\$#-\$1"(2&."3\$'45"!"#"\$%&#'()*+',\$\$-.&#',/"-0%.12'32./4'5,5'6/%&)\$).2&'7./&)8'5,5'9/2%.%3%&8':")08';:

More information

### 9.2 User s Guide SAS/STAT. Introduction. (Book Excerpt) SAS Documentation

SAS/STAT Introduction (Book Excerpt) 9.2 User s Guide SAS Documentation This document is an individual chapter from SAS/STAT 9.2 User s Guide. The correct bibliographic citation for the complete manual

More information

### Generalized Linear Models

Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the

More information

### A Guide for a Selection of SPSS Functions

A Guide for a Selection of SPSS Functions IBM SPSS Statistics 19 Compiled by Beth Gaedy, Math Specialist, Viterbo University - 2012 Using documents prepared by Drs. Sheldon Lee, Marcus Saegrove, Jennifer

More information

### Weight of Evidence Module

Formula Guide The purpose of the Weight of Evidence (WoE) module is to provide flexible tools to recode the values in continuous and categorical predictor variables into discrete categories automatically,

More information

### Text Mining the Federalist Papers

Text Mining the Federalist Papers This demonstration illustrates how to use the Text Miner node to identify the author or authors of the 12 unattributed Federalist Papers. Some of the demonstrations in

More information

### SUGI 29 Statistics and Data Analysis

Paper 194-29 Head of the CLASS: Impress your colleagues with a superior understanding of the CLASS statement in PROC LOGISTIC Michelle L. Pritchard and David J. Pasta Ovation Research Group, San Francisco,

More information

### Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing. C. Olivia Rud, VP, Fleet Bank

Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing C. Olivia Rud, VP, Fleet Bank ABSTRACT Data Mining is a new term for the common practice of searching through

More information

### STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

### Text Analytics using High Performance SAS Text Miner

Text Analytics using High Performance SAS Text Miner Edward R. Jones, Ph.D. Exec. Vice Pres.; Texas A&M Statistical Services Abstract: The latest release of SAS Enterprise Miner, version 13.1, contains

More information

### Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng. LISREL for Windows: PRELIS User s Guide

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng LISREL for Windows: PRELIS User s Guide Table of contents INTRODUCTION... 1 GRAPHICAL USER INTERFACE... 2 The Data menu... 2 The Define Variables

More information

### Automated Statistical Modeling for Data Mining David Stephenson 1

Automated Statistical Modeling for Data Mining David Stephenson 1 Abstract. We seek to bridge the gap between basic statistical data mining tools and advanced statistical analysis software that requires

More information

### MAXIMIZING RETURN ON DIRECT MARKETING CAMPAIGNS

MAXIMIZING RETURN ON DIRET MARKETING AMPAIGNS IN OMMERIAL BANKING S 229 Project: Final Report Oleksandra Onosova INTRODUTION Recent innovations in cloud computing and unified communications have made a

More information

### Modeling Lifetime Value in the Insurance Industry

Modeling Lifetime Value in the Insurance Industry C. Olivia Parr Rud, Executive Vice President, Data Square, LLC ABSTRACT Acquisition modeling for direct mail insurance has the unique challenge of targeting

More information

### A Property and Casualty Insurance Predictive Modeling Process in SAS

Paper 11422-2016 A Property and Casualty Insurance Predictive Modeling Process in SAS Mei Najim, Sedgwick Claim Management Services ABSTRACT Predictive analytics is an area that has been developing rapidly

More information

### Application of Data Mining Techniques in Improving Breast Cancer Diagnosis

Application of Data Mining Techniques in Improving Breast Cancer Diagnosis ABSTRACT Breast cancer is the second leading cause of cancer deaths among women in the United States. Although mortality rates

More information

### Neural Network Add-in

Neural Network Add-in Version 1.5 Software User s Guide Contents Overview... 2 Getting Started... 2 Working with Datasets... 2 Open a Dataset... 3 Save a Dataset... 3 Data Pre-processing... 3 Lagging...

More information

### Medical Information Management & Mining. You Chen Jan,15, 2013 You.chen@vanderbilt.edu

Medical Information Management & Mining You Chen Jan,15, 2013 You.chen@vanderbilt.edu 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?

More information

### PAKDD 2006 Data Mining Competition

PAKDD 2006 Data Mining Competition Date Submitted: February 28 th, 2006 SAS Enterprise Miner, Release 4.3 Team Members Bhuvanendran, Aswin Bommi Narasimha, Sankeerth Reddy Jain, Amit Rangwala, Zenab Table

More information

### Directions for using SPSS

Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

More information

### Credit Risk Analysis Using Logistic Regression Modeling

Credit Risk Analysis Using Logistic Regression Modeling Introduction A loan officer at a bank wants to be able to identify characteristics that are indicative of people who are likely to default on loans,

More information

### Using JMP Version 4 for Time Series Analysis Bill Gjertsen, SAS, Cary, NC

Using JMP Version 4 for Time Series Analysis Bill Gjertsen, SAS, Cary, NC Abstract Three examples of time series will be illustrated. One is the classical airline passenger demand data with definite seasonal

More information

### CHAPTER 9 EXAMPLES: MULTILEVEL MODELING WITH COMPLEX SURVEY DATA

Examples: Multilevel Modeling With Complex Survey Data CHAPTER 9 EXAMPLES: MULTILEVEL MODELING WITH COMPLEX SURVEY DATA Complex survey data refers to data obtained by stratification, cluster sampling and/or

More information

### IBM SPSS Neural Networks 22

IBM SPSS Neural Networks 22 Note Before using this information and the product it supports, read the information in Notices on page 21. Product Information This edition applies to version 22, release 0,

More information

### i SPSS Regression 17.0

i SPSS Regression 17.0 For more information about SPSS Inc. software products, please visit our Web site at http://www.spss.com or contact SPSS Inc. 233 South Wacker Drive, 11th Floor Chicago, IL 60606-6412

More information

### Big Data Analytics. Benchmarking SAS, R, and Mahout. Allison J. Ames, Ralph Abbey, Wayne Thompson. SAS Institute Inc., Cary, NC

Technical Paper (Last Revised On: May 6, 2013) Big Data Analytics Benchmarking SAS, R, and Mahout Allison J. Ames, Ralph Abbey, Wayne Thompson SAS Institute Inc., Cary, NC Accurate and Simple Analysis

More information

### Data mining and statistical models in marketing campaigns of BT Retail

Data mining and statistical models in marketing campaigns of BT Retail Francesco Vivarelli and Martyn Johnson Database Exploitation, Segmentation and Targeting group BT Retail Pp501 Holborn centre 120

More information

### Lecture 10: Regression Trees

Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

More information

### SP10 From GLM to GLIMMIX-Which Model to Choose? Patricia B. Cerrito, University of Louisville, Louisville, KY

SP10 From GLM to GLIMMIX-Which Model to Choose? Patricia B. Cerrito, University of Louisville, Louisville, KY ABSTRACT The purpose of this paper is to investigate several SAS procedures that are used in

More information

### Application of SAS! Enterprise Miner in Credit Risk Analytics. Presented by Minakshi Srivastava, VP, Bank of America

Application of SAS! Enterprise Miner in Credit Risk Analytics Presented by Minakshi Srivastava, VP, Bank of America 1 Table of Contents Credit Risk Analytics Overview Journey from DATA to DECISIONS Exploratory

More information

### IBM SPSS Direct Marketing 19

IBM SPSS Direct Marketing 19 Note: Before using this information and the product it supports, read the general information under Notices on p. 105. This document contains proprietary information of SPSS

More information

### GLM, insurance pricing & big data: paying attention to convergence issues.

GLM, insurance pricing & big data: paying attention to convergence issues. Michaël NOACK - michael.noack@addactis.com Senior consultant & Manager of ADDACTIS Pricing Copyright 2014 ADDACTIS Worldwide.

More information

### Comparison of target selection methods in direct marketing

Comparison of target selection methods in direct marketing Sara Madeira João M. Sousa Technical University of Lisbon, Instituto Superior Técnico Dept. Mechanical Eng./IDMEC, 1049-001 Lisbon, Portugal Email:

More information

### SELF-ORGANISING MAPPING NETWORKS (SOM) WITH SAS E-MINER

SELF-ORGANISING MAPPING NETWORKS (SOM) WITH SAS E-MINER C.Sarada, K.Alivelu and Lakshmi Prayaga Directorate of Oilseeds Research, Rajendranagar, Hyderabad saradac@yahoo.com Self Organising mapping networks

More information

### Chapter 29 The GENMOD Procedure. Chapter Table of Contents

Chapter 29 The GENMOD Procedure Chapter Table of Contents OVERVIEW...1365 WhatisaGeneralizedLinearModel?...1366 ExamplesofGeneralizedLinearModels...1367 TheGENMODProcedure...1368 GETTING STARTED...1370

More information

### What s New in IBM SPSS Statistics 20

Myrto Setzi Associate Sales Engineer What s New in IBM SPSS Statistics 20 Editable Text Editable Text Editable Text Business Analytics software Agenda Themes of the release Demonstration Questions 2 Themes

More information

### Regression Modeling Strategies

Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions

More information

### The Basics of SAS Enterprise Miner 5.2

The Basics of SAS Enterprise Miner 5.2 1.1 Introduction to Data Mining...1 1.2 Introduction to SAS Enterprise Miner 5.2...4 1.3 Exploring the Data Set... 14 1.4 Analyzing a Sample Data Set... 19 1.5 Presenting

More information

### About Dell Statistica 12.6... 2

Complete Product Name with Trademarks Version Dell TM Statistica TM 12.6 Contents Dell TM Statistica TM... 1 About Dell Statistica 12.6... 2 New Features... 2 Workspace Enhancements: Statistica Enterprise

More information

### Statistical Machine Learning

Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

### Social Media Mining. Data Mining Essentials

Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

### Machine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler

Machine Learning and Data Mining Regression Problem (adapted from) Prof. Alexander Ihler Overview Regression Problem Definition and define parameters ϴ. Prediction using ϴ as parameters Measure the error

More information

### IBM SPSS Regression 20

IBM SPSS Regression 20 Note: Before using this information and the product it supports, read the general information under Notices on p. 41. This edition applies to IBM SPSS Statistics 20 and to all subsequent

More information

### Regression Clustering

Chapter 449 Introduction This algorithm provides for clustering in the multiple regression setting in which you have a dependent variable Y and one or more independent variables, the X s. The algorithm

More information

### 5. Ordinal regression: cumulative categories proportional odds. 6. Ordinal regression: comparison to single reference generalized logits

Lecture 23 1. Logistic regression with binary response 2. Proc Logistic and its surprises 3. quadratic model 4. Hosmer-Lemeshow test for lack of fit 5. Ordinal regression: cumulative categories proportional

More information

### LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as

LOGISTIC REGRESSION Nitin R Patel Logistic regression extends the ideas of multiple linear regression to the situation where the dependent variable, y, is binary (for convenience we often code these values

More information

### Chart Recipe ebook. by Mynda Treacy

Chart Recipe ebook by Mynda Treacy Knowing the best chart for your message is essential if you are to produce effective dashboard reports that clearly and succinctly convey your message. M y O n l i n

More information

### Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

More information

### Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets

Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets http://info.salford-systems.com/jsm-2015-ctw August 2015 Salford Systems Course Outline Demonstration of two classification

More information

### Cool Tools for PROC LOGISTIC

Cool Tools for PROC LOGISTIC Paul D. Allison Statistical Horizons LLC and the University of Pennsylvania March 2013 www.statisticalhorizons.com 1 New Features in LOGISTIC ODDSRATIO statement EFFECTPLOT

More information

### STATISTICA. Financial Institutions. Case Study: Credit Scoring. and

Financial Institutions and STATISTICA Case Study: Credit Scoring STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table of Contents INTRODUCTION: WHAT

More information

### Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

### Better credit models benefit us all

Better credit models benefit us all Agenda Credit Scoring - Overview Random Forest - Overview Random Forest outperform logistic regression for credit scoring out of the box Interaction term hypothesis

More information

### Binary Logistic Regression

Binary Logistic Regression Main Effects Model Logistic regression will accept quantitative, binary or categorical predictors and will code the latter two in various ways. Here s a simple model including

More information

### TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP

TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP Csaba Főző csaba.fozo@lloydsbanking.com 15 October 2015 CONTENTS Introduction 04 Random Forest Methodology 06 Transactional Data Mining Project 17 Conclusions

More information

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

More information

### Corporate Defaults and Large Macroeconomic Shocks

Corporate Defaults and Large Macroeconomic Shocks Mathias Drehmann Bank of England Andrew Patton London School of Economics and Bank of England Steffen Sorensen Bank of England The presentation expresses

More information